Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information for:

Palladium-Catalyzed β -(Hetero)Arylation of α , β -Unsaturated Valerolactams

Daniel P. Canterbury,* Kevin D. Hesp, Jana Polivkova

Pfizer Worldwide Medicinal Chemistry, Eastern Point Road, Groton, Connecticut 06340, USA

I.	General Information	p. S1
11.	Reaction Optimization Procedure	p. S2
III.	General Procedure for the β -arylation of Boc-protected lactams	p. S3
IV.	Preparation of β -aryl lactams and analytical data	p. S3
V.	¹ H and ¹³ C NMR spectra	p. S7
VI.	References	p. S25

I. General Information

All reagents were obtained from commercial suppliers and used without further purification. All aryl halides were obtained from commercial suppliers and used without further purification. All solvents were purchased anhydrous (with a septum cap) and used as received. Silica gel chromatography was performed using medium pressure ISCO system employing pre-packaged ISCO columns. ¹H and ¹³C NMR characterization data were collected at 300K on a Bruker AV-500 spectrometer operating at 500.1 and 125.8 MHz (respectively) with chemical shifts reported in parts per million relative to CHCl₃ (1H NMR; 7.26 ppm, 13C NMR; 77.16 ppm). Infrared data were recorded on a Nicolet Avatar 360 FT-IR. HPLC was performed on an Agilent 1100 system (XBridge C18 column, 4.6 x 150mm, 5 μ m; 95% water/acetonitrile linear gradient to 5% water/acetonitrile over 4 min, hold at 5% water / 95% acetonitrile to 5.0 min, trifluoroacetic acid modifier (0.1%)). Liquid chromatography mass spectrometry (LCMS) was performed on an Agilent 1100 Series (Waters Atlantis C18 column, 4.6 x 50 mm, 5 μ m; 95% water/acetonitrile linear gradient to 5% water / 95% acetonitrile to 5.0 min, trifluoroacetic acid modifier (0.05%); flow rate of 2.0 mL/ min). High resolution mass spectrometry was performed on an Agilent (6220) LC-MS TOF using an XBridge C18 2.5 μ m 3.0 X 5.0 mm column at 60 °C; ammonium formate:water as mobile phase A1 and 50:50 methanol:acetonitrile as mobile phase B1.

Compounds 5a,¹ 5b,² 5c,³ 5d,¹ 5e,⁴ 8,⁵ and 10⁶ were prepared according to reported procedures.

II. Reaction Optimization Procedure

Preparation of stock solution of base/lactam/aryl-bromide:

To a 20mL vial was added lactam (400mg), Cy_2NMe (0.888mL), DMF (8mL), pyridyl-bromide (0.36mL), the vial was sealed with a septum cap and the atmosphere was exchanged to N_2 .

Total volume = ~ 9.65mL

Therefore, ~1.2mL goes into each rxn.

Rxn Setup:

To a 2-5mL microwave vial was added $Pd_2(dba)_3$ (23mg, 10mol%), the atmosphere was exchanged to N_2 , then ligand (20 mol%), and the remainder of the reactants were added using the premixed stock solution (1.2mL) and the vial was heated to 70 degrees C on an aluminum block. After stirring for 15 hours an aliquot (0.010mL) was taken and added to an HPLC vial containing 0.50mL 1mg/mL mesitylene/MeOH and the mixture was analyzed by HPLC.

Table 1. Optimization of β -arylation of valeraolactam

	oc N Br	Pd (10%) Ligand (20%) Base (2 equiv.)	Boc N OMe
5a	6e	solvent (0.4M) 70 °C, 15 hr	7e N
	1.5 equiv.		

entry	L	Solvent	Base	Yield ^c
1	PPh ₃	DMF	MeNCy ₂	< 5 %
2	P(tBu) ₃	DMF	MeNCy ₂	91%
3	$P(Cy)_3$	DMF	MeNCy ₂	< 5 %
4	Xphos	DMF	MeNCy ₂	< 5 %
5	tBuXPhos	DMF	MeNCy ₂	< 5 %
6	RuPhos	DMF	MeNCy ₂	< 5 %
7	Amphos	DMF	MeNCy ₂	95%
8	CataCXium A	DMF	MeNCy ₂	< 5 %
9	Amphos	toluene	MeNCy ₂	10%
10	Amphos	1,4-dioxane	MeNCy ₂	10%
11	Amphos	THF	MeNCy ₂	65%
12	Amphos	MeCN	MeNCy ₂	62%
13	Amphos	THF/DMF ^d	MeNCy ₂	64%
14	Pd(OAc) ₂ /Amphos	DMF	MeNCy ₂	< 5 %
15	PdCl ₂ Amphos ₂	DMF	MeNCy ₂	< 5 %
16	PdAmphosGIII	DMF	MeNCy ₂	< 5 %
17 ^e	PdAmphosGIII	DMF	MeNCy ₂	< 5 %
18	Amphos	DMF	Et ₃ N	10%
19	Amphos	DMF	K_2CO_3	< 5 %
20	Amphos	DMF	NaHCO ₃	< 5 %
21	Amphos	DMF	Cs ₂ CO ₃	< 5 %
22 ^a	Amphos	DMF	MeNCy ₂	55 %

^a The reaction was run at 60 °C

III. General Procedure for the β-arylation of Boc-protected lactams

To a 2-5mL microwave vial was added $Pd_2(dba)_3$ (23mg, 0.025mmol, 5mol%), amphos (14mg, 0.050 mmol, 10mol%) and the atmosphere was exchanged to N_2 (evacuate/backfill 3x). To the vial was added a solution of lactam (100mg, 0.507mmol) in DMF (1.3mL, 0.40M), Cy₂NMe (0.222mL, 2equiv.), the atmosphere was once again evacuated/backfilled with N2 (~25mmHg vacuum), and arylbromide (1.01 mmol, 2equiv.) and the vial was heated to 70 degrees C on an aluminum block. After stirring for 15 hours the mixture was cooled to room temperature, diluted with EtOAc, washed with sat.NH₄Cl, brine, dried over Na₂SO₄ and concentrated. Purification over silica gel provided the desired arylated products.

IV. Preparation of β-aryl lactams and analytical data

Following the general procedure, **6b** (130mg, 89%) was obtained as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.16 (m, 3H), 7.14 (d, *J* = 1.5 Hz, 1H), 5.94 (t, *J* = 1.4 Hz, 1H), 3.99 (dd, *J* = 6.8, 6.0 Hz, 2H), 2.68 (ddd, *J* = 7.5, 6.1, 1.4 Hz, 2H), 2.34 (s, 3H), 1.58 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.06, 156.50, 152.75, 138.90, 134.49, 130.92, 128.81, 127.35, 126.16, 124.30, 83.14, 43.98, 30.13, 28.23, 20.39. **FTIR** (neat) cm⁻¹ 2978, 1761, 1693, 1457, 1388, 1298, 1217, 1147, 755. **HRMS** (ESI) calc'd for C₁₇H₂₂NO₃ [288.1594; M+1] found m/z = 288.1583.

^{6c} Following the general procedure, **6c** (139mg, 94%) was obtained as a yellow oil. ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.45 (m, 2H), 7.09 (t, *J* = 8.6 Hz, 2H), 6.26 (t, *J* = 1.3 Hz, 1H), 3.97 (t, *J* = 6.4 Hz, 2H), 2.78 (td, *J* = 6.5, 1.3 Hz, 2H), 1.55 (s, 9H); ¹³**C** NMR (101 MHz, CDCl₃) δ 165.20, 164.23, 162.70, 152.60, 151.96, 132.90, 132.87, 128.05, 127.97, 120.49, 120.48, 116.19, 115.97, 83.13, 43.46, 28.20, 28.12, 27.11. **FTIR** (neat) cm⁻¹ 2979, 1757, 1689, 1599, 1510, 1302, 1218, 1147, 836. **HRMS** (ESI) calc'd for $C_{16}H_{19}NO_3$ [292.1343; M+1] found m/z = 292.1339.

^{6d} Following the general procedure **6d** (97mg, 62%) was obtained as a yellow oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.47 (td, *J* = 1.8, 0.6 Hz, 1H), 7.42 – 7.31 (m, 3H), 6.30 (t, *J* = 1.4 Hz, 1H), 3.98 (dd, *J* = 6.8, 6.0 Hz, 2H), 2.78 (ddd, *J* = 7.5, 6.1, 1.4 Hz, 2H), 1.56 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.00, 152.61, 151.68, 138.74, 135.16, 130.28, 130.19, 126.26, 124.18, 121.76, 83.31, 43.48, 28.24, 27.05. **FTIR** (neat) cm⁻¹ 2979, 1760, 1693, 1564, 1322, 1221, 1152, 786 ; **HRMS** (ESI) calc'd for C₁₆H₁₈ClNO₃Na [330.0867; M+Na] found m/z = 330.0873.

