Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Thermal 1, 3-Dipolar Cycloaddition Reactions of Azomethine Imines with active Esters

Liwenze He,^a Lin Liu,^a Runfeng Han,^a Weiwei Zhang,^a Xingang Xie,^a and Xuegong She^{*, a, b}

 ^a State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
 ^b Collaborative Innovation Center of Chemical Science and Engineering Tianjin, China <u>shexg@lzu.edu.cn</u>

TABLE OF CONTENTS

1.	General information	S2
2.	Typical procedure	S3
	a) Syntheses of ester substrates and azomethine imines b) General procedure of [3+2] annulations of esters and azomethine imines	
3.	Spectra of the new compounds	S13
4.	Literature	S47

General information.

Solvents were purified and dried by standard methods prior to use. All commercially available reagents were used without further purification unless otherwise noted. Oxygen- and moisture-sensitive reactions were carried out under argon atmosphere. Column chromatography was generally performed on silica gel (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates with UV light to visualize the course of reaction. Melting points were determined with a digital Koffer apparatus and were uncorrected. ¹H and ¹³C NMR data were recorded on a 400 MHz spectrometer using CDCl₃ as solvent at room temperature. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. High-resolution mass spectra (HRMS) were obtained on a FT-ICR spectrometer.

Diastereomeric ratios were determined by ¹H-NMR analysis of the crude mixtures.

Typical procedure

a) Synthesis of ester substrates and imines

Esters were synthesized according to the reported method ^[1].

Azomethine imines were prepared according to literature procedures ^[2a].

The physical data of benzoyl(3,4-dihydroisoquinolin-2-ium-2-yl)amide (**2a**), benzoyl(7-methyl-3,4-dihydroisoquinolin-2-ium-2-yl)amide (**2b**), benzoyl(7-methoxy-3,4-dihydroisoquinolin-2-ium-2-yl)amide (**2c**) and benzoyl(7-bromo-3,4-dihydroisoquinolin-2-ium-2-yl)amide (**2d**) are in accordance with those described in the literature.^[2b,c]

1-Methoxy-5-methylisochroman

To a solution of DDQ (3.34 g, 14.72 mmol, 1.2 eq.) in CH_2Cl_2 (30 mL) was added anhydrous MeOH (0.60 mL, 14.72 mmol, 1.2 eq.) and then 5-methylisochroman ^[3] (1.82 g, 12.26 mmol, 1.0 eq.) at room temperature. The resulting dark green-blue solution was vigorously stirred at room

temperature over 20 h and then quenched by addition of NaHCO₃ (aq. sat., 30 mL). The heterogeneous mixture was filtered through celite which was then rinsed with CH₂Cl₂ (20 mL). The aqueous layer was separated and extracted twice with CH₂Cl₂ (30 mL) and the combined organic layers were washed once with NaHCO₃ (aq. sat., 80 mL), once with brine (80 mL), dried over MgSO₄ and evaporated under reduced pressure. The crude material was purified by flash chromatography (PE/EtOAc = 10/1) to give 1-methoxy-5-methylisochroman (1.55 g, 8.70 mmol, 71%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.11 (dq, J = 14.2, 7.1 Hz, 3H), 5.43 (s, 1H), 4.14 (td, J = 11.6, 3.6 Hz, 1H), 3.95 (ddd, J = 11.3, 6.3, 1.4 Hz, 1H), 3.54 (s, 3H), 2.87 – 2.73 (m, 1H), 2.53 (dd, J = 16.8, 2.5 Hz, 1H), 2.22 (s, 3H).
 ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 133.8, 132.4, 129.4, 125.9, 125.0, 97.9, 57.4, 55.2, 25.6, 18.8.

2-(2-Bromoethyl)-3-methylbenzaldehyde

To a solution of 1-methoxy-5-methylisochroman (1.55 g, 8.69 mmol, 1.0 equiv.) in toluene (0.1 M) were added tetrabutylammonium bromide(2.80 g, 8.69 mmol, 1.0 equiv.) and trimethylsilyl bromide (2.28 mL,17.37 mmol, 2.0

equiv.) at room temperature. Then the reaction mixture was stirred at 80 °C. After 8 h, NaHCO₃ (aq. sat. 30ml) was added, followed by extraction with EtOAc . The combined organic layers

were dried over MgSO₄ and concentrated *in vacuo*. Flash chromatography (PE/ EtOAc = 5/1) of the crude material afforded the desired benzaldehyde derivative (1.66 g, 7.30 mmol, 84%) as a light brown oil.

