Supporting information

Johannes Diebler, Anke Spannenberg and Thomas Werner*

Leibniz-Institut für Katalyse e. V. an der Universität Rostock,

Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.

3
4
7
59
60
64
67
69

1. General

All reactions were performed in 7 cm³ pressure tube (GL 14) with screw-cap. Thin layer chromatography was performed on *Merck* TLC-plates with fluorescence indication (silica type 60, F_{254}), spots were visualized using UV-light. Filtration was performed using silica with a grain size of 40–63 µm from *Macherey-Nagel*. Deuterated chloroform was purchased from *Deutero*. Deuterated dimethyl sulfoxide was purchased from *Sigma-Aldrich* and dried over CaH₂. NMR spectra were recorded on *Bruker 300 Fourier*, *Bruker AV 300* and *Bruker AV 400* spectrometers.

The chemical shifts (δ) for ¹H and ¹³C are given in parts per million (ppm). Shifts are referenced to 7.27, 77.00 ppm in CDCl₃ and 2.49, 39.5 ppm in DMSO-*d*₆. Coupling constants are expressed in Hertz (Hz). The following abbreviations are used: s= singlet, d= doublet, dd= double doublet, t= triplet, q= quadruplet, p= pentet, m= multiplet. Gas chromatography was performed on *Agilent 7890A GC System*, mass spectra were measured on downstream *5975C inert XL MSD* mass detector also from *Agilent*. The reported GC yields are based on a calibrated area of *n*-hexadecane as internal standard. Elemental analysis was performed on a *TruSpec CHNS Micro* from *Leco*. High resolution mass spectra (HRMS) were obtained from a *MAT 95 XP* from *Thermo* (EI). DSC analyses were performed with a DSC 1 STARe System (400 W) from Mettler Toledo and alumina sample pans and lid. The measurements were made in an argon atmosphere and a heating rate of 10 K·min⁻¹ (20 K·min⁻¹ for compound **2s**).

Solvents:

The following solvents have been used as received: *tert*-butanol (*Alfa-Aesar*), dichloromethane (*Walter*), ethanol (*Walter*), *n*-heptane (*Roth*), tetrahydrofuran (Extra Dry, *Acros*), toluene (Extra Dry, *Acros*).

Reagents:

All reagents were purchased from commercial sources and used as received without further purification. 1,2-butylene oxide (Sigma-Aldrich, 99%), 1,2-epoxyhex-5-ene (Sigma-Aldrich, 97%), 1,2-epoxyhexane (Sigma-Aldrich, 97%), 1,3-bis(2,6diisopropylphenyl)imidazol-2-ylidene (TCI, 98%), 2-(4-chlorophenyl)oxirane (Alfa 98%), 2,3-dimethyl-2,3-epoxybutane (Sigma-Aldrich, 2.3-Aesar, 99%), epoxypropylbenzene (Sigma-Aldrich, 98%), allyl glycidyl ether (Alfa Aesar, 97%), butadiene monoxide (Alfa Aesar, 98%), carbon disulfide (Sigma-Aldrich, >99%), cis-2,3-epoxybutane (Alfa Aesar, 98%), cyclohexene sulfide (Sigma-Aldrich, 85%), cyclohexeneoxide (Alfa Aesar, 98%), cyclooctene oxide (Sigma-Aldrich, 99%), epichlorohydrin (Acros, 99%), epithiochlorohydrine (Acros, 97%), ethylene sulfide (Sigma-Aldrich, 98%), glycidyl methacrylate (Acros, 97%), glycidyl phenyl ether (Alfa Aesar, 99%), n-hexadecane (Alfa Aesar, 99%), iso-butylene oxide (Alfa Aesar, 99%), iso-butylene sulfide (TCI, >98%), isoprene monoxide (Alfa Aesar, 97%), lithium bromide (Sigma-Aldrich, 99%), lithium chloride (Sigma-Aldrich, >99%), lithium ethoxide (Sigma-Aldrich, 95%), lithium iodide (Sigma-Aldrich, 99.9%), lithium isopropoxide (ABCR, 94%), lithium methoxide (Sigma-Aldrich, 98%), lithium tertbutoxide (Alfa Aesar, 99.9%), (+)-limonene 1,2-epoxide (Sigma-Aldrich, >97%), (1S.2S)-(-)-1-phenylpropylene oxide (Sigma-Aldrich, 98%), potassium bromide (Sigma-Aldrich, >99%), potassium chloride (Sigma-Aldrich, 99%), potassium ethoxide (Alfa Aesar, 95%), potassium iodide (Sigma-Aldrich, >99%), potassium methylate (Merck), potassium tert-butoxide (Sigma-Aldrich, >99%), propylene oxide (Acros, 99%), (R)-propylene oxide (TCI, 98%), propylene sulfide (Sigma-Aldrich, >96%), sodium bromide (ABCR, 99%), sodium chloride (Carl Roth, >99%), sodium ethoxide (Sigma-Aldrich, 95%), sodium iodide (Sigma-Aldrich, >99%), sodium isopropoxide (ABCR), sodium methoxide (Acros, 99%), sodium tert-butoxide (ABCR, 97%), sodium tert-pentyloxide (Alfa Aesar, 95%), styrene oxide (Sigma-Aldrich, 97%), (R)-styrene oxide (TCI, >96%), tert-butyl glycidyl ether (Sigma-Aldrich, 99%), tetra-n-butylammonium bromide (Sigma-Aldrich, 99%), trans-2,3-epoxybutane (Alfa Aesar, 97%).