^{6e} ^{Following the general procedure, **6e** (147mg, 95%) was obtained as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (dd, *J* = 5.0, 1.9 Hz, 1H), 7.55 (dd, *J* = 7.4, 1.9 Hz, 1H), 6.93 (dd, *J* = 7.4, 5.0 Hz, 1H), 6.27 (t, *J* = 1.3 Hz, 1H), 3.97 (s, 3H), 3.94 (dd, *J* = 7.4, 5.0 Hz, 1H), 6.27 (t, *J* = 1.3 Hz, 1H), 3.97 (s, 3H), 3.94 (dd, *J* = 7.4, 5.0 Hz, 1H), 6.27 (t, *J* = 1.3 Hz, 1H), 3.97 (s, 3H), 3.94 (dd, *J* = 7.4, 5.0 Hz, 1H), 5.27 (t, *J* = 1.3 Hz, 1H), 5.97 (s, 3H), 3.94 (dd, *J* = 7.4, 5.0 Hz, 1H), 5.97 (t, *J* = 1.3 Hz, 1H), 5.97 (s, 3H), 3.94 (dd, *J* = 7.4, 5.0 Hz, 1H), 5.97 (t, *J* = 1.3 Hz, 1H), 5.97 (s, 3H), 3.94 (dd, *J* = 7.4, 5.0 Hz, 1H), 5.97 (t, *J* = 1.3 Hz, 1H), 5.97 (s, 3H), 5.97}

= 6.8, 6.0 Hz, 2H), 1.56 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.19, 160.94, 152.64, 151.85, 147.91, 137.13, 124.25, 121.48, 117.05, 83.10, 53.75, 43.91, 28.28, 28.25. FTIR (neat) cm⁻¹ 2979, 1758, 1688, 1574, 1462, 1403, 1297, 1148, 774 ; HRMS (ESI) calc'd for C₁₆H₂₀N₂O₄Na [327.1315; M+Na] found m/z = 327.1319.

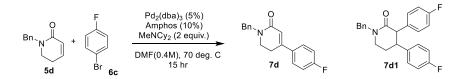
^{6f} Following the general procedure, **6f** (115mg, 79%) was obtained as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.54 (d, *J* = 4.9 Hz, 1H), 7.54 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.27 (m, 1H), 5.99 (t, *J* = 1.4 Hz, 1H), 4.02 (dd, *J* = 6.7, 6.0 Hz, 2H), 2.69 (td, *J* = 6.4, 1.4 Hz, 2H), 2.64 (s, 3H), 1.57 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.21, 154.07, 152.87, 152.51, 147.53, 137.02, 135.18, 126.02, 121.98, 83.63, 43.85, 29.70, 28.23, 22.50. **FTIR** (neat) cm⁻¹ 3151, 2979, 1760, 1712, 1321, 1300, 1152, 1092. **HRMS** (ESI) calc'd for C₁₆H₂₁N₂O₃ [289.1552; M+1] found m/z = 289.1553.

^{6g} Following the general procedure, **6g** (144mg, 88%) was obtained as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.78 (m, 3H), 7.59 – 7.42 (m, 3H), 7.34 (dd, *J* = 7.1, 1.2 Hz, 1H), 6.15 (t, *J* = 1.4 Hz, 1H), 4.10 (t, *J* = 6.4 Hz, 2H), 2.94 – 2.70 (m, 2H), 1.60 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.05, 155.46, 152.85, 137.17, 133.91, 130.04, 129.42, 128.85, 126.89, 126.43, 125.40, 125.33, 124.99, 124.88, 83.27, 44.14, 30.92, 28.29. **FTIR** (neat) cm⁻¹ 2978, 1760, 1694, 1298, 1219, 1149, 802, 776. **HRMS** (ESI) calc'd for C₂₀H₂₁NO₃Na [346.1414; M+Na] found m/z = 346.1413.

^{6h} \checkmark Following the general procedure, **6h** (145mg, 91%) was obtained as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 2.0 Hz, 1H), 7.66 (d, *J* = 2.1 Hz, 1H), 7.56 – 7.45 (m, 2H), 6.80 (dd, *J* = 2.2, 1.0 Hz, 1H), 6.34 (t, *J* = 1.2 Hz, 1H), 4.01 (td, *J* = 6.5, 1.8 Hz, 2H), 2.93 – 2.84 (m, 2H), 1.61 – 1.55 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.52, 156.03, 153.64, 152.81, 146.34, 131.95, 128.13, 122.63, 120.21, 119.30, 112.00, 106.98, 83.10, 43.64, 28.29, 27.62. **FTIR** (neat) cm⁻¹ 2979, 1758, 1688, 1470, 1316, 1152, 872. **HRMS** (ESI) calc'd for C₁₈H₂₀NO₄ [314.1387; M+1] found m/z = 314.1388. Boc.

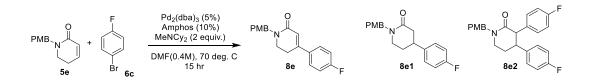
^{6j} \checkmark Following the general procedure, **6j** (72mg, 51%) was obtained as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (dd, *J* = 2.9, 1.4 Hz, 1H), 7.38 (dd, *J* = 5.1, 2.9 Hz, 1H), 7.33 (dd, *J* = 5.1, 1.4 Hz, 1H), 6.27 (t, *J* = 1.3 Hz, 1H), 3.97 (dd, *J* = 6.9, 6.1 Hz, 2H), 2.80 (ddd, *J* = 7.3, 6.1, 1.3 Hz, 2H), 1.56 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.88, 152.67, 147.47, 139.06, 127.25, 125.28, 125.09, 119.31, 83.11, 43.43, 28.26, 27.15. **FTIR** (neat) cm⁻¹ 3099, 2978, 1755, 1709, 1687, 1318, 1151. **HRMS** (ESI) calc'd for C₁₄H₁₈NO₃S [280.1007; M+1] found m/z = 280.1007.

^N [`] [`] [`] [`] Following the general procedure, **6I** (147mg, 89%) was obtained as a yellow oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.54 (d, *J* = 2.2 Hz, 1H), 8.05 (d, *J* = 2.2 Hz, 1H), 7.24 (d, *J* = 3.5 Hz, 1H), 6.51 (d, *J* = 3.5 Hz, 1H), 6.38 (t, *J* = 1.3 Hz, 1H), 4.03 (t, *J* = 6.4 Hz, 2H), 3.92 (s, 3H), 2.90 (td, *J* = 6.5, 1.3 Hz, 2H), 1.57 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.36, 152.75, 152.10, 140.79, 130.94, 126.82, 124.76, 120.72, 119.72, 100.60, 83.13, 43.54, 31.79, 28.28, 27.38. **FTIR** (neat) cm⁻¹ 2978, 1756, 1709, 1687, 1599, 1389, 1324, 1221, 1152, 725. **HRMS** (ESI) calc'd for C₁₈H₂₁N₃O₃Na [350.1475; M+Na] found m/z = 350.1468.


Boc

⁶⁷ ^N Following the general procedure, **6**m (30mg, 21%) was obtained as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (s, 1H), 7.57 (s, 1H), 6.10 (d, *J* = 1.3 Hz, 1H), 3.92 (m, 5H), 2.71 – 2.58 (m, 2H), 1.54 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.80, 152.68, 145.88, 137.72, 128.81, 120.24, 116.56, 82.93, 43.26, 39.46, 28.22, 27.23. HRMS (ESI) calc'd for C₁₄H₂₀N₃O₃ [278.1499;M+1] found m/z = 278.1501.

^{6p} Norme Following the general procedure, **6p** (123mg, 80%) was obtained as a yellow oil. ¹H NMR (400 MHz, Chloroformd) δ 8.33 (dd, J = 2.6, 0.7 Hz, 1H), 7.72 (dd, J = 8.8, 2.6 Hz, 1H), 6.77 (dd, J = 8.8, 0.7 Hz, 1H), 6.25 (t, J = 1.3 Hz, 1H), 4.00 – 3.95 (m, 2H), 3.95 (s, 3H), 2.78 (ddd, J = 7.4, 6.1, 1.3 Hz, 2H), 1.54 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.41, 164.16, 152.54, 150.11, 145.14, 136.02, 125.49, 119.49, 111.45, 83.12, 53.93, 43.35, 28.20, 26.58. **FTIR** (neat) cm⁻¹ 2979, 1758, 1688, 1597, 1497, 1384, 1294, 1218, 1150, 1025, 832. **HRMS** (ESI) calc'd for C₁₇H₂₀N₂O₄ [305.1496; M+1] found m/z = 305.1497.