¹**H NMR** (400 MHz, CDCl₃) δ 10.16 (s, 1H), 7.67 (d, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 6.9 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 3.60 (d, *J* = 7.7 Hz, 2H), 3.55 – 3.47 (m, 2H), 2.44 (s, 3H).¹³**C NMR** (100 MHz, CDCl₃) δ 193.1, 138.8, 138.5, 136.1, 134.3, 132.5, 127.3, 31.8, 31.0, 19.5.

Benzoyl(5-methyl-3,4-dihydroisoquinolin-2-ium-2-yl)amide (2e)

Me

To a solution of 2-(2-bromoethyl)-3-methylbenzaldehyde (1.66 g, 7.30 mmol , 1.0 equiv.) in MeOH (0.05 M) was added benzoylhydrazine (0.94 $\sim^{Bz}\,$ g, 6.94 mmol, 1.0 equiv.) at room temperature. After the formation of a

white suspension, the mixture was heated to reflux and stirred for an additional 1 h to give a clear solution. After cooling to room temperature, Et₃N (1.50 ml, 10.95 mmol,1.5 equiv.) was added and the mixture was stirred for another 10 min at room temperature. Then water was added and the mixture was carefully stirred for 30 min to give a white precipitate. This solid material was washed with cold Et₂O and then dissolved in CH₂Cl₂ to give a yellow solution, which was dried over MgSO₄. Evaporation *in vacuo* afforded azomethine imine (1.52 g, 5.77 mmol, 79%) **2e** as a yellow solid.

¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 8.11 (dd, *J* = 7.5, 1.9 Hz, 2H), 7.43 – 7.35 (m, 3H), 7.35 – 7.31 (m, 1H), 7.25 (d, *J* = 4.9 Hz, 2H), 4.25 (t, *J* = 7.8 Hz, 2H), 3.13 (t, *J* = 7.7 Hz, 2H), 2.31 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 170.8, 149.1, 137.5, 135.6, 134.9, 131.8, 130.0, 127.7, 127.7, 127.6, 126.5, 54.3, 23.7, 18.5.

b) General procedure for [3+2] annulations of esters and azomethine imines (GP)

To a solution of the corresponding ester derivative (1.0 eq.) in THF (0.05 M) was added azomethine imine (2.0 eq.). The reaction mixture was stirred for 12 h at reflux. Then the mixture

was diluted with EtOAc and washed with NaHCO₃ (aq. sat.) and water, dried over MgSO₄ and concentrated *in vacuo*. The crude material was purified by flash chromatography (PE/EtOAc=5/1) to give the desired pyrazolidinone.

3-benzoyl-1-phenyl-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-one (3a)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-phenylacetate (**1a**) (42.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(**2a**) (75.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc=5/1) afforded the desired pyrazolidinone **3a** (45.0 mg, 81%) as a colorless solid.

MP: $195-196^{\circ}$ C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.76 – 7.70 (m, 2H), 7.52 (m, 1H), 7.47 – 7.36 (m, 5H), 7.26 – 7.18(m, 4H), 6.97 (m, 1H), 6.34 (d, *J* = 7.8 Hz, 1H), 5.03 (d, *J* = 12.0 Hz, 1H), 4.16 (d, *J* = 12.0 Hz, 1H), 3.80 – 3.67 (m, 1H), 3.39 – 3.22 (m, 2H), 2.90 (m, 1H).¹³C **NMR** (100 MHz, CDCl₃) δ 173.5, 166.2, 134.9, 133.6, 132.6, 132.5, 132.0, 129.5, 129.1, 128.8, 128.5, 128.2, 127.9, 127.5, 126.9, 126.0, 65.3, 55.4, 48.5, 28.8. **HRMS (ESI)** *m/z* = 369.1598 calcd. for C₂₄H₂₀N₂O₂H⁺ [M+H]⁺; found: 369.1595.

