Synthesis and *in vitro* bone cell activity of analogues of the

cyclohexapeptide Dianthin G

Zaid Amso,^{a,b} Renata Kowalczyk,^a Young-Eun Park,^c Maureen Watson,^c Jian-Ming Lin,^c David S. Musson,^c Jillian Cornish,^c and Margaret A. Brimble^{*a,b}

^{a.} School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand. E-mail: m.brimble@auckland.ac.nz; Phone: (+64) 9 373 7599 ext. 88259

^{c.} School of Medicine, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand.

Supporting information

^{b.} Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.

General methods

Materials

All reagents were acquired as reagent grade and used without further purification. Solvents for RP-HPLC were purchased as HPLC grade and used without further purification. 6-Chloro-1-hydroxybenzotriazole (6-Cl-HOBt) was purchased from Aapptec (Louisville, Kentucky). O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU), 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3tetramethyluronium hexafluorophosphate (HATU), 2-chlorotrityl chloride resin, 4-(hydroxmethyl)phenoxyacetic acid (HMP linker), di-tert-butyl dicarbonate (Boc₂O), Fmoc-allylglycine-OH (Fmoc-Agl), Fmoc-Pro-OH, Fmoc-Leu-OH, Fmoc-Thr(tBu)-OH, Fmoc-Phe-OH, and Fmoc-Gly-OH were purchased from GL Biochem (Shanghai, China). N,N-Dimethylformamide (DMF) (AR grade), and acetonitrile (CH₃CN) [highperformance liquid chromatography (HPLC) grade] were purchased from Scharlau (*i*Pr₂EtN), (Barcelona, *N*,*N*'-Diisopropylethylamine N,N'-Spain). diisopropylcarbodiimide (DIC), 2-mercaptoethanol, 1,8-diazabicyclo[5.4.0]undec-7ene (DBU), 2,4,6-trimethylpyridine (sym-collidine), Hoveyda-Grubbs' II catalyst, 2,2,2trifluoroethanol (TFE), dimethylsulfate (DMS), 2-nitrobenzenesulfonyl chloride (o-NBS-Cl), formic acid, 1-methyl-2-pyrrolidinone (NMP), and piperidine were purchased from Sigma–Aldrich (Sydney, Australia). Dichloromethane (CH₂Cl₂) was purchased from ECP Limited (Auckland, New Zealand). Triisopropylsilane (*i*Pr₃SiH) was purchased from Alfa Aesar (Lankashire, U.K). Dimethyl sulfoxide-d₆ (DMSO-d₆) was purchased from Cambridge Isotope Laboratories (Massachusetts, USA) Trifluoroacetic acid (TFA) was purchased from Halocarbon (New Jersey, USA). Dimethyl sulfoxide (DMSO) was purchased from Romil Ltd (Cambridge, UK). Fmoc-Gly-O-CH₂-Phi-OCH₂-CH₂-COOH (Fmoc-Gly-HMPP) was purchased from PolyPeptide Laboratories Group (Strasbourg, France). Aminomethyl polystyrene resin was purchased from Rapp Polymere (Tuebingen, Germany).

HPLC, MS and NMR

Analytical RP-HPLC spectra were performed on a Dionex (California, USA) Ultimate 3000 System equipped with a two-channel UV detector using an analytical column

2

(XTerra[®] MS C₁₈ column, 4.6 mm x 150 mm, 5 μ m) and a linear gradient of 5% to 75%B over 35 mins (*ca.* 2%B per minute) at a flow rate of 1 mL min⁻¹. The solvent system used was A (0.1% trifluoroacetic acid in H₂O) and B (0.1% trifluoroacetic acid in CH₃CN). Peptide masses were confirmed by a Bruker micrOTOF-Q II mass spectrometer (Bremen, Germany) or a Hewlett Packard (HP) 1100 series mass spectrometer (California, USA) using direct flow injection at 0.3 mL min⁻¹ into an ESI source in the positive mode.