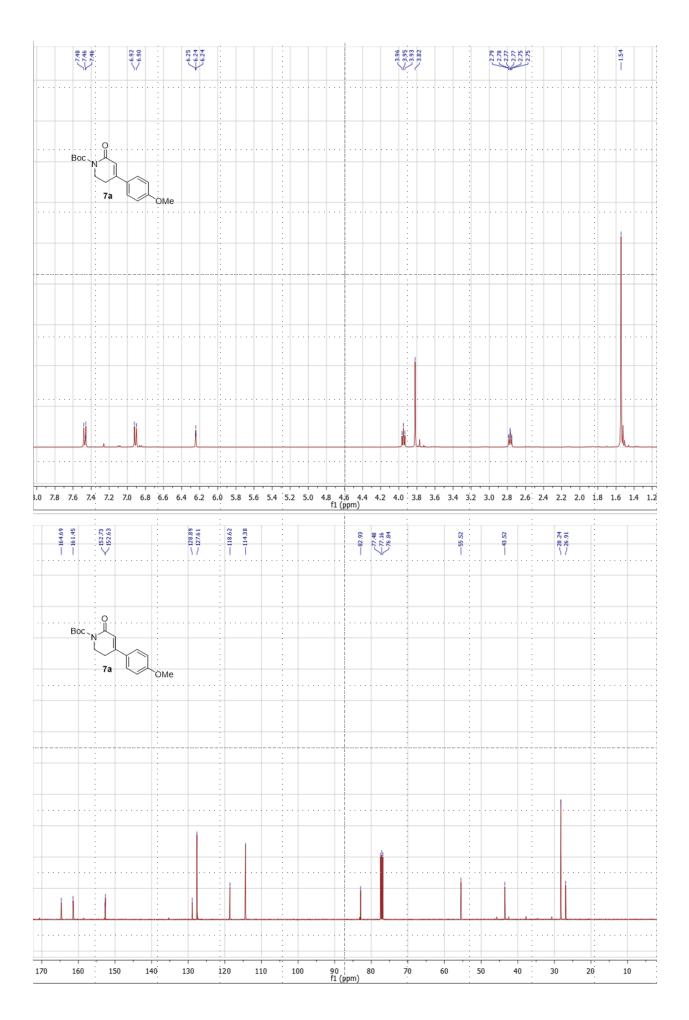

^{8b} \checkmark F To a vial was added Pd₂(dba)₃ (12.5mg, 0.0137mmol, 5mol%), amphos (7.25mg, 0.027 mmol, 10mol%) and the atmosphere was exchanged to N₂ (evacuate/backfill 3x). To the vial was added a solution of lactam (55mg, 0.27mmol) in DMF (0.7mL, 0.40M), Cy₂NMe (0.12mL, 2equiv.), the atmosphere was once again evacuated/backfilled with N₂ (~25mmHg vacuum), and arylbromide (0.060mL, 0.547 mmol, 2equiv.) and the vial was heated to 70 degrees C on an aluminum block. After stirring for 15 hours the mixture was cooled to room temperature, diluted with EtOAc, washed with sat.NH₄Cl, brine, dried over Na₂SO₄ and concentrated. Purification over silica gel provided **8b** (69mg, 86%) as an off white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.53 (m, 4H), 7.52 – 7.45 (m, 1H), 7.44 – 7.34 (m, 2H), 7.18 – 7.11 (m, 2H), 6.29 (d, *J* = 1.4 Hz, 1H), 4.12 (t, *J* = 6.4 Hz, 2H), 2.97 (td, *J* = 6.4, 1.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.80, 165.85, 165.44, 162.93, 153.87, 136.13, 132.74, 132.70, 131.73, 128.42, 128.24, 128.15, 128.13, 119.34, 119.33, 116.33, 116.32, 116.11, 43.26, 27.27. FTIR (neat) cm⁻¹ 2888, 1666, 1597, 1509, 1296, 1216, 1159, 1020, 832, 727. HRMS (ESI) calc'd for C₁₈H₁₅FNO₂ [296.1081; M+1] found m/z = 296.1081.

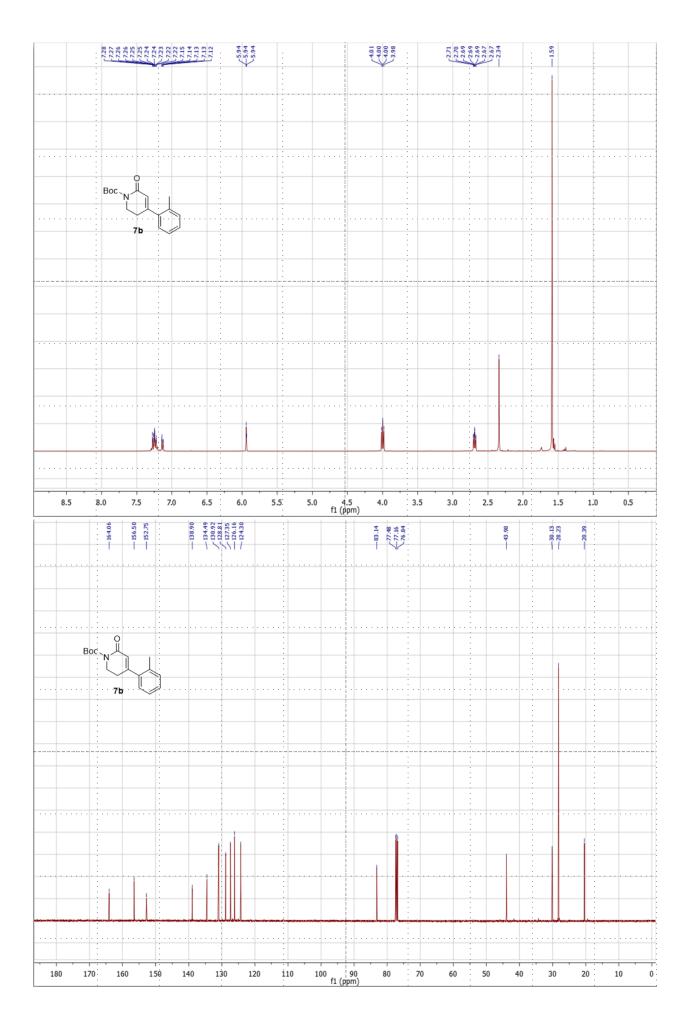
^{8c} \checkmark F To a vial was added Pd₂(dba)₃ (11.4mg, 0.0125mmol, 5mol%), amphos (6.6mg, 0.025 mmol, 10mol%) and the atmosphere was exchanged to N₂ (evacuate/backfill 3x). To the vial was added a solution of lactam (63mg, 0.25mmol) in DMF (0.6mL, 0.40M), Cy₂NMe (0.110mL, 2equiv.), the atmosphere was once again evacuated/backfilled with N₂ (~25mmHg vacuum), and arylbromide (0.055mL, 0.50 mmol, 2equiv.) and the vial was heated to 70 degrees C on an aluminum block. After stirring for 15 hours the mixture was cooled to room temperature, diluted with EtOAc, washed with sat.NH₄Cl, brine, dried over Na₂SO₄ and concentrated. Purification over silica gel provided **8c** (68mg, 79%) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 8.4 Hz, 1H), 7.47 (dd, *J* = 8.9, 5.2 Hz, 1H), 7.38 – 7.28 (m, 1H), 7.10 (dd, *J* = 9.0, 8.3 Hz, 1H), 6.19 – 6.06 (m, 1H), 4.18 (dd, *J* = 6.8, 6.2 Hz, 2H), 2.93 (td, *J* = 6.5, 1.3 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.45, 163.60, 162.94, 153.29, 144.95, 136.01, 132.58, 132.55, 129.56, 129.54, 128.72, 128.20, 128.11, 119.21, 119.19, 116.38, 116.16, 77.48, 44.00, 27.86, 21.82. FTIR (neat) cm⁻¹ 3147, 3050, 1678, 1598, 1510, 1352, 1226, 1166, 894, 690. HRMS (ESI) calc'd for C₁₈H₁₇FNO₃S [346.0908; M+1] found m/z = 346.0904.