3-benzoyl-1-(p-tolyl)-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-one (3b)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-(p-tolyl)acetate (**1b**) (44.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(**2a**) (75.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc=5/1) afforded the desired pyrazolidinone **3b** (44.0 mg, 76%) as a colorless solid.

MP: $191-192 \,^{\circ}C.^{1}H$ **NMR** (400 MHz, CDCl₃) δ 7.72 (d, J = 7.3 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.42 (m, 2H), 7.25 – 7.19 (m, 4H), 7.13 (d, J = 8.0 Hz, 2H), 6.98 (dt, J = 8.4, 4.2 Hz, 1H), 6.39 (d, J = 7.8 Hz, 1H), 5.01 (d, J = 12.0 Hz, 1H), 4.12 (d, J = 12.0 Hz, 1H), 3.82 – 3.65 (m, 1H), 3.40 – 3.18 (m, 2H), 2.96 – 2.81 (m, 1H), 2.39 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 173.8, 166.3, 138.0, 133.7, 132.7, 132.0, 131.8, 129.9, 129.3, 128.9, 128.5, 127.9, 127.5, 126.9, 126.0, 65.2, 55.1, 48.5, 28.8, 21.2. HRMS (ESI) m/z = 405.1573 calcd. for $C_{25}H_{22}N_2O_2Na^+$ [M+Na]⁺; found: 405.1578.

3-benzoyl-1-(4-bromophenyl)-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-one(3c)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-(4-bromophenyl)acetate (1c) (54.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine (2a) (75.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone 3c (58.0 mg, 86%) as a colorless solid.

MP: 192-193 °C.¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.3 Hz, 2H), 7.54 (m, 3H), 7.43 (m, 2H),

7.25 – 7.18 (m, 2H), 7.11 (d, J = 8.3 Hz, 2H), 7.05 – 6.96 (m, 1H), 6.34 (d, J = 7.8 Hz, 1H), 4.97 (d, J = 12.0 Hz, 1H), 4.14 (d, J = 12.0 Hz, 1H), 3.69 m, 1H), 3.30 (m, 2H), 2.96 – 2.82 (m, 1H).¹³**C NMR** (100 MHz, CDCl₃) δ 172.9, 166.1, 133.9, 133.5, 132.7, 132.3, 132.2, 131.2, 128.9, 128.7, 127.9, 127.7, 126.8, 126.1, 122.4, 65.2, 54.9, 48.6, 28.7. **HRMS (ESI)** m/z = 469.0522 calcd. for C₂₄H₁₉Br₁N₂O₂Na⁺ [M+Na]⁺; found: 469.0528.

3-benzoyl-1-(3-bromophenyl)-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-one (3d)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-(3-bromophenyl)acetate (1d) (54.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine (2a) (75.0 mg,0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone 3d (51.0 mg, 76%) as a colorless solid.

MP: $175 - 176 \,^{\circ}C.^{1}H$ **NMR** (400 MHz, CDCl₃) δ 7.73 (d, J = 7.5 Hz, 2H), 7.52 (d, J = 6.6 Hz, 2H), 7.41 (m, 3H), 7.31 (m, 1H), 7.19 (m, 3H), 7.06 – 6.96 (m, 1H), 6.35 (d, J = 7.8 Hz, 1H), 4.99 (d, J = 12.0 Hz, 1H), 4.13 (d, J = 12.0 Hz, 1H), 3.77 – 3.60 (m, 1H), 3.38 – 3.18 (m, 2H), 2.95 – 2.79 (m, 1H). ^{13}C **NMR** (100 MHz, CDCl₃) δ 172.8, 166.1, 137.1, 133.6, 132.7, 132.6, 132.2, 132.1, 131.4, 130.7, 128.9, 128.7, 128.1, 127.9, 127.8, 126.8, 126.2, 65.2, 55.1, 48.7, 28.7. **HRMS (ESI)** m/z = 469.0522 calcd. for $C_{24}H_{19}Br_1N_2O_2Na^+$ [M+Na]⁺; found: 469.0527.

3-benzoyl-1-(thiophen-2-yl)-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-one (3e)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-(thiophen-2-yl)acetate (1e) (43.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(2a) (75.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone **3e** (46.0 mg, 81%) as a colorless solid.