Peptides were purified using a Waters (Massachusetts, USA) S600E system using a semi-preparative column (Waters XTerra[®] C₁₈, 300 mm x 19 mm, 10 μ m) at a flow rate of 10 mL min⁻¹ and eluted using a one-step slow gradient protocol with detection at 210 nm.¹ Fractions were collected, analysed by analytical RP-HPLC or ESI-MS, pooled and lyophilised three times from 10 mM aq HCl.²

Nuclear magnetic resonance spectra were recorded on a Bruker AVANCE 600 spectrometer (Bremen, Germany) using DMSO-d6 as a solvent. Assignments were made with the aid of HSQC, TOCSY, and NOESY experiments.

Peptide synthesis

Loading of the C-terminal amino acid to the resin

For peptides **1-5**:

A solution of Fmoc-Gly-O-CH₂-phi-OCH₂-CH₂-COOH (190.2 mg, 0.4 mmol) and DIC (62 μ L, 0.4 mmol) in CH₂Cl₂/DMF (ν/ν ; 2:1, 3 mL) was added to pre-swollen (CH₂Cl₂, 3 mL, 20 min) aminomethyl polystyrene resin (220.0 mg, 0.2 mmol) and the mixture gently agitated for 5 h, at room temperature, filtered and washed with DMF (4 x 3 mL). A negative Kaiser test³ confirmed the coupling.

For peptide **6**:

A solution of Fmoc-Gly-OH (119.0 mg, 0.4 mmol) and iPr_2EtN (70 µL, 0.4 mmoL) in CH₂Cl₂/DMF (v/v; 2:1, 3 mL) was added to pre-swollen (CH₂Cl₂, 3 mL, 20 min) 2-ClTrtCl resin (150.0 mg, 0.2 mmol) and the mixture was shaken for 1 h at room temperature, filtered, and washed with DMF (4 x 3 mL).

For peptides **7**, **8**, **9**, and **10**:

A solution of HMP linker (109.3 mg, 0.6 mmol) and DIC (93 μ L, 0.6 mmol) in CH₂Cl₂/DMF (*v*/*v*; 2:1, 3 mL) was added to pre-swollen (CH₂Cl₂, 3 mL, 20 min)

3

aminomethyl polystyrene resin (220.0 mg, 0.2 mmol) and the mixture was shaken for 5 h at room temperature, filtered, and washed with DMF (4 x 3 mL). A negative Kaiser test³ confirmed the coupling.

For peptides **7**, **8**, and **9**, a mixture of Fmoc-allylglycine (202.4 mg, 0.6 mmol), DIC (93 μ L, 0.6 mmol) and DMAP (2.44 mg, 0.02 mmol) in DMF (3 mL) was then added to the resin and the reaction mixture was shaken for 1 h at room temperature. This procedure was repeated once with fresh reagents. For peptide **10**, a mixture of the Fmoc-Gly-OH (178.4 mg, 0.6 mmol), DIC (93 μ L, 0.6 mmol) and DMAP (2.44 mg, 0.02 mmol) in DMF (3 mL) was then added to the resin and the reaction mixture was shaken for 1 h at room temperature was shaken for 1 h at room temperature.

Elongation of the peptide sequence

Extension of the *C*-terminal amino acid on the resin was performed at room temperature using manual Fmoc-SPPS. Deprotection of the Fmoc group was accomplished using 20% *v*/*v* piperidine/DMF (3 mL) for 5 min twice with consecutive DMF washes after each addition. A solution of Fmoc-amino acid (0.8 mmol), HATU (281.4 mg, 0.74 mmol), *i*Pr₂EtN (278.7 μ L, 1.6 mmol) in DMF (3 mL) was then added to peptidyl-resin and the mixture was shaken at room temperature for 45 min, then filtered and washed with DMF (4 x 3 mL).

Following on-resin elonagation of the linear precursor of RCM peptides (peptidylresin **18**, **19**, and **22**), Boc_2O (436.5 mg, 2.0 mmol) in DMF (3 mL) was added to the peptidyl-resin and the mixture was shaken at room temperature for 2 h, filtered, and washed with DMF (4 X 3 mL), CH_2Cl_2 (4 x 3 mL), and dried under vacuum.

Peptide cleavage and isolation

The resulting peptides were released from the resin with concomitant removal of the threonine side chain protecting group by treatment with TFA/*i*Pr₃SiH/H₂O (v/v/v; 95:2.5:2.5, 5 mL) at room temperature for 3 h. The resin was removed by filtration, washed with TFA (2 x 3 mL) and the combined filtrates were concentrated, resuspended with H₂O/CH₃CN (v/v; 1:1) and lyophilised.