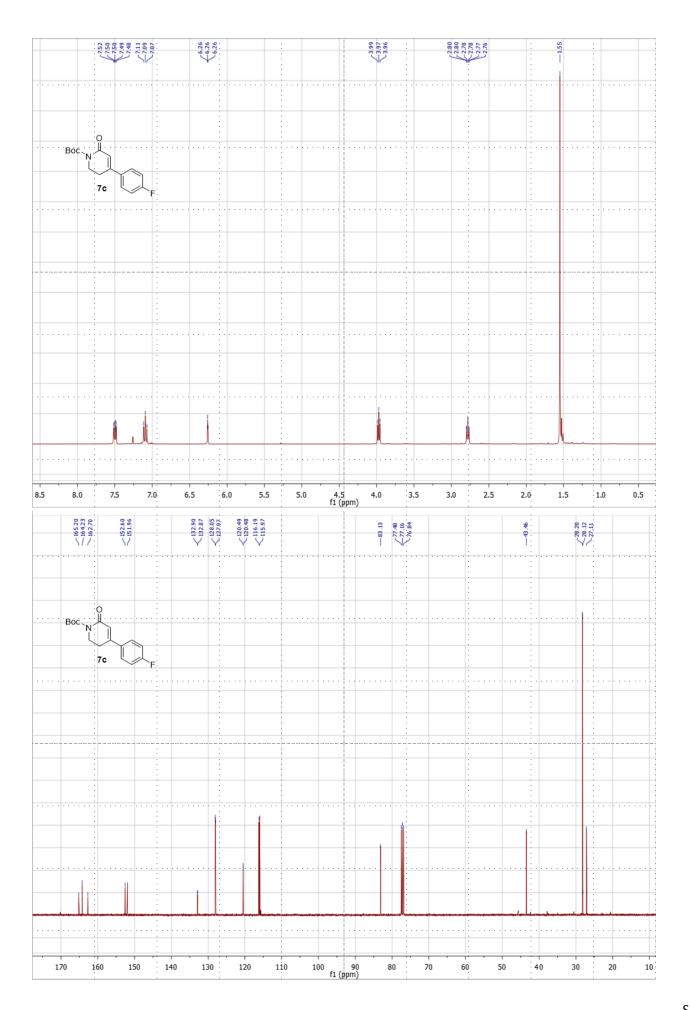
To a microwave vial was added $Pd_2(dba)_3$ (11.2mg, 0.0123 mmol, 5mol%), amphos (6.5mg, 0.025 mmol, 10mol%) and the atmosphere was exchanged to N_2 (evacuate/backfill 3x). To the vial was added a solution of lactam (46mg, 0.25mmol) in

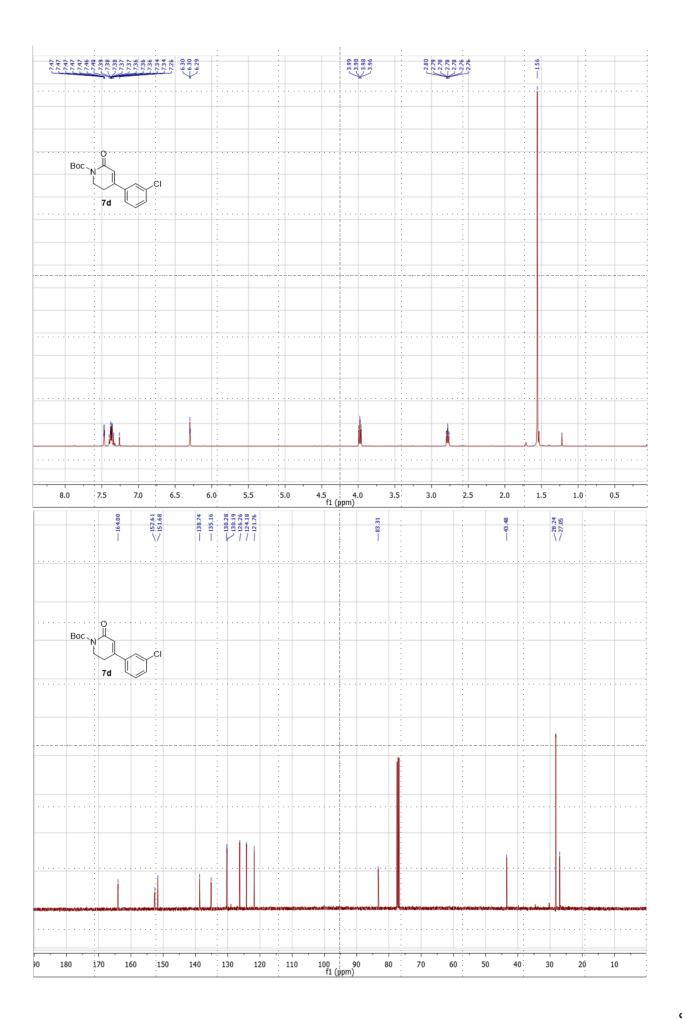
DMF (0.6mL, 0.40M), Cy₂NMe (0.108mL, 0.49 mmol, 2equiv.), the atmosphere was once again evacuated/backfilled with N2 (~25mmHg vacuum), and arylbromide (0.055mL, 0.49mmol, 2equiv.) and the vial was heated to 70 degrees C on an aluminum block. After stirring for 15 hours the mixture was cooled to room temperature, diluted with EtOAc, washed with sat.NH₄Cl, brine, dried over Na₂SO₄ and concentrated. Silica gel chromatography provided an inseperable mixture of **7d** and **7d1(7d / 7d1** = 1.5/1; 43mg): ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.33 (m, 2H), 7.32 – 7.18 (m, 6H), 7.05 – 6.93 (m, 2H), 6.81 (dddd, *J* = 12.5, 8.8, 7.5, 4.7 Hz, 5H), 6.25 (d, *J* = 1.4 Hz, 1H), 4.66 (d, *J* = 14.3 Hz, 1H), 4.60 (s, 2H), 4.56 (d, *J* = 14.4 Hz, 1H), 3.59 (d, *J* = 10.4 Hz, 1H), 3.49 – 3.32 (m, 3H), 3.28 (ddd, *J* = 12.4, 4.9, 3.6 Hz, 1H), 3.03 (td, *J* = 10.4, 4.3 Hz, 1H), 2.63 (td, *J* = 7.1, 1.3 Hz, 2H), 2.09 – 1.96 (m, 1H). LCMS (ES+) **7d1**: 0.99 min calc'd for C₂₄H₂₂F₂NO [378.16; M+1] found m/z = 378.7. **7d**: 0.90 min, calc'd for C₁₈F₁₇FNO [282.12; M+1] found m/z = 282.7.

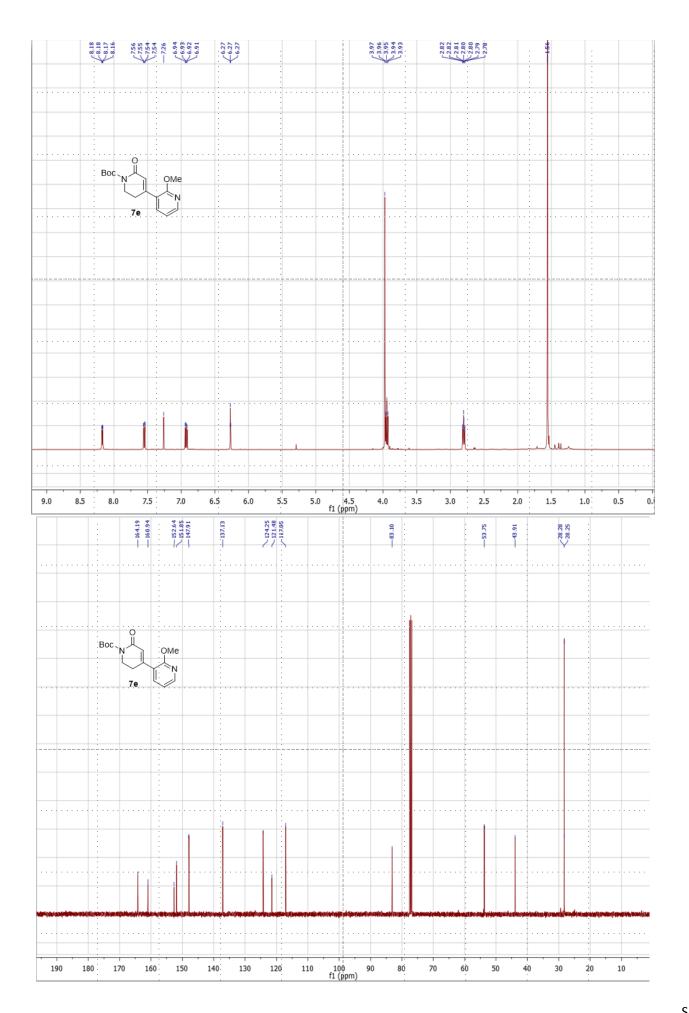
To a microwave vial was added $Pd_2(dba)_3$ (10.5mg, 0.0115mmol, 5mol%), amphos (6.1mg, 0.023 mmol, 10mol%) and the atmosphere was exchanged to N_2 (evacuate/backfill 3x). To the vial was added a solution of lactam (50mg, 0.23mmol) in DMF (0.58mL, 0.40M), Cy_2NMe (0.101mL, 0.46 mmol, 2equiv.), the atmosphere was once again evacuated/backfilled with N2 (~25mmHg vacuum), and arylbromide (0.051mL, 0.46mmol, 2equiv.) and the vial was heated to 70 degrees C on an aluminum block. After stirring for 15 hours the mixture was cooled to room temperature, diluted with EtOAc, washed with sat.NH₄Cl, brine, dried over Na_2SO_4 and concentrated. Purification over silica gel provided the arylated products. Bis-arylated **8e2** (24mg, 26%) was obtained as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.27 (m, 2H), 6.90 (dt, *J* = 8.4, 2.9 Hz, 10H), 4.72 – 4.54 (m, 2H), 3.83 (s, 3H), 3.66 (d, *J* = 10.3 Hz, 1H), 3.54 – 3.43 (m, 1H), 3.36 (dt, *J* = 12.3, 4.3 Hz, 1H), 3.10 (td, *J* = 10.0, 5.4 Hz, 1H), 2.14 – 2.03 (m, 2H). **LCMS** 0.98 min (ES+) calc'd [407.17; M+1] observed [m/z 408.3]. β -arylated **8e** and reduced product **8e1** were obtained as an inseperable mixture (**8d** / **8d1** = 1 /2; 24mg, 34%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.43 (m, 2H), 7.25 – 7.18 (m, 4H), 7.17 – 7.11 (m, 3H), 7.08 (t, *J* = 8.6 Hz, 2H), 7.04 – 6.96 (m, 3H), 6.87 (dd, *J* = 8.8, 2.6 Hz, 5H), 6.31 (d, *J* = 1.3 Hz, 1H), 4.66 (d, *J* = 11.1, 5.2, 3.2 Hz, 2H), 2.78 (ddd, *J* = 17.4, 5.3, 2.1 Hz, 2H), 2.70 (td, *J* = 7.1, 1.3 Hz, 2H), 2.52 (dd, *J* = 17.4, 11.0 Hz, 2H), 2.11 – 1.98 (m, 1H), 1.96 – 1.80 (m, 2H). **LCMS** (ES+) 0.88min calc'd for C₁₉H₁₉FNO₂ [312.13; 2M+] observed m/z = 312.2. 0.93 min calc'd for C₁₉H₂₁FNO₂ [314.15; M+1] found m/z = 314.2.

