Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Readily functionalizable phosphonium-tagged fluorescent coumarins for enhanced detection of bioconjugates by mass spectrometry

Antoine Lizzul-Jurse, Laetitia Bailly, Marie Hubert-Roux, Carlos Afonso, Pierre-Yves Renard, Cyrille Sabot*

Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, 1 rue Tesnière 76821 Mont-Saint-Aignan, Cedex (France). E-mail : cyrille.sabot@univ-rouen.fr

Table of contents

1) Copies of ¹ H NMR, ¹³ C NMR spectra	2
2) RP-HPLC elution profiles	.24
3) Spectroscopic data	.33
1) Absorption, excitation, emission spectra of coumarin derivatives	33
2) Absorption of the quencher, emission of coumarins 2 and 7 spectra superimposition	37
3) Quenching efficiency and fluorescence exaltation of probes 19 and 20 after BACE-1 hydrolysis	38
4) Quenching efficiency and fluorescence exaltation of probes 19 and 20 after α -Chymotrypsin hydrolysis	39
5) Absorption, excitation, emission spectra of naphthalimide derivatives	40
6) Absorption, excitation, emission spectra of labeled BSA	41
7) Determination of <i>F/P</i> ratio of labeled BSA	41
4) Mass analyses	.42
1) ESI-MS analysis of a 2.17 x $10^2 \mu$ M solution of coumarins 1 - 5 - 6 in a 1:1:1 molar ratio	42
2) ESI-MS analysis of a 5 x 10^2 μ M solution of peptide 16-17 in a 1:1 molar ratio	43
3) ESI-MS analysis of a 2.17 x $10^2\mu\text{M}$ solution of $\textbf{28}$ and $\textbf{29}$ in a 1:1 molar ratio	44
4) LC -MS analysis of the crude BACE1-mediated hydrolysis (solution of $$ 19 and 20 at 25 μ M)	45
5) LC -MS analysis of the crude α -Chymotypsin-mediated hydrolysis (solution of 19 and 20 at 25 μ M)	49
6) MALDI-TOF analysis of unlabeled and labeled BSA protein.	52
7) MALDI mass spectra of Chymotrypsin and Trypsin digests of modified BSA.	53

1) Copies of ¹H NMR, ¹³C NMR spectra

Methyl 2-(7-methoxy-2-oxo-2H-chromen-4-yl)acetate 1

¹H NMR spectrum in CDCl₃ (300 MHz)

2-(7-Methoxy-2-oxo-2H-chromen-4-yl)acetic acid 2

¹H NMR spectrum in (CD₃)₂CO (300 MHz)

Methyl 2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetate 3

¹H NMR spectrum in (CD₃)₂SO (300 MHz)

Methyl 2-(7-(3-bromopropoxy)-2-oxo-2H-chromen-4-yl)-acetate 4

¹H NMR spectrum in CDCl₃ (300 MHz)

¹H NMR spectrum in CDCl₃ (300 MHz)

3-((4-(2-methoxy-2-oxoethyl)-2-oxo-2H-chromen-7-yl)oxy)-N,N,N-trimethylpropan-1-aminium bromide 6 ¹H NMR spectrum in CD₃OD (300 MHz)

(3-((4-(carboxymethyl)-2-oxo-2H-chromen-7-yl)oxy)propyl)-triphenylphosphonium bromide 7 ¹H NMR spectrum in CD₃OD (300 MHz)

90 80 70 60 50 40 30 20

180 170 160 150 140 130 120 110 100 f1 (ppm)

220 210 200 190

-0

-10

10 0

2-(7-(3-bromopropoxy)-2-oxo-2H-chromen-4-yl)acetic acid 8

80 70 60 50 40 30

90

¹H NMR spectrum in (CD₃)₂CO (300 MHz)

Br

0

C C

220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

- 3000

- 2500

- 2000

- 1500

- 1000

- 500

-0

0

-10

20 10

2-(7-(3-bromopropoxy)-2-oxo-2H-chromen-4-yl)-N-(prop-2-yn-1-yl)acetamide 9 ¹H NMR spectrum in (CD₃)₂CO) (300 MHz)

(3-((2-oxo-4-(2-oxo-2-(prop-2-yn-1-ylamino)ethyl)-2H-chromen-7-yl)oxy)propyl)triphenylphosphonium bromide 10 ¹H NMR spectrum in CD₃CN (300 MHz)

¹³C NMR spectrum in CD₃CN (75 MHz)

Tert-butyl (3-(2-(7-(3-bromopropoxy)-2-oxo-2H-chromen-4-yl)acetamido)propyl)carbamate 11 ¹H NMR spectrum in CDCl₃ (300 MHz)