Peptide cyclisation

Cyclisation was carried out in solution using the pseudo-high dilution conditions described by Brimble *et al.*⁴ Peptide **2** is used here as an example of the synthetic procedure followed for macrolactamisation. To a stirring solution of *i*Pr₂EtN (139.4 μ L, 0.8 mmol) in CH₂Cl₂ (150 mL) was added a mixture of the linear peptide (105.0 mg, 0.16 mmol, 0.8 mM), HBTU (182.0 mg, 0.48 mmol), and 6-Cl-HOBt (81.40 mg, 0.48 mmol) in CH₂Cl₂/DMF (*v*/*v*; 9:1, 50 mL) dropwise at a rate of 2.0 mL h⁻¹. After complete addition of the reagents, the reaction mixture was concentrated under reduced pressure, diluted with H₂O (15 mL) and lyophilised. The crude peptide was purified by RP-HPLC to yield peptide **2** as a white fluffy solid (49.0 mg, 38% overall yield, 98% purity).

A. Dianthin G (1)

Dianthin G (1) was synthesised using manual Fmoc-SPPS on an aminomethyl polystyrene resin (0.2 mmol), which following the cleavage conditions in the general procedure afforded the crude linear precursor as a white solid (110 mg, 85% yield). The crude linear precursor (110 mg, 0.17 mmol) was cyclised using solution-phase macrolactamisation as outlined in the general methods section. RP-HPLC purification afforded peptide **1** as a white fluffy solid (65.4 mg, 52% overall yield, 99% purity); R_t 20.40 min; m/z (HR-MS) 629.3663 ([M+H]⁺ requires for C₃₂H₄₉N₆O₇: 629.3584).

Figure S1. Analytical RP-HPLC and HR-MS data of dianthin G (1).

B. Peptide 2

Peptide **2** was synthesised using manual Fmoc-SPPS on an aminomethyl polystyrene resin (0.2 mmol), which following the cleavage conditions in the general procedure afforded the crude linear precursor (105 mg, 79% yield). The crude linear precursor (105 mg, 0.16 mmol) was cyclised using solution-phase macrolactamisation as outlined in the general methods section. RP-HPLC purification afforded peptide **2** as a white fluffy solid (49.0 mg, 38% overall yield, 98% purity); *R*_t 21.56 min; *m/z* (HR-MS) 643.3815 ([M+H]⁺ requires for C₃₃H₅₁N₆O₇: 643.3741).

Figure S2. Analytical RP-HPLC and HR-MS data of peptide 2.

C. Peptide 3

Peptide **3** was synthesised using manual Fmoc-SPPS on an aminomethyl polystyrene resin (0.2 mmol), which following the cleavage conditions in the general procedure afforded the crude linear precursor (67.4 mg, 51% yield). The crude linear precursor (67.4 mg, 0.1 mmol) was cyclised using solution-phase macrolactamisation as outlined in the general methods section. RP-HPLC purification afforded peptide **3** as a white fluffy solid (28.3 mg, 22% overall yield, 97% purity); *R*_t 23.17 min; *m/z* (HR-MS) 643.3820 ([M+H]⁺ requires for C₃₃H₅₁N₆O₇: 643.3741).

Figure S3. Analytical RP-HPLC and HR-MS data of peptide 3.

Intens. x10⁵

D. Peptide 4

Peptide **4** was synthesised using manual Fmoc-SPPS on an aminomethyl polystyrene resin (0.2 mmol), which following the cleavage conditions in the general procedure afforded the crude linear precursor (95.2 mg, 72% yield). The crude linear precursor (95.2 mg, 0.14 mmol) was cyclised using solution-phase macrolactamisation as outlined in the general methods section. RP-HPLC purification afforded peptide **4** as a white fluffy solid (65.6 mg, 51% overall yield, 99% purity); *R*_t 20.78 min; *m/z* (HR-MS) 643.3796 ([M+H]⁺ requires for C₃₃H₅₁N₆O₇: 643.3741).