2. General Procedure (GP)

In a pressure tube epoxide **1** or thiirane **3** (1.0 equiv) was added dropwise to a mixture of CS_2 (2.0 equiv) and LiO^tBu (0.05 equiv). If not otherwise stated the tube was sealed and the mixture stirred for 5 h at 25 °C. Subsequently all volatiles were removed in vaccuo. The residue was dissolved in CH_2CI_2 and filtered over silica (SiO₂, cyclohexane: CH_2CI_2 = 2:1). After removal of all volatiles in vaccuo the thiocarbonates **2** or **4** were obtained.

3. Additional Screening Experiments

Table S1. Addition of CS₂ to 1a in presence of different classes of catalyst.^a

\wedge	+ CS ₂	mol% catalyst		
Et	25	5 °C, 5 h, THF		
1a		⊑t 2a		
Entry	Catalyst	Conversion 1a (%) ^b	Yield 2a (%) ^b	Selectivity 2a (%) ^b
1	LiBr	21	16	75
2	NBu₄Br	4	0	-
3	[HO(CH ₂) ₂ PBu ₃]I	11	0	-
4	IPr	0	0	-
5	KO ^t Bu	3	0	-
6	NaOMe	13	5	38
7	IPr, LiBr	3	2	66
8	KO ^t Bu, LiBr	42	29	69
9	NaOMe, LiBr	87	76	87

^aReaction conditions: 2.5 mmol **1a**, 1.2 equiv CS₂, 2.5 mL THF. ^bDetermined by GC with *n*-hexadecane as internal standard.

Table S2	2. Alkali alkoxi	de catalyzed addition of C	S ₂ to 1a in THF. ^a	
\wedge	t CSa	5 mol% MOR		
Et	+ 002	25 °C, 1 h, THF		
1a		2a		
Entry	MOR	Conversion 1a (%) ^b	Yield 2a (%) ^b	Selectivity 2a (%) ^b
1 ^c	NaOMe	13	5	38
2 ^c	NaOEt	9	0	-
3	NaO ⁱ Pr	7	0	-
4	NaO ^t Bu	6	0	-
5 ^c	LiOMe	2	0	-
6	LiOEt	68	59	87
7	LiO ⁱ Pr	1	0	-
8	LiO ^t Bu	90	70	78
9 ^c	LiO ^t Bu	>99	78	78

^aReaction conditions: 2.5 mmol **1a**, 1.2 equiv CS₂, 2.5 mL THF. ^bDetermined by GC with *n*-hexadecane as internal standard. ^ct = 5 h.

Table S3. Influence of a solvent on the cycloaddition of 1a and CS_2 in presence of LiO $^t\!\text{Bu.}^a$

Et	+ CS ₂ - 5 mol% L 25 °C, 5 h,	iOtBu		
1a		Et´ 2a		
entry	solvent	conversion 1a (%) ^b	yield 2a (%) ^b	selectivity (%)
1	THF	100	78	78
2	^t BuOH	12	9	75
3	EtOH	100	34	34
4	H ₂ O	25	12	50
5	DCM	23	10	43
6	<i>n</i> -heptane	28	13	46
7	toluene	23	14	61
8	-	>99	89	89

^aReaction conditions: 2.5 mmol **1a**, 2 eq. CS₂, 2.5 mL solvent. ^bDetermined by GC with *n*-hexadecane as internal standard.