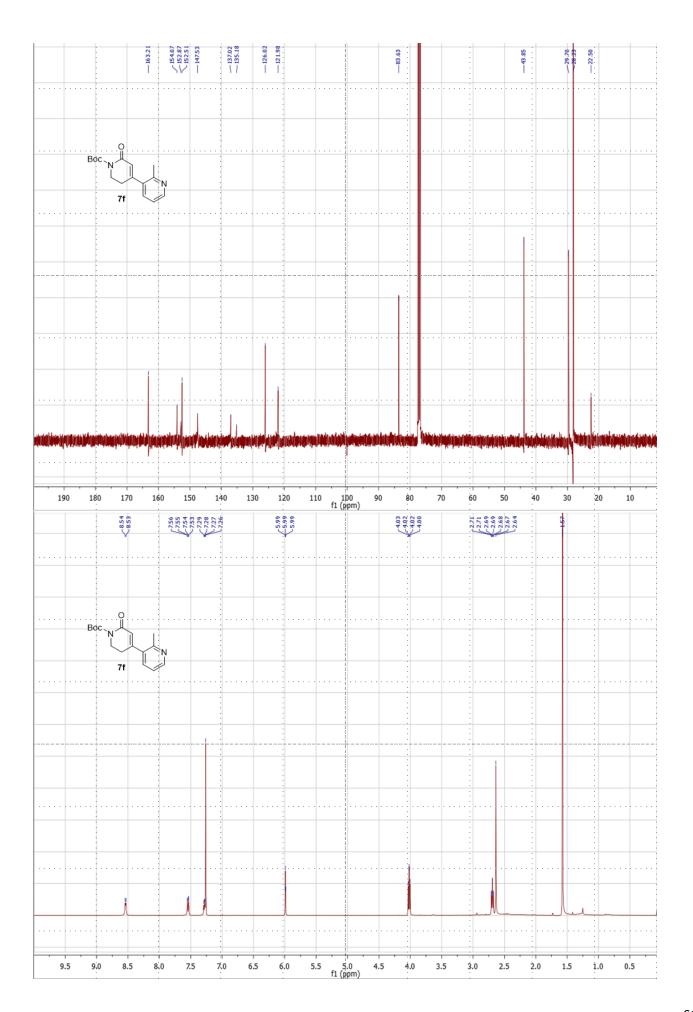

To a vial was added $Pd_2(dba)_3$ (50mg, 0.055mmol, 10 mol%), lactam (100mg, 0.55mmol), and the atmosphere was exchanged to N_2 (evacuate/backfill 3x). To the sealed vial was added $P(tBu)_3$ (0.110 mL, 1M in toluene, 0.11 mmol, 20 mol%), DMF (2.2 mL, 0.40M), Cy_2NMe (0.24 mL, 2equiv.), arylbromide (0.074mL, 0.63 mmol, 2equiv.) and the vial was heated to 70 degrees C on an aluminum block. After stirring for 15 hours the mixture was cooled to room temperature, diluted with EtOAc, washed with sat.NH₄Cl, brine, dried over Na_2SO_4 and concentrated. Purification over silica gel provided **9a** (116mg, 73%) as a yellow oil. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.12 (dd, J = 5.0, 1.7 Hz, 1H), 7.30 (dd, J = 7.5, 1.7 Hz, 1H), 7.13 (dd, J = 6.0, 2.1 Hz, 1H), 6.87 (dd, J = 7.4, 5.0 Hz, 1H), 6.14 (dd, J = 6.0, 1.7 Hz, 1H), 5.93 (t, J = 1.9 Hz, 1H), 4.00 (s, 3H), 1.29 (s, 9H). ¹³C NMR (151 MHz, cdcl₃) δ 169.95, 160.89, 149.31, 148.69, 146.61, 134.35, 125.77, 118.89, 117.19, 83.12, 60.32, 53.81, 27.90. **FTIR** (neat) cm⁻¹ 2979, 2902, 1778, 1741, 1717, 1466, 1334, 1157. **HRMS** (ESI) calc'd for $C_{15}H_{19}N_2O_4$ [291.1345; M+1] found m/z = 291.1346.

