Supporting Information

A metal-catalyzed enyne-cyclization step for the synthesis of biand tricyclic scaffolds amenable to molecular library production

Peng Wu,^{†a} Michael Åxman Petersen,^{†a} A. Emil Cohrt,^{†a} Rico Petersen,^a

Rémy Morgentin,^b Hugues Lemoine,^b Carine Roche,^b Anthony Willaume,^b

Mads H. Clausen^{*a,c} and Thomas E. Nielsen^{*a,d}

^a Department of Chemistry, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark

^b EDELRIS, 115 Avenue Lacassagne, 69003 Lyon, France

^c Center for Nanomedicine and Theranostics, Technical University of Denmark,

DK-2800, Kgs. Lyngby, Denmark

^d Singapore Centre on Environmental Life Science Engineering,

Nanyang Technological University, 637551, Singapore

+ Authors contributed equally

mhc@kemi.dtu.dk; ten@kemi.dtu.dk

List of Contents

1.	Table of Contents	S2
2.	General Methods	S 3
3.	Experimental Procedures and Characterization Data	S4
4.	Characterization Spectra	S19

General Methods

Unless otherwise noticed, all reactions were run under an argon atmosphere. All solvents were of HPLC quality, and were typically dried over molecular sieves.

All reactions were monitored by thin layer chromatography (TLC), reversed-phase high performance liquid chromatography (RP-HPLC), and reversed-phase ultra-performance liquid chromatography mass spectrometry (RP-HPLC/MS). All yields are unoptimized and generally represent the result of a single experiment.

TLC was conducted using Merck aluminum sheets covered with silica gel C-60 F_{254} . The plates were either visualized under UV-light (254 nm) or stained by dipping in a developing agent followed by heating. KMnO₄ dipping solution were used as the developing agents: KMnO₄ (1.5 g), K₂CO₃ (10 g), 5% NaOH aqueous solution (2.5 mL), H₂O (150 mL).

Column chromatography was performed using a glass column packed with Geduran® Si 60 silica gel (40-63 µm particles). A mixture of heptane and ethyl acetate was used as the liquid phase.

LC/MS analysis was performed on a Waters AQUITY UPLC system equipped with a C-18 column ($d \ 1.7 \ \mu m, \ 2.1 \times 50 \ mm$, column temp: 65 °C), a PDA and SQD MS detector. A linear reversed phase gradient (5% to 100% organic in 2.4 min, hold for 0.1 min, total run-time 2.6 min) combining water and acetonitrile (buffered with 0.1% formic acid) was used.

RP-HPLC was conducted on a Waters Alliance 2695 RP-HPLC system using a Symmetry C-18 column ($d 2.5 \mu m$, $4.6 \times 75 mm$, column temp: 25 °C), with detection at 215 nm and 254 nm. 0.1% TFA in H₂O (A) and 0.1% TFA in acetonitrile (B) were used (100% A to 100% B, total run-time 13 min) as the elusion phase.

¹H NMR and ¹³C NMR were recorded using a Bruker Ascend-400 MHz instrument in DMSO- d_6 or CDCl₃ using the residual solvent peak as the internal standard. All 13C NMR spectra were proton decoupled. The chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (*J*) in Hz. Multiplicities of peaks in ¹H NMR are given as: s (singlet), brs (broad singlet), d (doublet), t (triplet), dd (double doublet), ddd (double doublet) and m (multiplet).

Melting points were measure using a Stuart® SMP 30 capillary melting point apparatus.

Experimental Procedures and Characterization Data

(Z)-3-Bromocyclooctene (3)

Cyclooctene (5.90 ml, 45.4 mmol), NBS (8.08 g, 45.37 mmol), and AIBN (75 mg, 0.45 mmol) were added to CCl₄ (45 mL) under argon atmosphere and heated to 80°C for 4 h. The solution was cooled to 25°C and the solvent was removed under reduced pressure. The product was distilled at 80°C (3 Torr) to give the title product (**3**) as colorless oil (5.33 g, 62%).^{Lit} ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.75 (ddd, 1H, *J* = 10.5, 8.3, 1.3 Hz, CH=CH), 5.67 – 5.52 (m, 1H, CH=CH), 5.20 – 5.10 (m, 1H, CHBr), 2.33 – 1.98 (m, 3H; CH₂*CH*=*CHCHB*rCH₂), 1.97 – 1.87 (m, 1H, *CH*₂*CH*=*CHCHB*rCH₂), 1.68 – 1.38 (m, 5H, cyclooctene CH₂), 1.31 – 1.20 ppm (m, 1H, cyclooctene CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 132.9, 130.0, 50.3, 40.5, 28.6, 26.1, 25.3, 24.9.

Lit C. W. Bond, A. J. Cresswell, S. G. Davies, A. M. Fletcher, W. Kurosawa, J. A. Lee, P. M. Roberts, A. J. Russell, A. D. Smith and J. E. Thomson, J. Org. Chem., 2009, 74, 6735.