Table S4.	Formation of 2a i	in presence	of alkali	alkoxides. ^a
		S		

Et	+ CS ₂ 5 mol% MC 25 °C, 5	$\frac{DR}{h}$ o s		
1a		Et 2 a		
entry	MOR	conversion 1a (%) ^b	yield 2a (%) ^b	selectivity 2a (%) ^b
1	LiOMe	0	0	0
2	LiOEt	15	5	31
3	LiO ⁱ Pr	0	0	0
4	LiO ^t Bu	>99	89	89
5	NaOMe	42	30	71
6	NaOEt	78	62	79
7	NaO ⁱ Pr	63	50	80
8	NaO ^t Bu	72	46	64
9	NaO ^t Pent	70	46	65
10	KOMe	0	0	0
11	KOEt	18	0	0
12	KO ^t Bu	6	0	0

^aReaction conditions: 2.5 mmol **1a**, 2 equiv CS₂ ^bDetermined by GC with *n*-hexadecane as internal standard.

Et	+ $CS_2 \xrightarrow{25 °C, 5 h} Et$	O S $+$ S $+$ O $+$ O S $+$ O $+$ O S $+$ O $+$ O		r n	
1a		2a 3	8		
entry	mol% LiO ^t Bu	conversion 1a (%) ^b	yield 2a (%) ^c	yield 3a (%) ^b	yield 5a (%) ^c
1	10	>99	85	9	1
2	5	>99	86	7	1
3	2.5	>99	82	5	10
4	2	>99	76	4	20
5	1	>99	64	3	29

Table S5. Influence of the catalystamount on the modelreaction.^a

^aReaction conditions: 5 mmol **1a**, 2 equiv CS₂ ^bCalculated from ¹HNMR. ^cIsolated yield.

4. ¹**H-NMR and** ¹³**C-NMR spectra** ¹H-NMR 5-Ethyl-1,3-oxathiolane-2-thione (**2a**)

¹³C-NMR 5-Ethyl-1,3-oxathiolane-2-thione (2a)

150331.304.11.fid Diebler/ JD 804.3 3 Au13C CDCl3 /opt/topspin 1503 4

¹H-NMR 5-methyl-1,3-oxathiolane-2-thione (**2b**)

141115.f307.10.1.1r JD844.3 PROTON CDCl3 {C:\Bruker\TopSpin3.2PL6} 1411 7

¹³C-NMR 5-methyl-1,3-oxathiolane-2-thione (**2b**)

¹³C-NMR 5-*n*-Butyl-1,3-oxathiolane-2-thione (2c)

141105.313.11.1.1r Diebler JD 851.3 Au13C CDCl3 /opt/topspin 1411 13

¹H-NMR 5-phenyl-1,3-oxathiolane-2-thione (**2d**), 4-phenyl-1,3-oxathiolane-2-thione (**2d**')

¹³C-NMR 5-phenyl-1,3-oxathiolane-2-thione (2d), 4-phenyl-1,3-oxathiolane-2-thione (2d')

150521.319.11.fid	0.00
Diebler JD 960A	11.3
Au13C CDCl3 /opt/topspin 1505 19	55
······································	\checkmark

135.84 135.46 129.57 129.05 129.05 127.27 129.05 127.29 127.29	91.76	83.22	77.00
--	-------	-------	-------

¹H-NMR 5-vinyl-1,3-oxathiolane-2-thione (**2f**), 4-vinyl-1,3-oxathiolane-2-thione (**2f**')

¹³C-NMR 5-vinyl-1,3-oxathiolane-2-thione (2f), 4-vinyl-1,3-oxathiolane-2-thione (2f')

¹H-NMR 5-Phenylmethyl-1,3-oxathiolane-2-thione (**2g**)

¹³C-NMR 5-Phenylmethyl-1,3-oxathiolane-2-thione (**2g**)

141105.316.11.1.1r Diebler JD 845.3_B Au13C CDCl3 /opt/topspin 1411 16	/ 134.59 // 1289.29 // 127.43	91.29	77.00	38.54
	1			
				1
นามโกรมัญชามามใหม่สาศกัญหัวขัดพรารไฟมศ (โรโตยนายุกรูได้หรือมูลๆ มีรูปกลังใจอากุสารณ์ในกรุณหรือมูลแปรณ์ภรรรับกรณ	najarutararila kalanda kalanda Najarutararila kalanda k	damental bligg gant was	viana ⁿ aniaeath,mand.aga.asanurni.iku.vaeraa	มชาวอาจรัสประกิจในสร้างสูงเป็นสูงเป็นสารที่สุดการการสร้างได้เสียงให้การสร้างเป็นการสร้างเป็นสูงได้เป็นสูงการ
260 250 240 230 220 210 200 190 180 170 160 150	140 130 120 110 100	90	80 70 60 50	40 30 20 10 0 -10

f1 (ppm)