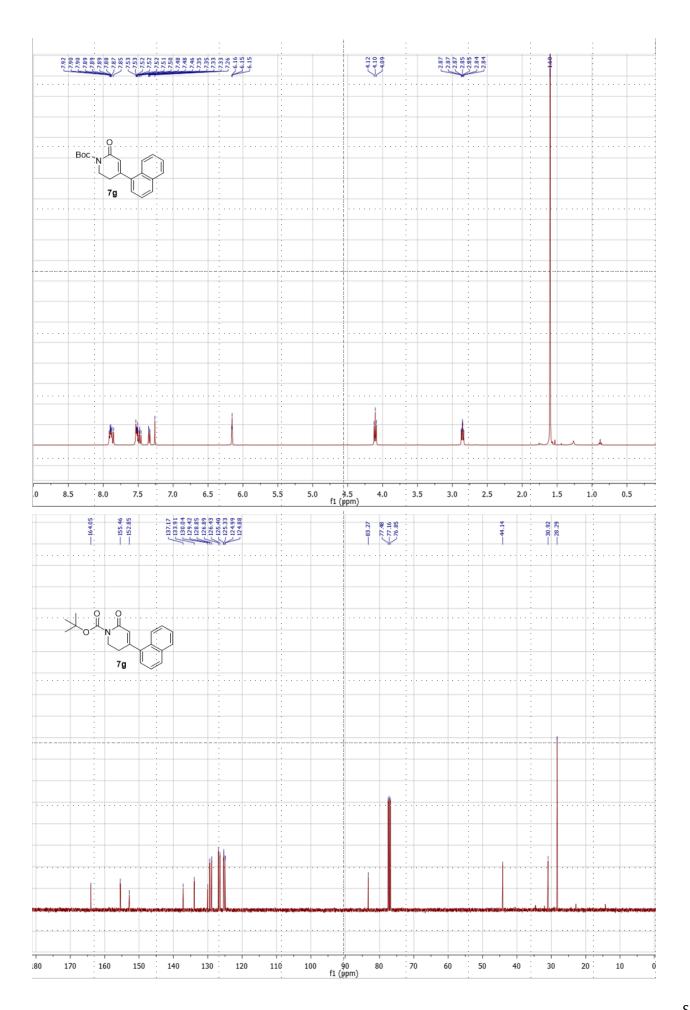


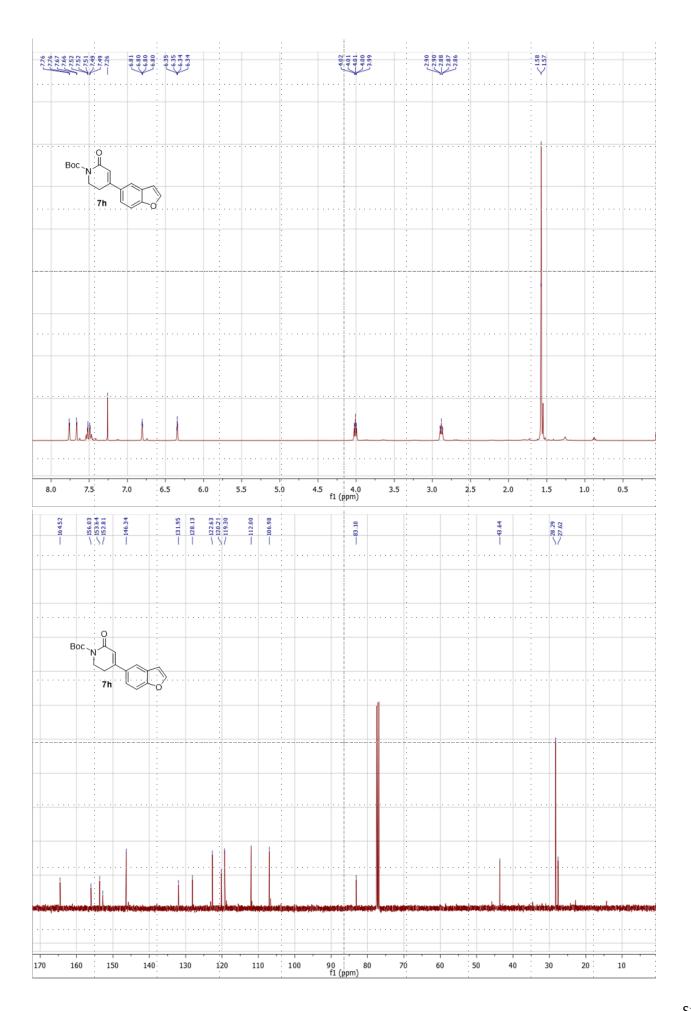

To a microwave vial containing lactam (106mg, 0.502mmol) and Pd₂(dba)₃ (46mg, 10 mol%) under N₂ was added DMF (2mL) and PtBu₃ (1M in toluene, 0.10 mL, 20mol%), followed by addition of pyridyl bromide (0.120 mL, 1.01mmol) and Cy₂NMe (0.220 mL, 1.01mmol) and the vial was heated to 70 degrees C in an aluminum block. After stirring for 15 hours the mixture was cooled to room temperature, diluted with EtOAc, washed with sat.NH₄Cl, brine, dried over Na₂SO₄ and concentrated. Purification over silica gel provided **11** (46mg, 30%) as a yellow oil. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 8.14 (dd, *J* = 4.8, 2.0 Hz, 1H), 7.50 (dd, *J* = 6.8, 2.0 Hz, 1H), 6.90 (dd, *J* = 7.6, 5.2 Hz, 1H), 6.07 (s, 1H), 3.97 (s, 3H), 3.88 (t, *J* = 6.0 Hz, 2H), 2.62 (t, *J* = 8.0Hz, 2H), 2.12 (m, 2H),

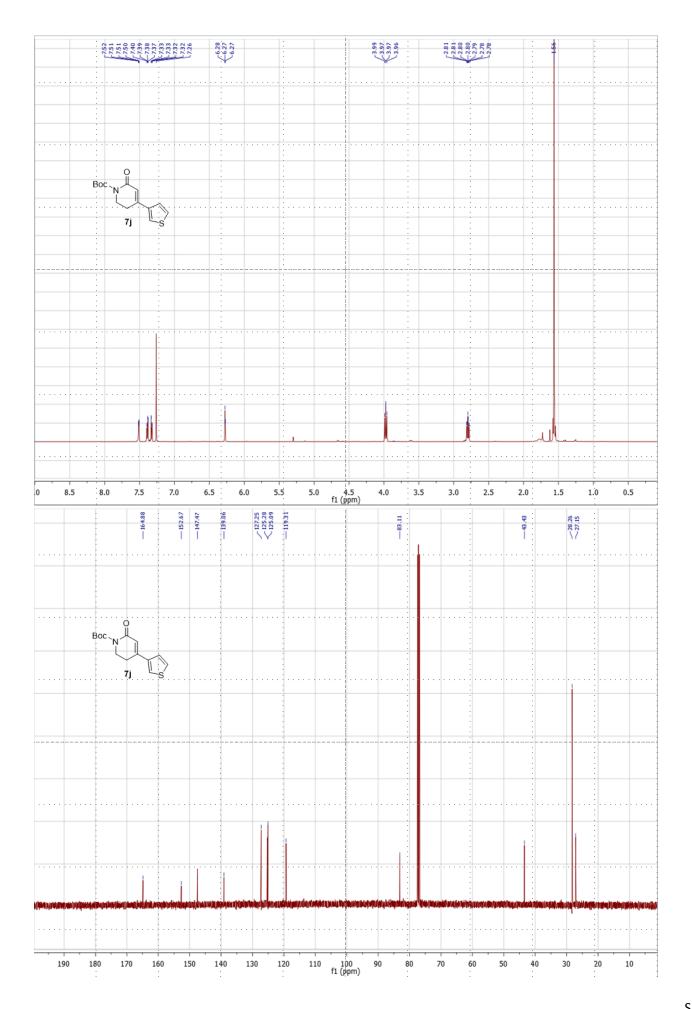

1.55 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 160.5, 152.1, 149.2, 147.0, 137.3, 126.7, 125.4, 117.0, 82.8, 53.6, 43.8, 28.6, 28.1, 26.9. HRMS (ESI) calc'd for C₁₇H₂₂N₂O₄Na [341.1472; M+Na] found m/z = 341.1470.