Figure S4. Analytical RP-HPLC and HR-MS data of peptide 4.

E. Peptide 5

Peptide **5** was synthesised using manual Fmoc-SPPS on an aminomethyl polystyrene resin (0.2 mmol), which following the cleavage conditions in the general procedure afforded the crude linear precursor (84.6 mg, 64% yield). The crud linear precursor (84.6 mg, 0.13 mmol) was cyclised using solution-phase macrolactamisation as outlined in the general methods section. RP-HPLC purification afforded peptide **5** as a white fluffy solid (55.3 mg, 43% overall yield, 98% purity); *R*_t 20.80 min; *m/z* (HR-MS) 643.3815 ([M+H]⁺ requires for C₃₃H₅₁N₆O₇: 643.3741).

Figure S5. Analytical RP-HPLC and HR-MS data of peptide 5.

F. Peptide 6

Peptide **6** was synthesised using manual Fmoc-SPPS on a 2-chlorotrityl chloride resin (0.2 mmol), which following the cleavage conditions in the general procedure afforded the crude linear precursor (80.6 mg, 61% yield). The crude linear precursor (80.6 mg, 0.12 mmol) was cyclised using solution-phase macrolactamisation as outlined in the general methods section. RP-HPLC purification afforded peptide **6** as a white fluffy solid (50.1 mg, 39% overall yield, 98% purity); *R*_t 22.09 min; *m/z* (HR-MS) 643.3803 ([M+H]⁺ requires for C₃₃H₅₁N₆O₇: 643.3741).

Figure S6. Analytical RP-HPLC and HR-MS data of peptide 6.

G. Peptide 7

The peptidyl-resin **18** was synthesised using manual Fmoc-SPPS on an aminomethyl polystyrene resin (0.2 mmol) and the peptidyl-resin (67.2 mg, 32.5 x 10^{-3} mmol) was subjected to microwave-assisted ring closing metathesis as outlined in the general methods section. Following cleavage from the resin, RP-HPLC purification afforded peptide **7** as a white fluffy solid (4.84 mg, 16% yield from resin-bound peptide **18**, 99% purity); *R*_t 18.75 min; *m/z* (HR-MS) 756.4262 ([M+H]⁺ requires for C₃₈H₅₈N₇O₉: 756.4218).

Figure S7. Analytical RP-HPLC and HR-MS data of peptide 7.

H. Peptide 8

The peptidyl-resin **19** was synthesised using manual Fmoc-SPPS on an aminomethyl polystyrene resin (0.2 mmol) and the peptidyl-resin (66.5 mg, 32.5 x 10^{-3} mmol) was subjected to microwave-assisted ring closing metathesis as outlined in the general methods section. Following cleavage from the resin, RP-HPLC purification afforded peptide **8** as a white fluffy solid (6.55 mg, 25% yield from resin-bound peptide **19**, 98% purity); *R*_t 17.6 min; *m/z* (HR-MS) 655.3810 ([M+H]⁺ requires for C₃₄H₅₁N₆O₇: 655.4218).

Figure S8. Analytical RP-HPLC and HR-MS data of peptide 8.

I. Peptide 9

Peptide **8** (6.0 mg, 9.2 μ mol) was cyclised in solution, as outlined in the general methods, to yield the crude peptide **9**. RP-HPLC purification afforded peptide **9** as a white fluffy solid (4.07 mg, 68% yield from peptide **8** and 16% overall yield, 99% purity); R_t 21.80 min; m/z (HR-MS) 637.3706 ([M+H]⁺ requires for C₃₄H₄₉N₆O₆: 637.3605).

Figure S9. Analytical RP-HPLC and HR-MS data of peptide 9.

J. Peptide 10

The peptidyl-resin **22** was synthesised using manual Fmoc-SPPS on an aminomethyl polystyrene resin (0.2 mmol) and the peptidyl-resin (56.2 mg, 32.5 x 10^{-3} mmol) was subjected to microwave-assisted ring closing metathesis as outlined in the general methods section. Following cleavage from the resin, RP-HPLC purification afforded peptide **10** as a white fluffy solid (4.52 mg, 20% yield from resin-bound peptide **22**, 99% purity); *R*_t 13.00 min; *m/z* (HR-MS) 565.3346 ([M+H]⁺ requires for C₂₇H₄₅N₆O₇: 565.3271).