MP:165-167 °C .¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (d, *J* = 7.4 Hz, 2H), 7.50 (m, 1H), 7.46 – 7.34 (m, 3H), 7.20 (m, 2H), 7.04 (m, 3H), 6.60 (d, *J* = 7.6 Hz, 1H), 5.04 (d, *J* = 11.8 Hz, 1H), 4.44 (d, *J* = 11.8 Hz, 1H), 3.73 (d, *J* = 5.8 Hz, 1H), 3.40 – 3.13 (m, 2H), 2.87 (d, *J* = 15.9 Hz, 1H).¹³**C NMR** (100 MHz, CDCl₃) δ 172.3, 166.2, 136.8, 133.5, 132.7, 132.3, 132.1, 128.9, 128.5, 128.3, 127.9, 127.7, 127.4, 126.8, 126.2, 65.8, 50.9, 48.7, 28.8. **HRMS (ESI)** *m*/*z* = 397.0981 calcd. for C₂₂H₁₈N₂O₂S₁Na⁺ [M+Na]⁺; found: 397.0985.

3-benzoyl-1-(4-fluorophenyl)-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-one (3f)

According to **GP** with 1,3-dioxoisoindolin-2-yl 2-(4-fluorophenyl)acetate (**1f**) (45.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(**2a**) (75.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone **3f** (41.0 mg, 71%) as a colorless solid.

MP: $157-159 \,^{\circ}C.^{1}H$ **NMR** (400 MHz, CDCl₃) δ 7.76 – 7.67 (m, 2H), 7.52 (m, 1H), 7.42 (m, 2H), 7.20 (m, 4H), 7.13 (m, 2H), 7.03 – 6.93 (m, 1H), 6.32 (d, *J* = 7.8 Hz, 1H), 4.95 (d, *J* = 12.0 Hz, 1H), 4.15 (d, *J* = 12.1 Hz, 1H), 3.72 – 3.64 (m, 1H), 3.36 – 3.22 (m, 2H), 2.89 (m, 1H). ^{13}C **NMR** (100 MHz, CDCl₃) δ 173.3, 166.1, 162.5 (d, *J* = 247.5 Hz,), 133.6, 132.7, 132.3, 132.1, 131.1 (d, *J* = 8.2 Hz), 130.6 (d, *J* = 3.3 Hz), 128.8, 128.6, 127.9, 127.6, 126.8, 126.0, 116.2 (d, *J* = 21.7 Hz), 65.3 , 54.7, 48.5, 28.7. ^{19}F NMR (376 MHz, CDCl₃) δ -113.5 (s). **HRMS (ESI)** *m/z* = 409.1323 calcd. for C₂₄H₁₉F₁N₂O₂Na⁺ [M+Na]⁺; found: 409.1328.

3-benzoyl-1-(4-(trifluoromethyl)phenyl)-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)one (3g)

According to **GP** with 1,3-dioxoisoindolin-2-yl 2-(4-(trifluoromethyl)phenyl)acetate (**1g**) (52.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine (**2a**) (75.0 mg,0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone **3g** (49.0 mg, 75%) as a colorless solid.

MP: 174-176[°]C.¹**H NMR** (400 MHz, CDCl₃) δ 7.76 – 7.67 (m, 4H), 7.53 (m 1H), 7.43 (m, 2H), 7.37 (m, 2H), 7.24 – 7.18 (m, 2H), 7.04 – 6.97 (m, 1H), 6.28 (d, *J* = 7.8 Hz, 1H), 5.04 (d, *J* = 12.0 Hz, 1H), 4.25 (d, *J* = 12.0 Hz, 1H), 3.77 – 3.67 (m, 1H), 3.37 – 3.25 (m, 2H), 2.97 – 2.84 (m, 1H).¹³C **NMR** (100 MHz, CDCl₃) δ 172.8, 166.2, 138.9, 133.4, 132.7, 132.3, 132.0, 130.5 (d, *J* = 32.8 Hz), 130.0, 128.9, 128.8, 128.0, 127.8, 126.7, 126.2,126.1 (d, *J* = 3.8Hz), 65.3, 55.3, 48.8, 28.7. **HRMS (ESI)** m/z = 459.1291 calcd. for C₂₅H₁₉F₃N₂O₂Na⁺ [M+Na]⁺; found: 459.1298.