¹³C-NMR 5-chloromethyl-1,3-oxathiolane-2-thione (2i)

150507.f328.10.fid Diebler JD 789.3 C13CPD CDCl3 {C:\Bruker\TopSpin3.2PL6} 1505 12

¹H-NMR 5-(Methacryloyloxy)methyl-1,3-oxathiolane-2-thione (**2j**)

¹³C-NMR 5-(Methacryloyloxy)methyl-1,3-oxathiolane-2-thione (2j)

¹³C-NMR 5-Phenoxymethyl-1,3-oxathiolane-2-thione (2k)

¹³C-NMR 5-*tert*-butoxymethyl-1,3-oxathiolane-2-thione (**2I**)

141029.f305.11.1.1r J. Diebler, JD 846.3, 13C in CDCl3 C C13CPD CDCl3 {C:\Bruker\TopSpin3:ZPL6} 1410 5

¹H-NMR 5-Allyloxymethyl-1,3-oxathiolane-2-thione (**2m**)

¹³C-NMR 5-Allyloxymethyl-1,3-oxathiolane-2-thione (**2m**)

141105.315.11.1.1r Diebler JD 849.3 Au13C CDCl3 /opt/topspin 1411 15	133.60	117.87	89.10	~ 77.00 - 72.49 - 68.36	36.00
			I	I	1
~~®~~%%	ngha/lumad linatu/atasius(tu)r	11/100/25/ 11/04/10/05/05/05/00/06/00/06/00/06/00/06/00/06/00/06/00/06/00/06/00/06/00/06/00/06/00/06/00/06/00/	pictorya ya handiki visio		ĸĸĸĸĸġIJĬŶŧĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H-NMR 5,5-dimethyl-1,3-oxathiolane-2-thione (**2n**)

¹³C-NMR 5,5-dimethyl-1,3-oxathiolane-2-thione (2n)

150203.315.11.tid Diebler/ JD 893.3 Au13C CDCl3 /opt/topspin 1502 15

¹³C-NMR 5-methyl-5-vinyl-1,3-oxathiolane-2-thione (**2o**)

150218.433.11.fid Diebler JD 905.3	211.23	136.66	116.40	97.11	77.00	44.36	24.44
						1	

¹H-NMR 4,5-Tetramethylen-1,3-oxathiolane-2-thione (**2p**) 150204.f302.10.fid Diebler, JD 866-3 ____7.27 +.40 +.38 +.33 +.32 +.31 1.67 1.50 1.39 1.35 1.35 *f f*

¹³C-NMR 4,5-Tetramethylen-1,3-oxathiolane-2-thione (**2p**)

150130.358.11.ftd 877 Diebler, JD 866.3 Au13C CDCl3 /opt/topspin 1501 58

¹H-NMR *Trans*-4,5-dimethyl-1,3-oxathiolane-2-thione (*trans*-**2q**)

¹³C-NMR *Trans*-4,5-dimethyl-1,3-oxathiolane-2-thione (*trans*-2q)

150130.359.11.tid Diebler, JD 891.3 Au13C CDCl3 /opt/topspin 1501 59	93.25		52.32	< 17.46 17.46
	4)11144/11/144/41/44/64/64	kvalant ^a hiyi basunayai deshiyebne	ter Uppermitteren vielen der seinen keinen der seinen der Seinen seine Seinen seine Seinen seine Seinen seine S	ntoranth interfamily/interfamilies.the between prov-
260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 10 f1 (ppm)	0 90	80 70 60	50 40 30	20 10 0 -10

¹H-NMR *Cis*-4,5-dimethyl-1,3-oxathiolane-2-thione (*cis*-**2q**)

41

0.5

¹³C-NMR *Cis*-4,5-dimethyl-1,3-oxathiolane-2-thione (*cis*-2q)

¹H-NMR 5-methyl-4-phenyl-1,3-oxathiolane-2-thione (**2r**)

¹³C-NMR 5-methyl-4-phenyl-1,3-oxathiolane-2-thione (2r)

150324.f322.11.fid Diebler JD 926.3 C13CPD CDCl3 {C:\Bruker\TopSpin3r2PL6} 1503 6

34.7 28.8 28.1

_____ 90.40 _____ 77.00 _____ 58.49 ____15.90

¹H-NMR 4,4,5,5-tetramethyl-1,3-oxathiolane-2-thione (**2s**)

150324.t320.10.tid Diebler JD 939.3 PROTON CDCl3 {C:\Bruker\TopSpin3.2PL6} 1503 4