Figure S10. Analytical RP-HPLC and HR-MS data of peptide 10.

K. Peptide 23

Peptide **23** was synthesised using manual Fmoc-SPPS on an aminomethyl polystyrene resin (0.2 mmol), which following the cleavage conditions in the general procedure afforded the crude linear precursor as a white solid (77.0 mg, 65% yield). The crude linear precursor (77.0 mg, 0.13 mmol) was cyclised using solution-phase macrolactamisation as outlined in the general methods section. RP-HPLC purification afforded peptide **23** as a white fluffy solid (45.98 mg, 40% overall yield, 96% purity); $R_t 21.20 \text{ min}; m/z$ (HR-MS) 575.3547 ([M+H]⁺ requires for C₂₉H₄₇N₆O₆: 575.3479).

Figure S11. Analytical RP-HPLC and HR-MS data of peptide 23.

Figure S12. Partial ¹H NMR spectrum of **7** in DMSO-d6 at 298K.

Figure S13. Partial 600 MHz TOCSY spectrum of 7 in DMSO-d6 at 298K.

Figure S14. Amide and alkene regions of the ¹H NMR spectra of (A) dicarba analogue **8** at 298 K with a 2:1 ratio of major:minor signals for the olefinic hydrogens, (B) bicyclic analogue **9** at 298 K showing the presence of only one diastereomer.

Figure S15. Partial 600 MHz TOCSY spectrum of 8 in DMSO-d6 at 298K.

Figure S16. Selected 600 MHz NOESY spectra of the dicarba analogue **8** showing the olefinic-H connectivities with the *cis*-isomer isomer exhibiting strong nOe.

Figure S17. Partial ¹H NMR spectrum of **10** in DMSO-d6 at 298K.

Figure S18. Partial 600 MHz TOCSY spectrum of 10 in DMSO-d6 at 298K.

Figure S19. Effects of dianthin G **(1)** (10^{-8} M) and the dicarba analogue **8** (10^{-8} M) in primary human osteoblasts on cell differentiation, assessed by percentage of mineralisation. Data are expressed as a ratio of treatment to control, mean ± SEM from a representative experiment. Dexamethasone [Dex] (10^{-8} M) is included as a positive control. ****significantly different from control (P < 0.0001).

Circular dichroism spectroscopy

All CD spectra were recorded using a Pi Star-180 (Applied Photophysics, Surrey, UK) spectrometer at 20 °C with a cell of 0.1 cm path length in the range from 190 nm to 300 nm at 0.5 nm intervals with a 5 s response time. Each CD spectrum measurement represents the average of four scans obtained with a 2 nm optical bandwidth. Baseline spectrum was collected with the solvent alone (30% TFE in water) and then subtracted from the raw peptide spectra. The measurements were performed at peptide concentrations of 86 μ M in 30% TFE in water, in 1 mm quartz cuvettes (Hellma Analytics, Mullheim, Germany). Data are expressed as mean residue ellipticities [Θ] in (deg cm² dmol⁻¹), calculated as follows:

Where S is the raw CD signal in millidegrees, c is the peptide concentration (M), L is the cuvette path length (cm), and n is the number of peptide bonds.

References

- 1. (a) P. W. R. Harris, D. J. Lee and M. A. Brimble, *J. Pept. Sci.*, 2012, **18**, 549-555; (b) Y. Chen, C. T. Mant and R. S. Hodges, *J. Chromatogr. A.*, 2007, **1140**, 112-120.
- 2. J. Cornish, K. E. Callon, C. Q.-X. Lin, C. L. Xiao, T. B. Mulvey, D. H. Coy, G. J. S. Cooper and I. R. Reid, *Am. J. Physiol.*, 1998, **274**, 827-833.
- 3. E. Kaiser, R. L. Colescott, C. D. Bossinger and P. I. Cook, *Anal. Biochem.*, 1970, **34**, 595-598.
- 4. H. Kaur, A. M. Heapy, R. Kowalczyk, Z. Amso, M. Watson, J. Cornish and M. A. Brimble, *Tetrahedron*, 2014, **70**, 7788-7794.