(Z)-N-(Cyclooct-1-en-3-yl)-2-nitrobenzenesulfonamide (4)

(*Z*)-3-Bromocyclooctene (**3**) (5.33 g, 28.2 mmol) was dissolved in dry DMF (110 mL). K₂CO₃ (4.80 g, 39.5 mmol) and 2-nitrobenzenesulfonamide (6.84 g, 33.8 mmol) were added to the solution and stirred for 1h at 60°C. The reaction mixture was cooled to 21°C and diluted with EtOAc (200 mL). The product was washed with sat. aq. NH₄Cl (2×200 mL) and 1M HCl (aq.) (2×150 mL). The organic phase was dried over Na₂SO₄ and concentrated *in vacuo*. The product was purified by flash chromatography (1:4, EtOAc/heptane) to give the product as a pale yellow powder (4.23 g, 49%), mp 82°C – 83°C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.24 (s, 1H, NH), 8.00 (dd, 1H, *J* = 5.9, 3.4 Hz, phenyl H), 7.92 (dd, 1H, *J* = 5.7, 3.2 Hz, phenyl H), 7.88 – 7.80 (m, 2H, phenyl H), 5.52 – 5.43 (m, 1H, CH=CH), 5.31 – 5.18 (m, 1H, CH=CH), 4.21 – 4.11 (m, 1H, *NH*CH), 2.08 – 1.87 (m, 2H, cyclooctene CH₂), 1.69 – 1.36 (m, 5H, cyclooctene CH₂), 1.36 – 1.11 (m, 3H, cyclooctene CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 147.6, 134.0, 133.3, 132.3, 130.9, 129.8, 129.2, 124.0, 51.0, 36.5, 28.7, 26.0, 25.9, 23.8. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₄H₁₉N₂O₄S 311.1066, found 311.1063.

(Z)-N-(Cyclooct-1-en-3-yl)-N-(prop-2-yn-1-yl)-2-nitrobenzenesulfonamide (1)

(Z)-N-(Cyclooct-1-en-3-yl)-2-nitrobenzenesulfonamide (4) (3.62 g, 11.67 mmol), and propargyl bromide (1.56 mL, 14.00 mmol), were dissolved in dry DMF (100 mL) and added K₂CO₃ (1.95 g, 14.00 mmol) under argon atmosphere. The temperature was raised to 60 °C and the reaction mixture was stirred for 1 h before sat. aq. NH₄Cl (100 mL) was added. The resulting mixture was extracted with EtOAc (3×100 mL) and the combined organic phases were washed with water (100 mL), then brine (100 mL), dried (Na₂SO₄), and concentrated *in vacuo*, yielding desired sulfonamide (1) (4.4 g, quant.) as a yellow powder, mp 89°C – 92°C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.09 (dd, 1H, J = 7.8, 1.5 Hz, phenyl H), 7.96 (dd, 1H, J = 7.8 and 1.4 Hz, phenyl H), 7.88 (td, 1H, J =7.6 and 1.6 Hz, phenyl H), 7.83 (td, 1H, J = 7.6 and 1.5 Hz, phenyl H), 5.74 – 5.54 (m, 2H, CH=CH), 4.71 (ddd, 1H, J = 11.9, 7.4, 4.2 Hz, NCH), 4.28 (dd, 1H, J = 18.5 and 2.0 Hz, propargyl CH_2) and 4.23 (dd, 1H, J = 18.5 and 2.0 Hz, propargyl CH_2), 3.25 (t, 1H, J = 2.4 Hz, propargyl CH), 2.12 -1.97 (m, 2H, cyclooctene CH₂), 1.87 – 1.76 (m, 1H, cyclooctene CH₂), 1.69 – 1.51 (m, 4H, cyclooctene CH₂), 1.41 - 1.32 (m, 2H, cyclooctene CH₂), 1.30 - 1.20 (m, 1H, cyclooctene CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 147.6, 134.7, 132.3, 132.0, 130.3, 130.0, 127.6, 124.2, 80.6, 75.1, 55.6, 33.8, 33.1, 28.5, 25.6, 25.5, 23.9. HRMS (ESI) m/z: [M+H]+ calcd. for C₁₇H₂₁N₂O₄S 349.1222, found 349.1219.