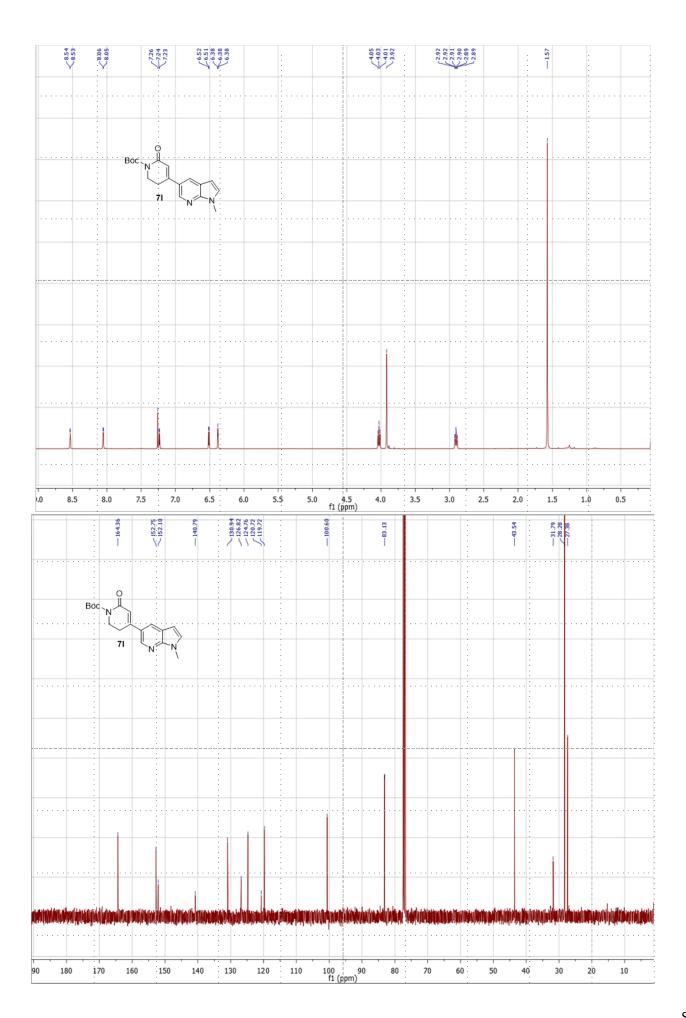

IV. Spectra

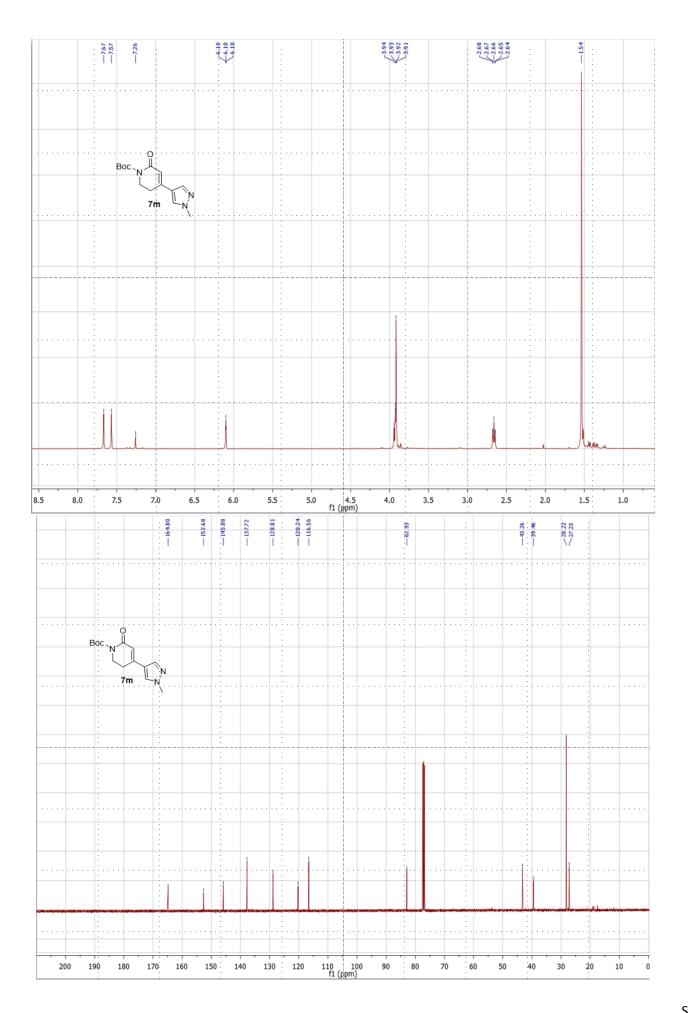


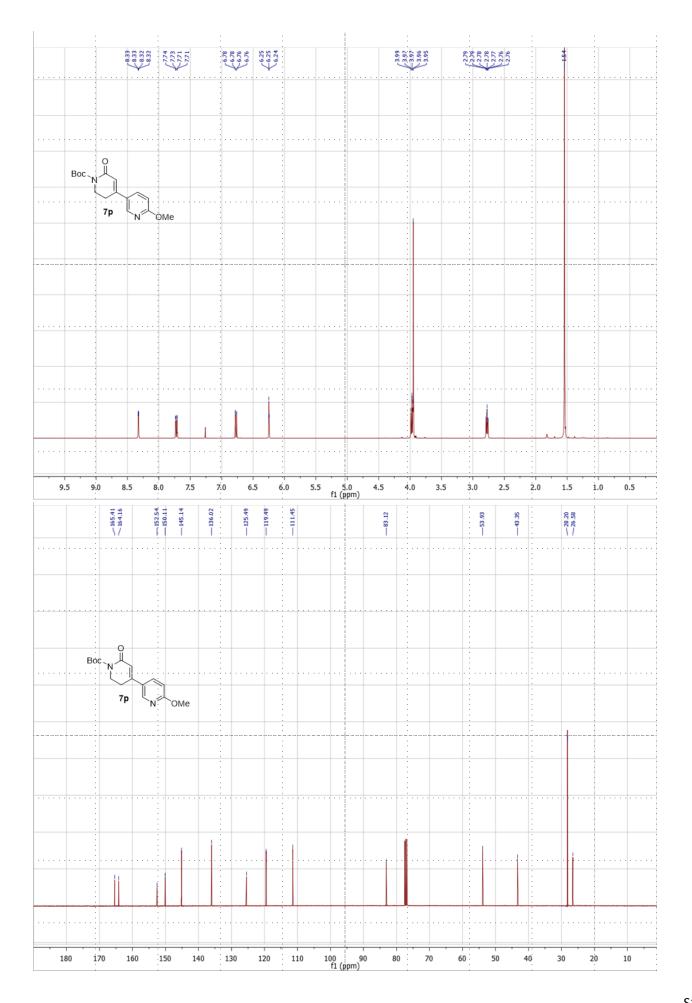


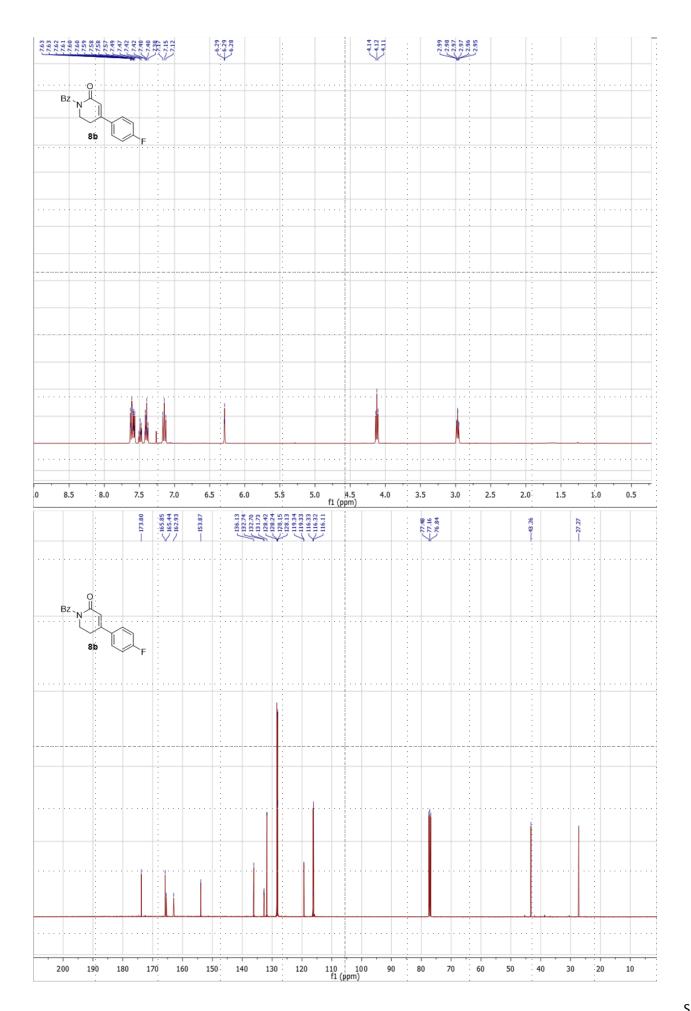


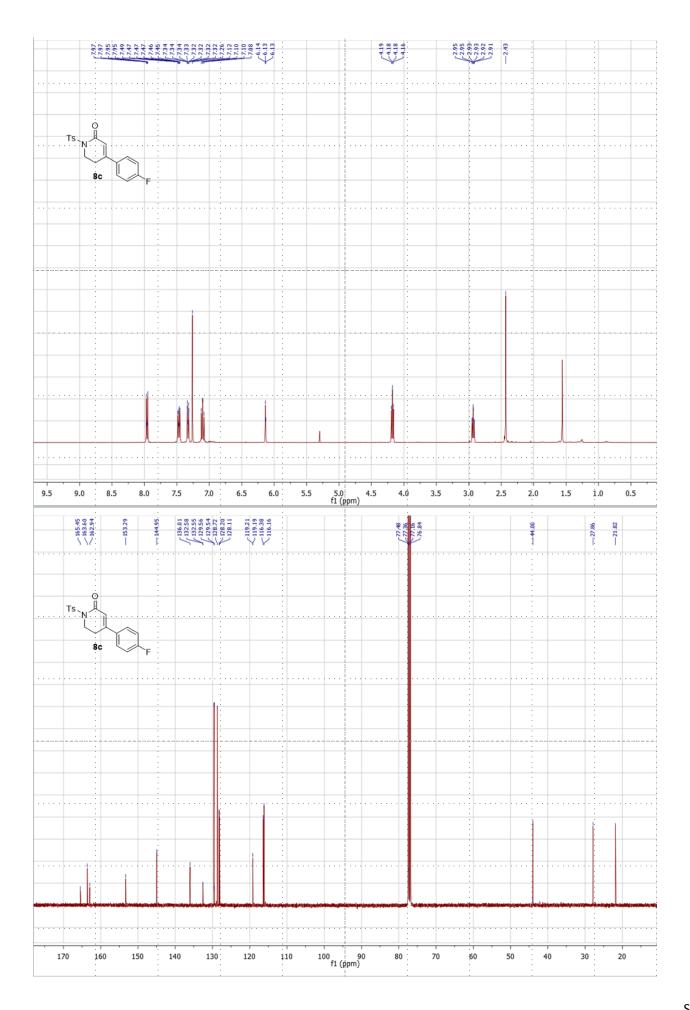


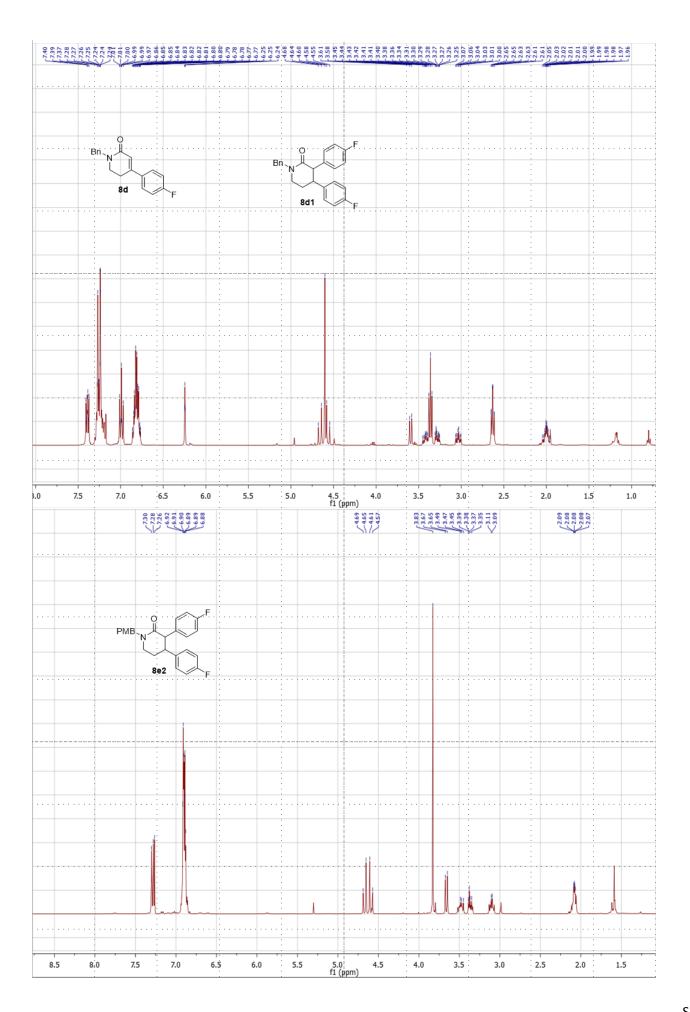


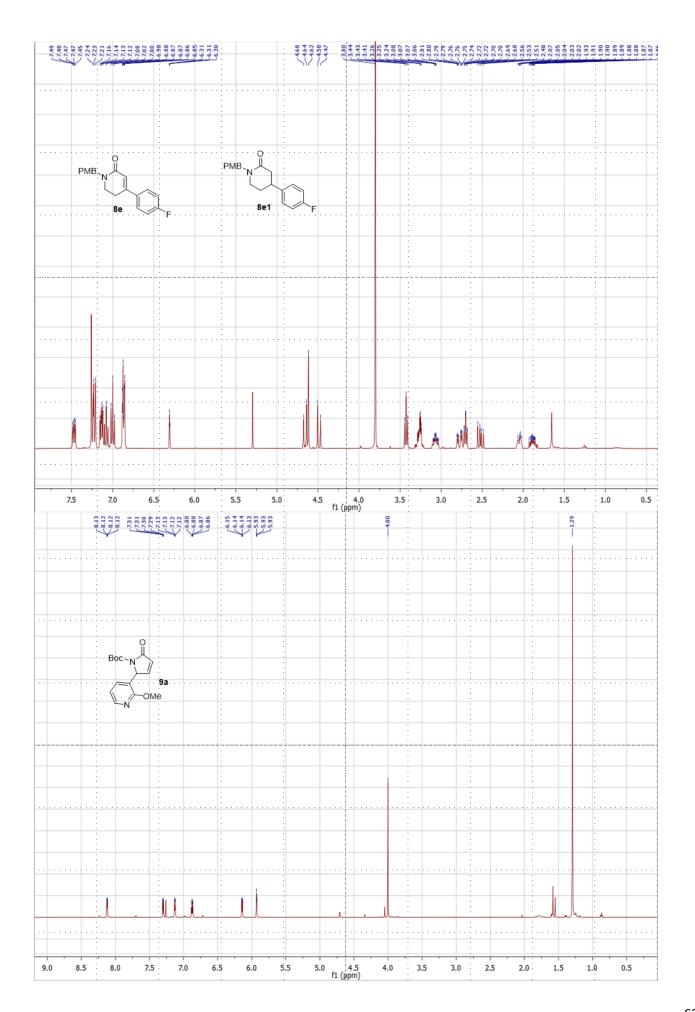


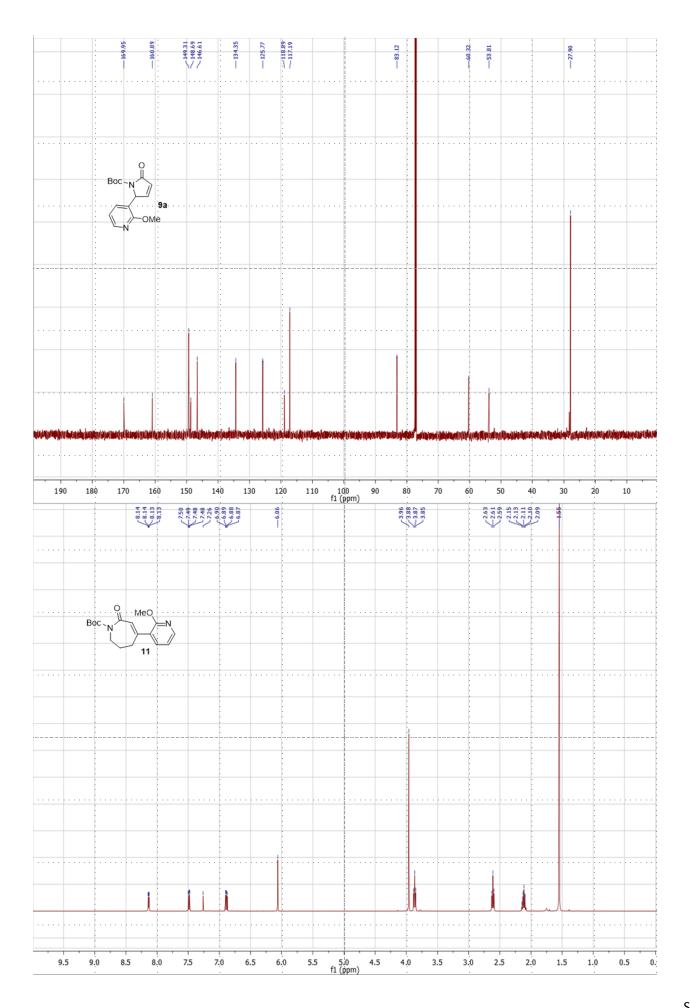


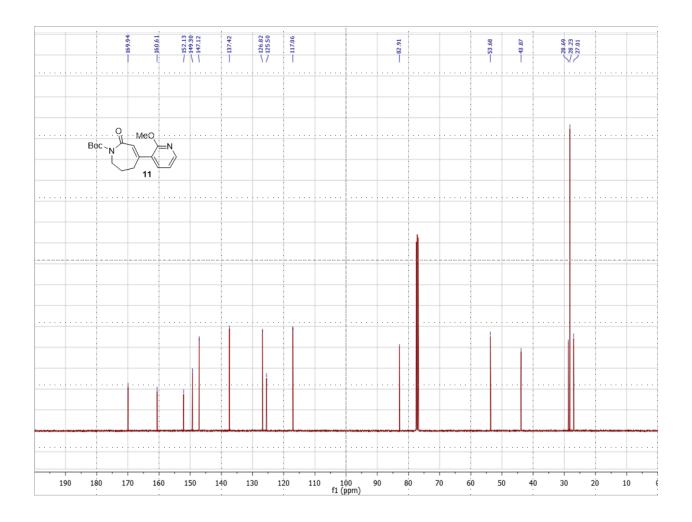












VI. References

- 1. Matsuo, J.-i.; Aizawa, Y. *Tetrahedron Lett.* **2005,** *46* (3), 407-410.
- 2. Pineschi, M.; Del Moro, F.; Gini, F.; Minnaard, A. J.; Feringa, B. L. *Chem. Commun.* **2004**, (10), 1244-1245.
- 3. Dake, G. R.; Fenster, M. D. B.; Hurley, P. B.; Patrick, B. O. J. Org. Chem. 2004, 69 (17), 5668-5675.
- 4. Davis, D. A.; Gribble, G. W. *Tetrahedron Lett.* **1990**, *31* (8), 1081-1084.
- 5. Le Vézouët, R.; White, A. J. P.; Burrows, J. N.; Barrett, A. G. M. *Tetrahedron* **2006**, *62* (52), 12252-12263.
- 6. Álvarez, S.; Domínguez, G.; Gradillas, A.; Pérez-Castells, J. *Eur. J. Org. Chem.* **2013**, *2013* (15), 3094-3102.