Supplementary Information

Effect of an *N*-substituent in sulfonamide-bridged nucleic acid (SuNA) on hybridization ability and duplex structure

Yasunori Mitsuoka,^{a,b} Hiroshi Aoyama,^a Akira Kugimiya,^b Yuko Fujimura,^b Tsuyoshi Yamamoto,^a Reiko Waki,^a Fumito Wada,^a Saori Tahara,^a Motoki Sawamura,^a Mio Noda,^a Yoshiyuki Hari^{a,c} and Satoshi Obika^{*,a}

 ^a Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
 ^b Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan

^c Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Janan

* Email: obika@phs.osaka-u.ac.jp; Tel: +81 6 6879 8200; Fax: +81 6 6879 8204

Contents

1. X-ray structures of SuNA[NR]-T monomer (Fig. SI-1)	S2
2. ESI-TOF mass data of oligonucleotides (Table SI-1)	S3
3. Melting profiles (Fig. SI-2 to SI-6)	S4-S6
4. Nuclease stability of SuNA-modified oligonucleotides (Fig. SI-7)	S7
5. Crystallization and X-ray structures of DNA duplexes with SuNA[NR] residues (Table SI-2, Fig. SI-8 and SI-9)	S8-9
6. ¹ H, ¹³ C and ³¹ P spectra for the new compounds	S10 – S15
7. HPLC and ESI-TOF-Mass spectra for the new oligonucleotides	S16 – S22
8. References	S23

1. X-ray structures of SuNA[NR]-T monomers

Fig. SI-1. Superposition of SuNA[NMe]-T (**35**) (light blue) and SuNA[NH]-T (**9**) (pink). Carbons are colored in light blue (SuNA[NMe]-T) and pink (SuNA[NH]-T). Oxygen, nitrogen, sulfer and hydrogen atoms are colored in red, blue, yellow, and white, respectively.

2. ESI-TOF mass data of oligonucleotides

Oligopuelectidos		ESI-TOF-MS	
		Calcd. (M-H) ⁻	Found (M-H) ⁻
5'-d(GCGTTt TTTGCT)-3'	(17)	3721.58	3722.45
5'-d(GCGTTt Tt TGCT)-3'	(18)	3812.56	3813.43
5'-d(GCGt Tt Tt TGCT)-3'	(19)	3903.53	3904.43
5'-d(GCGTTt t t TGCT)-3'	(20)	3903.53	3904.43
5'-d(GCGTA <u>T</u> ACGC)-3'	(21)	3130.53	3130.80
5'-d(GCGTAt ACGC)-3'	(22)	3116.51	3116.74
5'-d(TTTTTTTTTTTTTTT	(23)	3068.47	3069.18

 Table SI-1. Sequences and ESI-TOF-MS data of oligonucleotides 17–23

t = SuNA[NH]-T, \underline{T} = SuNA[NMe]-T

3. Melting profiles

Fig. SI-2. UV melting curves (T_m curves) for the duplexes formed by natural oligonucleotide **12** and SuNA[NMe]– modified oligonucleotides **13**, **14**, **15** and **16** respectively, against the DNA complement (5'-AGCAAAAAACGC-3').

Fig. SI-3. UV melting curves (T_m curves) for the duplexes formed by natural oligonucleotide 12 and SuNA[NMe]– modified oligonucleotides 13, 14, 15 and 16 respectively, against the RNA complement (5'-AGCAAAAAACGC-3').

Fig. SI-4. UV melting curves (T_m curves) for the duplexes formed by natural oligonucleotide 12 and SuNA[NH]– modified oligonucleotides 17, 18, 19 and 20 respectively, against the DNA complement (5'-AGCAAAAAACGC-3').

Fig. SI-5. UV melting curves (T_m curves) for the duplexes formed by natural oligonucleotide 12 and SuNA[NH]– modified oligonucleotides 17, 18, 19 and 20 respectively, against the RNA complement (5'-AGCAAAAAACGC-3').

Fig. SI-6. UV melting curves (T_m curves) for the duplexes formed by SuNA[NMe]–modified oligonucleotide 21 and SuNA[NH]–modified oligonucleotide 22.

4. Nuclease stability of SuNA-modified oligonucleotides

Fig. SI-7. Hydrolysis of oligonucleotides (750 pmol) conducted at 37 °C in buffer (100 μ L) containing 50 mM Tris-HCl (pH 8.0), 10 mM MgCl₂, and phosphodiesterase I (4.0 μ g/mL). Sequences: 5'-(TTTTTTTT<u>T</u>T)-3', <u>T</u> = natural (black, 24), 2',4'-BNA/LNA (pink, 25), 2',4'-BNA^{NC}[NMe]⁻¹ (blue, 26), 2',4'-BNA^{COC -2} (green, 27), SuNA[NMe]⁻³ (red, 28), SuNA[NH] (orange, 23).