3-benzoyl-9-methoxy-1-phenyl-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-one(3h)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-phenylacetate (**1a**) (42.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(**2b**) (84.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone **3h** (39.0 mg, 65%) as a colorless solid.

MP: $156-157^{\circ}$ C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.3 Hz, 2H), 7.52 (m, 1H), 7.47 – 7.33 (m, 5H), 7.25 (m, 2H), 7.09 (d, *J* = 8.5 Hz, 1H), 6.76 (m, 1H), 5.79 (d, *J* = 2.1 Hz, 1H), 4.95 (d, *J* = 12.0 Hz, 1H), 4.16 (d, *J* = 12.0 Hz, 1H), 3.71 (m, 1H), 3.42 (s, 3H), 3.30 – 3.15 (m, 2H), 2.81 (m, 1H).¹³C **NMR** (100 MHz, CDCl₃) δ 173.4, 166.2, 157.5, 135.0, 133.7, 133.4, 132.1, 129.6, 129.5, 129.2, 128.8, 128.2, 127.9, 124.6, 114.8, 110.7, 65.7, 55.4, 54.8, 48.8, 28.0. **HRMS (ESI)** *m/z* = 399.1703 calcd. for C₂₅H₂₂N₂O₃H⁺ [M+H]⁺; found: 399.1698.

3-benzoyl-1-(4-bromophenyl)-9-methoxy-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H) -one(3i)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-(4-bromophenyl)acetate (1c) (54.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(2b) (84.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone **3i** (44.0 mg, 61%) as a colorless solid.

MP: 193-194 °C.¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.69 (m, 2H), 7.61 – 7.50 (m, 3H), 7.42 (dd, *J* = 10.5, 4.7 Hz, 2H), 7.17 – 7.08 (m, 3H), 6.78 (dd, *J* = 8.4, 2.6 Hz, 1H), 5.83 (d, *J* = 2.6 Hz, 1H), 4.94 (d, *J* = 12.0 Hz, 1H), 4.15 (d, *J* = 12.0 Hz, 1H), 3.69 (m, 1H), 3.50 (s, 3H), 3.25 (m, 2H), 2.83 (m, 1H).¹³**C NMR** (100 MHz, CDCl₃) δ 172.8, 166.4, 157.6, 134.0, 133.4, 133.1, 132.4, 131.3, 129.7, 129.0, 128.0, 124.5, 122.5, 114.5, 111.2, 65.5, 55.0, 54.9, 49.1, 27.9. **HRMS (ESI)** *m/z* = 499.0628 calcd. for C₂₅H₂₁Br₁N₂O₃Na⁺ [M+Na]⁺; found: 499.0635.

3-benzoyl-9-methyl-1-(thiophen-2-yl)-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-on e(3j)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-(thiophen-2-yl)acetate (1e) (43.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(2c) (79.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone 3j (48.0 mg, 82%) as a colorless solid.

MP: $154-155^{\circ}$ C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 – 7.66 (m, 2H), 7.50 (d, *J* = 7.5 Hz, 1H), 7.44 – 7.37 (m, 3H), 7.11 – 7.05 (m, 2H), 7.05 – 6.98 (m, 2H), 6.36 (s, 1H), 4.98 (d, *J* = 11.8 Hz, 1H), 4.43 (d, *J* = 11.8 Hz, 1H), 3.75 – 3.66 (m, 1H), 3.22 (ddd, *J* = 13.0, 10.4, 3.0 Hz, 2H), 2.83 (m, 1H), 2.13 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 172.4, 166.3, 136.8, 135.7, 133.4, 132.1, 129.5, 128.9, 128.6, 128.3, 128.2, 127.9, 127.4, 127.2, 126.2, 65.8, 50.9, 48.9, 28.3, 21.0. **HRMS (ESI)** *m/z* = 389.1318 calcd. for C₂₃H₂₀N₂O₂S₁H⁺ [M+H]⁺; found: 389.1325.

