Supplementary Information for

The assignment of configuration for α-hydroxy acid esters using CEC strategy

Ruixue Peng, Lili Lin, Yuheng Zhang, Wangbin Wu, Yan Lu, Xiaohua Liu and Xiaoming Feng*

Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China 610064.

E-mail: xmfeng@scu.edu.cn

TABLE OF CONTENTS

Kinetic Experiments of 1 with (<i>R</i>)-L-PiEt ₂ -Sc(III) and (<i>S</i>)-L-PiEt ₂ -Sc(III)	S2

¹H NMR Spectra

S3

Kinetic Experiments of 1 with (*R*)-L-PiEt₂-Sc(III) and (*S*)-L-PiEt₂-Sc(III).

Analysis of the conversion of both the (*R*)-**L**-**PiEt**₂-Sc(III) and (*S*)-**L**-**PiEt**₂-Sc(III) catalytic reactions showed the appropriate trend where 1 with (*R*)-**L**-**PiEt**₂-Sc(III) showed a significant increase in rate compared to reacting with (*S*)-**L**-**PiEt**₂-Sc(III) (Figure S1). From the data in Figure S2, the k_{obs} rate for (*R*)-**L**-**PiEt**₂-Sc(III) catalyst was 9.5×10^{-4} s⁻¹ and the corresponding rate for the (*S*)-**L**-**PiEt**₂-Sc(III) catalyst was 5.4×10^{-5} s⁻¹. The (*R*)-**L**-**PiEt**₂-Sc(III) was faster than (*S*)-**L**-**PiEt**₂-Sc(III) by a factor of 17.6.

Figure S1. Comparison of % conversion on kinetic studies of 1 with both (R)-L-PiEt₂-Sc(III) and (S)-L-PiEt₂-Sc(III).

Figure S2. The conversion was monitored directly by ¹H NMR spectroscopy, and the conversion, x, was plotted as 1/(1-x) versus time to determine a rate constant for each catalyst enantiomer.

4.0 3.5 f1 (ppm)

¹H NMR in CDCl₃ at 400 MHz

with (S)-L-PiEt₂-Sc(III)

- 5.93

¹H NMR in CDCl₃ at 400 MHz

S5

5.23 5.22 5.20 5.20 5.20 4.47 4.46 4.44

¹H NMR in CDCl₃ at 400 MHz

Å

with (R)-L-PiEt₂-Sc(III)

¹H NMR in CDCl₃ at 400 MHz

with (R)-L-PiEt₂-Sc(III)

4.0 3.5 fl (ppm) 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

¹H NMR in CDCl₃ at 400 MHz

with (S)-L-PiEt₂-Sc(III)