5. Crystallization and X-ray structures of DNA duplexes with SuNA[NR] residues

Oligonucleotide Sequence	5'-d(GCGTA <u>T</u> ACGC)-3' 21	5'-d(GCGTAtACGC)-3' 22
Modified nucleotide	$\underline{\mathbf{T}} = \mathbf{SuNA[NMe]}$	t = SuNA[NH]
Space group	Orthorhombic $P2_12_12_1$	
Unit cell constants [Å] $\alpha = \beta = \gamma = 90^{\circ}$	<i>a</i> =24.42 <i>b</i> =45.12 <i>c</i> =45.45	<i>a</i> =23.68 <i>b</i> =42.90 <i>c</i> =45.20
Resolution [Å]	1.13	0.95
Outer shell [Å]	1.15-1.13	0.97-0.95
Number of unique reflections	19,277	29,154
Completeness (outer shell) [%]	98.6 (98.3)	98.8 (97.1)
R-merge (outer shell) [%]	0.061 (0.378)	0.059 (0.241)
R-work [%]	0.131	0.125
R-free [%]	0.145	0.144
No. of DNA atoms	498	654
No. of waters	131	140
R.m.s.d. bonds [Å]	0.018	0.010
R.m.s.d. angles [°]	2.1	1.6
Avg. B-factor, DNA atoms [Å ²]	10.1	6.4
Avg. B-factor, solvent [Å ²]	28.5	26.1
PDB ID code	5AXF	5AXE

 Table SI-2.
 Selected crystal data and refinement parameters

Fig. SI-8. Quality of the final structures. Simulating annealing omit electron density maps around (**A**) SuNA[NMe] and (**B**) SuNA[NH], contoured at 3 σ level (**A**) and 4 σ level (**B**), respectively. Carbons are colored in orange (SuNA[NMe] duplex) and green (SuNA[NH] duplex). Oxygen, nitrogen, sulfur and phosphorus atoms are colored in red, blue, yellow, and pink, respectively. These electron density maps clearly show the structure of SuNA[NMe] and SuNA[NH].

Fig. SI-9. Examples of the overall structures of SuNA[NMe] and SuNA[NH] duplexes. Overall structure of (**A**) the SuNA[NMe] duplex, and (**B**) SuNA[NH] duplex. The view is across the grooves. Carbons are colored in orange (SuNA[NMe] duplex) and green (SuNA[NH] duplex). Oxygen, nitrogen, sulfer and phosphorus atoms are colored in red, blue, yellow, and pink, respectively. Water molecules are cyan spheres.

6. ¹H, ¹³C and ³¹P spectra for the new compounds

¹H & ¹³C NMR Spectra of compound (2)

$^{1}\mathrm{H}$

ILE	lr.als	
MNT	2013-8020-011-	01
MITA	PSPIN\prog\mod	\peak
BNUC	1H	
MOD	zg30	
BFRQ	400.13 M	Hz
SET	2.47 K	Hz
BFIN	0.97 H	Z
INT	65536	
REQU	8223.68 H	Z
ANS	16	
QTM	3.9846 s	ec
)	1.0000 s	ec
11	10.00 u	sec
RNUC		
EMP	26.7 c	
VNT	CDC13	
REF	16.42 p	pm
	0.30 H	Z
GAIN	60	

¹³C

FILE	lr.als	
TMMC	2013-8020-013	1-01
MITA	PSPIN\prog\mo	d\peak
BNUC	13C	
XMOD	zgpg30	
BFRQ	100.62	MHz
BSET	2.82	KHz
BFIN	9.33	Hz
TNIC	32768	
REQU	24038.46	Hz
CANS	9000	
CQTM	1.3632	sec
D	2.0000	sec
W1	10.00	usec
RNUC		
remp	31.2	С
LVNT	CDC13	
XREF	219.46	ppm
F	1.00	Hz
GAIN	202	

¹H & ¹³C NMR Spectra of compound (7)

FILE	lr.als
OMNT	2013-8020-020-01
ATIM	13:38:13.082 4@200
BNUC	1H
XMOD	zg30
BFRQ	400.23 MHz
BSET	2.47 KHz
BFIN	1.58 Hz
OINT	32768
REQU	8278.15 Hz
CANS	32
CQTM	3.9584 sec
D	1.0000 sec
W1	9.00 usec
RNUC	
TEMP	27.4 c
LVNT	CDC13
XREF	16.51 ppm
F	0.30 Hz
GAIN	512

FILE	lr.als	
OMNT	2013-8020-020	0-01
ATIM	PSPIN\prog\m	od\peak
BNUC	13C	
XMOD	zgpg30	
BFRQ	100.62	MHz
BSET	2.82	KHz
BFIN	9.33	Hz
OINT	32768	
REQU	24038.46	Hz
CANS	4800	
CQTM	1.3632	sec
D	2.0000	sec
W1	10.00	usec
RNUC		
TEMP	30.8	С
LVNT	CDC13	
XREF	219.46	ppm
F	1.00	Hz
GAIN	202	

¹H & ¹³C NMR Spectra of compound (8)