(3-((4-(2-((3-aminopropyl)amino)-2-oxoethyl)-2-oxo-2H-chromen-7-yl)oxy)propyltriphenyl-phosphonium bromide 13 ¹H NMR spectrum in CD₃OD (300 MHz)

2,5-Dioxopyrrolidin-1-yl 2-iodoacetate

¹H NMR spectrum in (CD₃)₂SO (300 MHz)

(3-((4-(2-((3-(2-iodoacetamido)propyl)amino)-2-oxoethyl)-2-oxo-2H-chromen-7-yl)oxy)propyl)triphenyl-phosphonium 2,2,2-trifluoroacetate 14

¹H NMR spectrum in CD₃OD (300 MHz)

¹³C NMR spectrum in CD₃OD (75 MHz)

(3-((4-(2-((3-(6-(5-ethoxy-2-methyloxazol-4-yl)hexanamido)propyl)amino)-2-oxoethyl)-2-oxo-2H-chromen-7-yl)oxy)propyl)triphenylphosphonium 2,2,2-trifluoroacetate 15

¹H NMR spectrum in CD₃OD (300 MHz)

2,5-dioxopyrrolidin-1-yl 5-azidopentanoate

(2,4-dinitrophenyl)glycine

S19

(3-ammoniopropyl)triphenylphosphonium bromide

¹H NMR spectrum in (CD₃)₂SO (300 MHz)

4-Chloro-(N-(2-propyn-1-yl))-1,8-naphthalimide 27

¹H NMR spectrum in CDCl₃ (300 MHz)

2-(prop-2-yn-1-yl)-6-(propylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione 28 ¹H NMR spectrum in CDCl₃ (300 MHz)

(3-((1,3-dioxo-2-(prop-2-yn-1-yl)-2,3-dihydro-1H-benzo[de]isoquinolin-6-

yl)amino)propyl)triphenylphosphonium bromide 29

¹H NMR spectrum in CDCl₃ (300 MHz)

* DMSO residual peak

2) **RP-HPLC elution profiles**

The following analytical RP-HPLC were performed using the System QC: (Thermo Hypersyl GOLD C18 column, 5 μ m, 2.1 x 100 mm) with ACN and 0.1% aq. TFA as eluents [0% ACN (5 min) followed by linear gradient from 0% to 100% (40 min) of ACN] at a flow rate of 0.25 mL/min.

Methyl 2-(7-methoxy-2-oxo-2H-chromen-4-yl)acetate 1

2-(7-Methoxy-2-oxo-2H-chromen-4-yl)acetic acid 2

(3-((4-(2-methoxy-2-oxoethyl)-2-oxo-2H-chromen-7yl)oxy)-propyl)triphenylphosphonium bromide 5

3-((4-(2-methoxy-2-oxoethyl)-2-oxo-2H-chromen-7-yl)oxy)-N,N,N-trimethylpropan-1-aminium bromide 6

(3-((4-(carboxymethyl)-2-oxo-2H-chromen-7-yl)oxy)propyl)-triphenylphosphonium bromide 7

(3-((2-oxo-4-(2-oxo-2-(prop-2-yn-1-ylamino)ethyl)-2H-chromen -7-yl)oxy)propyl)triphenyl-phosphonium bromide 10

(3-((4-(2-((3-aminopropyl)amino)-2-oxoethyl)-2-oxo-2H-chromen-7-yl)oxy)propyltriphenylphosphonium bromide 13

(3-((4-(2-((3-(2-iodoacetamido)propyl)amino)-2-oxoethyl)-2-oxo-2H-chromen-7yl)oxy)propyl)triphenylphosphonium 2,2,2-trifluoroacetate 14

(3-((4-(2-((3-(6-(5-ethoxy-2-methyloxazol-4-yl)hexanamido)propyl)amino)-2-oxoethyl)-2-oxo-2H-chromen-7-yl)oxy)propyl)triphenylphosphonium 2,2,2-trifluoroacetate 15

Phosphonium-tagged tetrapeptide 17

(MOCAc)-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-(DNPA)-Arg-Arg 19

(PPh₃C)-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-(DNPA)-Arg-Arg 20

Minutes

mAU

2-(prop-2-yn-1-yl)-6-(propylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione 28

(3-((1,3-dioxo-2-(prop-2-yn-1-yl)-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)amino)propyl)triphenylphosphonium bromide 29

3) Spectroscopic data

1) Absorption, excitation, emission spectra of coumarin derivatives

Methyl 2-(7-methoxy-2-oxo-2H-chromen-4-yl)acetate 1

Absorption (green), excitation (blue, λ_{em} = 390 nm), emission (red, λ_{ex} = 315 nm) spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