3-benzoyl-1-(4-bromophenyl)-9-methyl-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)one(3k)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-(4-bromophenyl)acetate (**1c**) (54.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(**2c**) (79.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone **3k** (69.0 mg, 88%) as a colorless solid.

MP: 189-190 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.3 Hz, 2H), 7.60 – 7.49 (m, 3H), 7.41 (m, 2H), 7.09 (m, 3H), 7.01 (d, *J* = 7.8 Hz, 1H), 6.13 (s, 1H), 4.90 (d, *J* = 11.9 Hz, 1H), 4.11 (d, *J* = 11.9 Hz, 1H), 3.67 (m, 1H), 3.28 – 3.14 (m, 2H), 2.84 (m, 1H), 2.11 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ

173.1, 166.1, 135.7, 134, 133.6, 132.2, 132.1, 132.1, 131.2, 129.5, 128.9, 128.6, 128.5, 127.9, 127.2, 122.3, 65.3, 55.0, 48.8, 28.3, 20.9. **HRMS (ESI)** m/z = 461.0859 calcd. for $C_{25}H_{21}Br_1N_2O_2H^+$ [M+H]⁺; found: 461.0866.

3-benzoyl-9-methyl-1-phenyl-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-one(3I)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-phenylacetate (1a) (42.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(2c) (79.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone 3I (37.0 mg, 63%) as a colorless solid.

MP: 187-188 °C .¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.5 Hz, 2H), 7.51 (m, 1H), 7.46 – 7.36 (m, 5H), 7.23 (m, 2H), 7.07 (d, *J* = 7.8 Hz, 1H), 7.00 (d, *J* = 7.8 Hz, 1H), 6.09 (s, 1H), 4.95 (d, *J* = 11.9 Hz, 1H), 4.12 (d, *J* = 11.9 Hz, 1H), 3.76 – 3.64 (m, 1H), 3.32 – 3.17 (m, 2H), 2.91 – 2.76 (m, 1H), 2.05 (m, 3H).¹³**C NMR** (100 MHz, CDCl₃) δ 173.6, 166.2, 135.5, 135.0, 133.8, 132.4, 132.0, 129.5, 129.1, 128.8, 128.4, 128.3, 128.2, 127.9, 127.4, 65.4, 55.5, 48.7, 28.4, 20.9. **HRMS (ESI)** *m/z* = 383.1754 calcd. for C₂₅H₂₂N₂O₂H⁺ [M+H]⁺; found: 383.1749.

3-benzoyl-9-bromo-1-(4-bromophenyl)-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)one(3m)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-(4-bromophenyl)acetate (1c) (54.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(2d) (98.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone **3m** (51.0 mg, 65%) as a colorless solid.

MP: $178-179^{\circ}$ C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 – 7.67 (m, 2H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.54 (m, 1H), 7.43 (m, 2H), 7.34 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.09 (m, 3H), 6.47 (d, *J* = 1.7 Hz, 1H), 4.90 (d, *J* = 11.9 Hz, 1H), 4.10 (d, *J* = 11.9 Hz, 1H), 3.81 – 3.67 (m, 1H), 3.32 – 3.14 (m, 2H), 2.96 – 2.78 (m, 1H). ¹³C **NMR** (100 MHz, CDCl₃) δ 172.5, 166.1, 134.4, 133.4, 132.5, 132.3, 131.8, 131.0, 130.9, 130.4, 129.6, 128.9, 128.0, 122.7, 119.7, 64.7, 54.8, 48.4, 28.3. **HRMS (ESI)** *m/z* = 526.9787 calcd. for C₂₄H₁₈Br₂N₂O₂H⁺ [M+H]⁺; found: 526.9796.

3-benzoyl-9-bromo-1-(4-(trifluoromethyl)phenyl)-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquino lin-2(3H)-one(3n)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-(4-(trifluoromethyl)phenyl)acetate (**1g**) (52.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(**2d**) (98.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone **3n** (59.0 mg, 76%) as a colorless solid.