FILE	1r.als	
DMNT	2013-8020-037-01	
MITA	PSPIN\prog\mod\pea	ık
BNUC	1H	
KMOD	zg30	
BFRQ	400.13 MHz	
BSET	2.47 KHz	
BFIN	0.97 Hz	
DINT	65536	
REQU	8223.68 Hz	
CANS	16	
CQTM	3.9846 sec	
)	1.0000 sec	
V1	10.00 usec	
RNUC		
TEMP	26.7 c	
LVNT	CDC13	
KREF	16.43 ppm	
<u>.</u>	0.30 Hz	
GAIN	81	

FILE	lr.als
OMNT	2013-8020-037-01
ATIM	PSPIN\prog\mod\peak
BNUC	13C
XMOD	zgpg30
BFRQ	100.62 MHz
BSET	2.82 KHz
BFIN	9.33 Hz
OINT	32768
REQU	24038.46 Hz
CANS	9000
CQTM	1.3632 sec
D	2.0000 sec
W1	10.00 usec
RNUC	
TEMP	31.4 c
LVNT	CDC13
XREF	219.47 ppm
F	1.00 Hz
GAIN	202

¹H & ¹³C NMR Spectra of compound (9)

 $^{1}\mathrm{H}$

¹H & ¹³C NMR Spectra of compound (10)

 $^{1}\mathrm{H}$

PPM

³¹P NMR Spectra of compound (11)

³¹P

FILE	lr.als	
DMNT	2013-8020-082	2-01
MITA	PSPIN\prog\mo	od\peak
BNUC	31P	
KMOD	zgpg30	
BFRQ	161.96	MHz
BSET	7.49	KHz
BFIN	4.18	Hz
DINT	32768	
REQU	81521.74	Hz
CANS	256	
CQTM	0.4020	sec
C	2.0000	sec
V1	8.00	usec
RNUC		
FEMP	28.6	С
LVNT	CDC13	
KREF	0.00	ppm
F	1.00	Hz
GAIN	202	

7. HPLC and ESI-TOF-Mass spectra for the new oligonucleotides

Oligonucleotide 17

HPLC

A : 10mM TEAA B : 10mM TEAA / MeCN = 1 / 1 Column : YMC Hydrosphere C18 Column (5.0 μm, 4.6 x 100 mm) Gradient : B 12-20% (30 min) Flow rate : 1.0 mL/min Column Temp. : 50°C

Oligonucleotide 18 HPLC A: 10mM TEAA B : 10mM TEAA / MeCN = 1 / 1Column : YMC Hydrosphere C18 Column (5.0 µm, 4.6 x 100 mm) Gradient : B 12-20% (30 min)

Flow rate : 1.0 mL/min Column Temp. : 50°C

ESI-TOF-MS

Oligonucleotide **19** HPLC A : 10mM TEAA B : 10mM TEAA / MeCN = 1 / 1 Column : YMC Hydrosphere C18 Column (5.0 µm, 4.6 x 100 mm) Gradient : B 12-20% (30 min) Flow rate : 1.0 mL/min Column Temp. : 50°C

Oligonucleotide 20

HPLC A : 10mM TEAA B : 10mM TEAA / MeCN = 1 / 1 Column : YMC Hydrosphere C18 Column (5.0 µm, 4.6 x 100 mm) Gradient : B 12-20% (30 min) Flow rate : 1.0 mL/min Column Temp. : 50°C

Oligonucleotide 21

 $\begin{array}{l} HPLC\\ A: 200 \mbox{ mM HFIP (Hexafluoroisopropanol) / 8 \mbox{ mM TEA aqueous solution } B: MeOH\\ Column: XBridge^{TM} C18 \ Column (5.0 \ \mum, 4.6 \ x \ 50 \ mm)\\ Gradient: B \ 10-20\% \ (20 \ min)\\ Flow \ rate: 1.0 \ mL/min\\ Column \ Temp.: rt \end{array}$

Oligonucleotide 22

 $\begin{array}{l} HPLC\\ A: 200 \mbox{ mM HFIP (Hexafluoroisopropanol) / 8 \mbox{ mM TEA aqueous solution } B: MeOH\\ Column: XBridge^{TM} C18 \ Column (5.0 \ \mum, 4.6 \ x \ 50 \ mm)\\ Gradient: B \ 10-20\% \ (20 \ min)\\ Flow \ rate: 1.0 \ mL/min\\ Column \ Temp.: rt \end{array}$

ESI-TOF-MS

Oligonucleotide **23** HPLC A : 10mM TEAA B : 10mM TEAA / MeCN = 1 / 1 Column : YMC Hydrosphere C18 Column (5.0 µm, 4.6 x 100 mm) Gradient : B 16-24% (30 min) Flow rate : 1.0 mL/min Column Temp. : 50°C

8. References

- 1) K. Miyashita, S. M. A. Rahman, S. Seki, S. Obika and T. Imanishi, Chem. Commun., 2007, 3765.
- 2) Y. Hari, S. Obika, R. Ohnishi, K. Eguchi, T. Osaki, H. Ohishi and T. Imanishi, *Bioorg. Med. Chem.*, 2006, 14, 1029.
- 3) Y. Mitsuoka, Y. Fujimura, R. Waki, A. Kugimiya, T. Yamamoto, Y. Hari and S. Obika, *Org. Lett.*, 2014, 16, 5640.