2-(7-Methoxy-2-oxo-2H-chromen-4-yl)acetic acid 2

Absorption (green), excitation (blue, λ_{em} = 390 nm), emission (red, λ_{ex} = 315 nm) spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

Absorption (green), excitation (blue, λ_{em} = 390 nm), emission (red, λ_{ex} = 315 nm) spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

Absorption (green), excitation (blue, λ_{em} = 390 nm), emission (red, λ_{ex} = 315 nm) spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

(3-((4-(carboxymethyl)-2-oxo-2H-chromen-7-yl)oxy)propyl)-triphenylphosphonium bromide 7

Absorption (green), excitation (blue, λ_{em} = 390 nm), emission (red, λ_{ex} = 315 nm) spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

Absorption (green), excitation (blue, λ_{em} = 390 nm), emission (red, λ_{ex} = 315 nm) spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

Absorption (green), excitation (blue, λ_{em} = 390 nm), emission (red, λ_{ex} = 315 nm) spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

Absorption (green), excitation (blue, λ_{em} = 390 nm), emission (red, λ_{ex} = 315 nm) spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

(3-((4-(2-((3-(6-(5-ethoxy-2-methyloxazol-4-yl)hexanamido)propyl)amino)-2-oxoethyl)-2-oxo-2H-chromen-7yl)oxy)propyl)triphenylphosphonium 2,2,2-trifluoroacetate 15

Absorption (green), excitation (blue, λ_{em} = 390 nm), emission (red, λ_{ex} = 315 nm) spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

2) Absorption of the quencher, emission of coumarins 2 and 7 spectra superimposition

Quencher (2,4-dinitrophenyl)glycine absorption (red), coumarin **2** emission (blue, λ_{ex} = 315 nm), coumarin **7** emission (green, λ_{ex} = 315 nm), spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

3) Quenching efficiency and fluorescence exaltation of probes 19 and 20 after BACE-1 hydrolysis

(MOCAc)-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-(DNPA)-Arg-Arg 19

Emission (λ_{ex} = 328 nm) spectra in acetate buffer (pH 4.48, 0.1 M) at 25 °C.

Quenching Efficiency = 91 %

Fluorescence Exaltation = 11

(PPh₃C)-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-(DNPA)-Arg-Arg 20

Emission (λ_{ex} = 328 nm) spectra in acetate buffer (pH 4.48, 0.1 M) at 25 °C. Quenching Efficiency = 84 % Fluorescence Exaltation = 6.2

4) Quenching efficiency and fluorescence exaltation of probes 19 and 20 after α -Chymotrypsin hydrolysis

(MOCAc)-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-(DNPA)-Arg-Arg 19

Emission (λ_{ex} = 328 nm) spectra in Tris buffer (pH 7.8, 0.1 M Tris + 10 mM CaCl₂) at 25 °C.

Quenching Efficiency = 91 %

Fluorescence Exaltation = 10.7

(PPh₃C)-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-(DNPA)-Arg-Arg 20

Emission (λ_{ex} = 328 nm) spectra in Tris buffer (pH 7.8, 0.1 M Tris + 10 mM CaCl₂) at 25 °C. Quenching Efficiency = 84 % Fluorescence Exaltation = 6.3

5) Absorption, excitation, emission spectra of naphthalimide derivatives

2-(prop-2-yn-1-yl)-6-(propylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione 28

Absorption (green), excitation (blue, λ_{em} = 600 nm), emission (red, λ_{ex} = 410 nm) spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

Absorption (green), excitation (blue, λ_{em} = 600 nm), emission (red, λ_{ex} = 410 nm) spectra in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

Absorption (green), excitation (blue, λ_{em} = 425 nm), emission (red, λ_{ex} = 315 nm) spectra in milliQ water at 25 °C.

7) Determination of *F/P* ratio of labeled BSA

Absorption spectra of unlabeled BSA (blue), Absorption spectra of 14 (green), absorption spectra of labeled BSA (red) in PBS (pH 7.4, 0.1 M phosphate + 0.15 M NaCl) at 25 °C.

The degree of labeling of the BSA protein, *i.e.* the fluorophore:protein (F/P) molar rations, were estimated from the relative intensities of protein and dye absorption, according to the following equation:

$$\frac{F}{P} = \frac{\text{Cf}}{\text{Cp}} = \frac{\epsilon P,280 \text{ A}326}{\epsilon F,326 (\text{A}280 - (f \times \text{A}326))}$$

The molar absorption coefficient of the BSA protein $\varepsilon_{p,280}$ was determined to be 45551 M⁻¹ cm⁻¹ at 280 nm in milliQ water at 25 °C. The molar absorption coefficient of $14 \epsilon_{F,326}$ was determined to be 12252 M⁻¹ cm⁻¹ at 326 nm in milliQ water at 25 °C. The correction factor f equal to the ration of fluorophore absorbance at 280 and 326 nm was calculated to be 0.3469.