MP: $170-171 \,^{\circ}C.^{1}H$ **NMR** (400 MHz, CDCl₃) δ 7.77 – 7.67 (m, 4H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.35 (m, 3H), 7.09 (d, *J* = 8.2 Hz, 1H), 6.39 (d, *J* = 1.3 Hz, 1H), 4.97 (d, *J* = 11.9 Hz, 1H), 4.22 (d, *J* = 11.9 Hz, 1H), 3.79 – 3.68 (m, 1H), 3.33 – 3.17 (m, 2H), 2.95 – 2.78 (m, 1H).¹³C **NMR** (100 MHz, CDCl₃) δ 172.2, 166.2, 138.4, 134.1, 133.2, 132.5, 131.7, 131.0, 130.4, 129.9, 129.5, 128.9, 128.0, 126.3 (d, *J* = 3.7 Hz), 119.7, 64.8, 55.2, 48.5, 28.2. **HRMS (ESI)** *m/z* = 537.0396 calcd. for C₂₅H₁₈Br₁F₃N₂O₂Na⁺ [M+Na]⁺; found:537.0402.

3-benzoyl-7-methyl-1-(thiophen-2-yl)-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-on e (3o)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-(thiophen-2-yl)acetate (1e) (43.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine (2e) (79.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone **3o** (49.0 mg, 84%) as a colorless solid.

MP:192-193 °C.¹**H NMR** (400 MHz, CDCl₃) δ 7.77 – 7.66 (m, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.41 (m, 3H), 7.12 – 7.04 (m, 2H), 7.04 – 6.92 (m, 2H), 6.45 (d, *J* = 7.7 Hz, 1H), 5.03 (d, *J* = 11.8 Hz, 1H), 4.48 (d, *J* = 11.8 Hz, 1H), 3.79 (m, , 1H), 3.26 – 3.14 (m, 1H), 3.13 – 3.01 (m, 1H), 2.88 (m, 1H), 2.28 (s, 3H).¹³**C NMR** (100 MHz, CDCl₃) δ 172.5, 166.4, 136.9, 136.2, 133.3, 132.2, 132.1, 131.2, 129.1, 129.0, 128.3, 127.9, 127.5, 126.2, 126.1, 124.6, 66.1, 50.8, 48.6, 26.2, 19.5. **HRMS (ESI)** m/z = 411.1138 calcd. for C₂₃H₂₀N₂O₂S₁Na⁺ [M+Na]⁺; found:411.1134.

3-benzoyl-7-methyl-1-phenyl-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-one (3p)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-phenylacetate (**1a**) (42.0 mg, 0.15 mmol, 1.0 eq.), azomethine imine(**2e**) (79.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone **3p** (44.0 mg, 77%) as a colorless solid.

MP: 209-211°C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.1 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.48 – 7.36 (m, 5H), 7.25 (m, 2H), 7.07 (d, *J* = 7.3 Hz, 1H), 6.89 (t, *J* = 7.6 Hz, 1H), 6.17 (d, *J* = 7.8 Hz, 1H), 5.00 (d, *J* = 12.0 Hz, 1H), 4.19 (d, *J* = 12.0 Hz, 1H), 3.82 – 3.69 (m, 1H), 3.37 – 3.19 (m, 1H), 3.15 – 2.98 (m, 1H), 2.89 (m, 1H), 2.28 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 173.8, 166.3, 136.2, 135.0, 133.6, 132.3, 132.1, 131.2, 129.5, 129.1, 128.9, 128.8, 128.1, 127.9, 125.8, 124.7, 65.6, 55.4, 48.4, 26.3, 19.5. **HRMS (ESI)** *m*/*z* = 383.1754 calcd. for C₂₅H₂₂N₂O₂H⁺ [M+H]⁺; found: 383.1757.

3-benzoyl-7-methyl-1-(o-tolyl)-1,5,6,10b-tetrahydropyrazolo[5,1-a]isoquinolin-2(3H)-one (3q)

According to *GP* with 1,3-dioxoisoindolin-2-yl 2-(p-tolyl)acetate (**1h**) (44.0 mg, 0.15 mmol, 1.0 eq.),azomethine imine(**2e**) (79.0 mg, 0.30 mmol, 2.0 eq.). FC (PE/EtOAc = 5/1) afforded the desired pyrazolidinone **3q** (49.0 mg, 83%) as a colorless solid.