1.56 1.49

¹³C-NMR 4,4,5,5-tetramethyl-1,3-oxathiolane-2-thione (2s)

¹H-NMR Octahydrocycloocta[*d*][1,3]oxathiolane-2-thione (**2**t)

¹³C-NMR Octahydrocycloocta[*d*][1,3]oxathiolane-2-thione (2t)

150324.f323.11.fid 150324.1323.11.ftd Diebler JD 943.3 C13CPD CDCl3 {C:\Bruker\TopSpin3.2PL6} 1503 7

¹³C-NMR 7a-methyl-5-(prop-1-en-2-yl) hexahydrobenzo[*d*][1,3]oxathiolane-2-thione (**2u**)

¹H-NMR 1,3-dithiolane-2-thione (4a)

150130.357.10.fid Diebler, JD 888.3 Au1H CDCl3 /opt/topspin 1501 57

____7.27

¹³C-NMR 1,3-dithiolane-2-thione (4a)

150130.357.11.tid Diebler, JD 888.3 Au13C CDCl3 /opt/topspir 1501 57

¹H-NMR 4-methyl-1,3-dithiolane-2-thione (**4b**)

141029.f304.10.1.1r J. Diebler, JD 817.3, 1H in CDCl3 PROTON CDCl3 {C:\Bruker\TopSpin3.2PL6} 1410 4 ____7.27

¹H-NMR 4,4-dimethyl-1,3-dithiolane-2-thione (**4d**)

¹³C-NMR 4,4-dimethyl-1,3-dithiolane-2-thione (**4d**)

150324.f324.11.fid Diebler JD 936.3 S C13CPD CDCl3 {C:\Bruker\TopSpin3.2PL6} 1503 8

77.00 66.06 55.54	27.29 72.72
-------------------------	----------------

¹H-NMR 4,5-tetramethylen-1,3-dithiolane-2-thione (**4e**)

150218.418.10.fid Diebler JD 881.3 Au1H CDCl3 /opt/topspin 1502 18

¹³C-NMR 4,5-tetramethylen-1,3-dithiolane-2-thione (4e)

5. X-Ray Data for 2u

X-ray crystal structure analysis of **2u**:

Data were collected on a Bruker Kappa APEX II Duo diffractometer. The structure was solved by direct methods (SHELXS-97: Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.) and refined by full-matrix least-squares procedures on F^2 (SHELXL-2014: G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.). XP (Bruker AXS) was used for graphical representation.

Crystal data for 2u:

 $C_{11}H_{16}OS_2$, M = 228.36, orthorhombic, space group $P2_12_12_1$, a = 8.4952(2), b = 9.1213(2), c = 14.9630(3) Å, V = 1159.44(4) Å³, T = 150(2) K, Z = 4, 9562 reflections measured, 2938 independent reflections ($R_{int} = 0.0158$), final R values ($I > 2\sigma(I)$): $R_1 = 0.0235$, $wR_2 = 0.0625$, final R values (all data): $R_1 = 0.0245$, $wR_2 = 0.0635$, 129 parameters, Flack parameter x = -0.03(2).

CCDC 1478719 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S5. ¹H–NMR spectrum of the crude reaction mixture of the conversion of *cis*-1q and characteristic resonances of *trans*-2q and *cis*-3q.^{1, 2}

Figure S6. ¹H–NMR spectrum of the crude reaction mixture of the conversion of *trans*-1q and characteristic resonances of *cis*-2q and *trans*-3q.^{1,2}

8. ee-Determination of ent-2b and ent-2d

The enantiomeric excess (ee) was determined on an *Agilent* 6890 GC with a *Lipodex E* capillary GC column (25 m × 0.25 mm × 0.25 μ m) from *Macherey-Nagel* as stationary phase and H₂ as carrier gas. Starting temperature was 90°C which was kept for 25 min and then raised with a rate of 6°C·min⁻¹ to 180°C keeping this temperature for another 10 min. The mobile phase flow was 1 mL·min⁻¹, constantly.

Figure S10. a) Chiral GC of the crude reaction mixture of the conversion of rac-1d with ee = 0% and $\tau(2d) = 31.9$ min. b) Chiral GC of the crude reaction mixture of the conversion of (*R*)-1d with ee = 60% and $\tau(2d) = 30.8$ min.

9. References

- J. Joseph, R. K. Gosavi, A. Otter, G. Kotovych, E. M. Lown and O. P. Strausz, *J. Am. Chem. Soc.*, 1990, **112**, 8670-8678.
 M. North and P. Villuendas, *Synlett*, 2010, 623-627. 1.
- 2.