For labeled BSA protein, A_{280} = 0.4077 and A_{326} = 0.1186; allowing *F/P* = 1.2.

4) Mass spectrometry analyses

1) ESI-MS analysis of a 2.17 x $10^2\,\mu M$ solution of coumarins 1 - 5 -6 in a 1:1:1 molar ratio.

ESI-MS parameters : ESI⁺; Full scan mode; Sheath Gas Flow Rate (arb): 20; Aux/Sweep Gas Flow Rate (arb): 0; I Spray Voltage (kV) I: 5.4; Capillary Temp (°C): 220; Capillary Voltage (V): 36; Tube Lens Offset (V): 50; Injection flow rate (ml/min): 0.25

ESI-MS parameters : ESI⁺; Full scan mode; Sheath Gas Flow Rate (arb): 20; Aux/Sweep Gas Flow Rate (arb): 0; I Spray Voltage (kV) I: 5.4; Capillary Temp (°C): 220; Capillary Voltage (V): 36; Tube Lens Offset (V): 50; Injection flow rate (ml/min): 0.25

3) ESI-MS analysis of a 2.17 x $10^2\,\mu M$ solution of 28 and 29 in a 1:1 molar ratio.

ESI-MS parameters (HCT Ultra ETD II mass spectrometer): ESI⁺; Full scan mode; Nebulizer Gas Flow Rate (Psi): 20; Dry Gas Flow Rate (L/min.): 5; Dry Temp (°C): 300; Capillary Voltage (V): -3000; Skimmer (V): 40; Injection flow rate (ml/min): 0.25.

4) LC -MS analysis of the crude BACE1-mediated hydrolysis (solution of 19 and 20 at 25 μM).

(MOCAc)-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-(DNPA)-Arg-Arg 19

Total ion current (TIC) chromatogram:

ESI mass spectrum of the compound 22 ($t_{\rm R}$ = 18.8 min).

ESI mass spectrum of the compound **21** (t_R = 22.7 min).

ESI mass spectrum of the compound **19** (t_R = 23.3 min).

(PPh₃C)-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-(DNPA)-Arg-Arg 20

Total ion current (TIC) chromatogram:

ESI mass spectrum of the compound 22. (t_R = 18.8 min)

ESI mass spectrum of the compound 23(t_R = 24.4 min).

ESI mass spectrum of the compound **20** (t_R = 23.9 min).

5) LC -MS analysis of the crude α -Chymotypsin-mediated hydrolysis (solution of 19 and 20 at 25 μM).

(MOCAc)-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-(DNPA)-Arg-Arg 19

Total ion current (TIC) chromatogram:

ESI mass spectrum of the compound **25** (t_R = 14.6 min).

ESI mass spectrum of the compound 24 (t_R = 24.2 min).

(PPh₃C)-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-(DNPA)-Arg-Arg 20

ESI mass spectrum of the compound **25** (t_R = 14.6 min).

ESI mass spectrum of the compound **26** (t_R = 25.0 min).

6) MALDI-TOF analysis of unlabeled and labeled BSA protein.

MALDI-TOF analysis of unlabeled BSA (red) and labeled (black) protein.

7) MALDI mass spectra of Chymotrypsin and Trypsin digests of modified BSA.

a) MALDI mass spectrum of chymotrypsin digest of modified BSA (CHCA matrix - Cn : chymotryptic peptides.) The enlargement of the m/z 1950-2010 range showing the chymotryptic peptide at m/z 1961.82 containing the fluorophore group is on the top right of the figure. **b)** MALDI-MS/MS spectrum of the precursor ion at m/z 1961.82. The fragment ions at m/z 303.1, 505.3, 579.4 and 653.5 are specific of the fluorophore group. **c)** MALDI mass spectrum of trypsin digest of modified BSA (CHCA matrix - Tn : tryptic peptides.) The enlargement of the m/z 3040-3070 range showing the tryptic peptide at m/z 3053.67 containing the fluorophore group is on the top right of the figure. **d)** MALDI-MS/MS spectrum of the precursor ion at m/z 3053.67. The fragment ions at m/z 302.1, 504.6, 578.9 and 653.0 are specific of the fluorophore group.

Fragment ions of the fluorophore group.