MP:189-190 °C .¹**H NMR** (400 MHz, CDCl₃) δ 7.77 – 7.71 (m, 2H), 7.53 (m, 1H), 7.43 (m, 2H), 7.35 – 7.27 (m, 2H), 7.27 – 7.24 (m, 1H), 7.20 (m, 1H), 7.05 (m, 1H), 6.88 (t, *J* = 7.6 Hz, 1H), 6.20 (m, 1H), 5.03 (d, *J* = 11.8 Hz, 1H), 4.50 (d, *J* = 11.9 Hz, 1H), 3.79 (ddd, *J* = 10.2, 5.3, 2.1 Hz, 1H), 3.40 – 3.25 (m, 1H), 3.08 (ddd, *J* = 17.2, 12.1, 5.3 Hz, 1H), 2.89 (m, 1H), 2.28 (s, 3H), 2.07 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.9, 166.3, 137.6, 136.1, 133.7, 133.5, 132.3, 132.0, 131.1, 130.8, 130.1, 128.8, 128.4, 127.9, 127.9, 127.0, 126.0, 124.1, 65.5, 51.4, 48.4, 26.2, 20.0, 19.5. **HRMS (ESI)** *m/z* = 419.1730 calcd. for C₂₆H₂₄N₂O₂Na⁺ [M+Na]⁺; found:419.1733.

Crystal structure determination of 3a

Crystal Data for $C_{24}H_{20}N_2O_2$ (*M* =368.42 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), *a* = 7.6135(8) Å, *b* = 13.282(2) Å, *c* = 18.5374(11) Å, *V* = 1874.5(4) Å³, *Z* = 4, *T* = 291.89(10) K, μ (MoK α) = 0.084 mm⁻¹, *Dcalc* = 1.305 g/cm³, 5870 reflections measured (6.92° ≤ 2 Θ ≤ 52.04°), 3323 unique (R_{int} = 0.0689, R_{sigma} = 0.1321) which were used in all calculations. The final R_1 was 0.0640 (>2sigma(I)) and *w* R_2 was 0.1357 (all data)

Identification code	За
Empirical formula	$C_{24}H_{20}N_2O_2$
Formula weight	368.42
Temperature/K	291.89(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	7.6135(8)
b/Å	13.282(2)
c/Å	18.5374(11)
α/°	90.00
β/°	90.00
γ/°	90.00
Volume/Å ³	1874.5(4)
Z	4
$\rho_{calc}g/cm^3$	1.305
µ/mm⁻¹	0.084
F(000)	776.0
Crystal size/mm ³	0.27 × 0.15 × 0.12
Radiation	ΜοΚα (λ = 0.71073)

Crystal data and structure refinement for 3a

20 range for data collection/° 6.92 to 52.04			
Index ranges	$-9 \le h \le 9, -16 \le k \le 11, -21 \le l \le 22$		
Reflections collected	5870		
Independent reflections	3323 [R_{int} = 0.0689, R_{sigma} = 0.1321]		
Data/restraints/parameters	3323/0/253		
Goodness-of-fit on F ²	0.975		
Final R indexes [I>=2σ (I)]	$R_1 = 0.0640$, $wR_2 = 0.0989$		
Final R indexes [all data]	$R_1 = 0.1492$, $wR_2 = 0.1357$		
Largest diff. peak/hole / e $Å^{-3}$	0.19/-0.17		
Flack parameter	-2(3)		

X-ray structure of pyrazolidinone 3a

CCDC 1456450

Spectra of NOE and the new compounds

\$17

S40

Literature

1) E. Grochowski and J. Jurczak, Synth. Commun., 1977, 7, 1277.

- 2a) T. Hashimoto, Y. Maeda, M. Omote, H. Nakatsu, K. Maruoka, J. Am. Chem. Soc., 2010,132,
- 4076; 2b) S. E. Reisman, A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc., 2008, 130,7198;
- 2c) Lena Hesping, Anup Biswas, Constantin G. Daniliuc, Christian Mück-Lichtenfeld and

Armido Studer, Chem. Sci., 2015, 6, 1252-1257.

3) X. Liu, B. Sun, Z. Xie, X. Qin, L. Liu, H. Lou, J. Org. Chem., 2013, 78, 3104.