ELECTRONIC SUPPLEMENTARY INFORMATION

Protonation-induced red-coloured circularly polarized

luminescence of [5]carbohelicene fused by benzimidazole

Hayato Sakai,^{*a} Takako Kubota,^a Junpei Yuasa,^{*bc} Yasuyuki Araki,^d Tomo Sakanoue,^e Taishi Takenobu,^e Takehiko Wada,^d Tsuyoshi Kawai,^{*b} and Taku Hasobe^{*a}

^aDepartment of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522 Japan ^bGraduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 Japan ^cPRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012 Japan ^dInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 Japan ^eDepartment of Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 Japan

Fig. S1 ¹H NMR spectrum of [5]HeliBI.

Fig. S2 ¹³C NMR spectrum of [5]HeliBI.

Fig. S3 High-resolution MALDI-TOF MS spectral profile of [5]HeliBI.

Fig. S4 ¹H NMR spectral changes of [5]HeliBI (1.5 mM) and TFA-*d* (66 mM) upon addition of pyridine-d5 (0-67 mM) in CD₂Cl₂.

Fig. S5 Cyclic and differential pulse voltammograms of (A) [5]HeliBI in CH_2Cl_2 , (B) H⁺-[5]HeliBI in CH_2Cl_2 with 0.1 M "Bu₄NPF₆ as supporting electrolyte. Scan rates: 0.1 V s⁻¹ for CV and 0.01 V s⁻¹ for DPV.

Table S1. Molecular orbitals and energy levels calculated by DFT method(B3LYP/6-31+G(d) level).

Helicene	НОМО	LUMO	ΔΕ
[5]Heli	-5.49 eV	-1.29 eV	4.20 eV
[5]HeliBI	-5.73 eV	-3.30 eV	2.43 eV

Fig. S6 Absorption spectral changes of [5]HeliBI (20 μ M) and TFA (910 mM) upon addition of pyridine (0-800 mM) in CH₂Cl₂. The inserted figure indicates Δ Absorption profiles at 570 nm.

Fig. S7 Fluorescence spectral changes of [5]HeliBI (20 μ M) and TFA (790 mM) upon addition of pyridine (0-790 mM) in CH₂Cl₂. Excitation wavelength is 355 nm.

Fig. S8 Fluorescence spectral changes of [5]HeliBI (20 μ M) upon addition of TFA (790 mM) in CH₂Cl₂. The inserted figure indicates Δ intensity profiles at 630 nm. Excitation wavelength is 355 nm.

Fig. S9 UV-vis spectra of (a) [5]HeliBI (20 μ M) in CH₂Cl₂ and (b) H⁺-[5]HeliBI (20 μ M) in CH₂Cl₂, and fluorescence excitation spectra of (c) [5]HeliBI (20 μ M) in CH₂Cl₂ and (d) H⁺-[5]HeliBI (20 μ M) in CH₂Cl₂. Excitation wavelength is 355 nm.

Fig. S10 (a) CD spectrum of (+)-(P)-[5]HeliBI in CH₂Cl₂, (b) simulated CD spectrum of (+)-(P)-[5]HeliBI, (c) CD spectrum of (-)-(M)-[5]HeliBI in CH₂Cl₂, and (d) simulated CD spectrum of (-)-(M)-[5]HeliBI in CH₂Cl₂. TDDFT calculations were performed by Gaussian suite of programs at the B3LYP level of theory and the 6-311+G(d,p) basis set.