(Z)-N-(Cyclooct-1-en-3-yl)-N-(3-iodoprop-2-yn-1-yl)-2-nitrobenzenesulfonamide (5)

(*Z*)-*N*-(Cyclooct-1-en-3-yl)-*N*-(prop-2-yn-1-yl)-2-nitrobenzenesulfonamide (1) (4.07 g, 11.67 mmol) was dissolved in dry DMF (100 mL) under argon atmosphere and added *N*-iodosuccinimide (2.85 g, 12.67 mmol) and AgNO₃ (0.198 g, 1.17 mmol). The reaction mixture was stirred in the dark at 25°C for 2h, quenched by addition of sat. aq. Na₂S₂O₃ (100 mL), and extracted with EtOAc (4×50 mL). The combined organic phases were washed with brine, dried (Na₂SO₄), and concentrated *in vacuo* to give desired iodide as yellow oil contaminated with succinimide and DMF. The compound was redissolved in diethyl ether (250 mL), washed with water (3×50 mL), then brine (50 mL), dried (Na₂SO₄) and concentrated *in vacuo* to give desired iodide (**5**) as a light yellow solid (3.5 g, 63%), mp 94°C – 96°C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.05 (m, 1H, phenyl H), 7.97 (m, 1H, phenyl H), 7.90-7.82 (m, 2H, phenyl H), 5.64-5.58 (m, 2H, CH=CH), 4.74 (m, 1H, *N*CH), 4.37 (s, 2H, propargyl CH₂), 2.12-1.99 (m, 2H, cyclooctene CH₂), 1.81-1.72 (m, 1H, cyclooctene CH₂), 1.67-1.50 (m, 4H, cyclooctene CH₂), 1.42-1.20 (m, 3H, cyclooctene CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 147.5, 134.7, 132.2, 132.0, 130.2, 130.0, 127.6, 124.2, 88.9, 55.6, 34.9, 33.8, 28.5, 25.6, 25.5, 23.9, 11.2. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₂₀IN₂O₄S 475.0188, found 475.0185.

1-((2-Nitrophenyl)sulfonyl)-1,2,2a1,4a,5,6,7,8,9,9a-decahydro-4H-1-azacycloocta[cd]pentalen-4-one (6)

(Z)-N-(Cyclooct-1-en-3-yl)-N-(prop-2-yn-1-yl)-2-nitrobenzenesulfonamide (1) (18 mg, 0.05 mmol) was dissolved in dry toluene (2 mL) at room temperature under nitrogen atmosphere and added powdered 4 Å activated molecular sieves (140 mg). Co₂(CO)₈ (21 mg, 0.06 mmol) was added to the reaction mixture, which was stirred at room temperature under a 1 atm of CO for 2 d (TLC indicated full consumption of the starting enyne substrate). The mixture was filtrated, and the filtrate was concentrated in vacuo to give brown crude, which was purified by flash chromatography (1:1, EtOAc/heptane) to give the product as a white solid (17 mg, 87%), mp 121°C - 123°C. ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.02 (m, 1H, phenyl H), 7.68-7.65 (m, 2H, phenyl H), 7.61-7.59 (m, 1H, phenyl H), 5.95 (s, 1H, COCH=C), 4.61 (dt, 1H, J = 16 Hz and 1.2 Hz, CH_2NSO_2), 4.34 (d, 1H, J = 16 Hz, CH_2NSO_2), 3.68 (td, 1H, J = 10.8 Hz and 4.0 Hz, cyclooctane CH), 3.05-3.00 (m, 1H, cyclooctane CH), 2.38-2.33 (m, 1H, cyclooctane CH), 2.13-2.07 (m, 1H, cyclooctane CH₂), 1.96-1.92 (m, 1H, cyclooctane CH₂), 1.79-1.76 (m, 1H, cyclooctane CH₂), 1.61-1.55 (m, 2H, cyclooctane CH₂), 1.31-1.22 (m, 5H, cycloctane CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 210.8 (C=O), 175.2 (COCH=C), 148.1 (phenyl C), 148.0 (phenyl C), 133.9 (phenyl C), 131.9 (phenyl C), 130.6 (phenyl C), 124.3 (phenyl C), 124.3 (COCH=C), 62.2 (cyclooctane CH), 54.2 (cyclooctane CH), 50.4 (cyclooctane CH), 50.2 (CH₂N SO₂), 34.4 (cyclooctane CH₂), 30.6 (cyclooctane CH₂), 27.3 (cyclooctane CH₂), 25.3 (cyclooctane CH₂), 24.2(cyclooctane CH₂). HRMS (ESI) m/z: $[M+H]^+$ calcd. for C₁₈H₂₁N₂O₅S 377.1171, found 377.1168.

(1Z,2Z)-10-((2-Nitrophenyl)sulfonyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (7a)

(Z)-N-(Cyclooct-1-en-3-yl)-N-(prop-2-yn-1-yl)-2-nitrobenzenesulfonamide (1) (1.0 g, 2.87 mmol) and PtCl₂ (38.2 mg, 0.14 mmol) was added to dry toluene (150 ml) and heated to 80°C for 3 h. The solution was concentrated *in vacuo* and the product purified by flash chromatography (1:4, EtOAc/heptane) to give the product as a colorless oil (0.71 g, 71%). ¹H NMR (400 MHz, DMSOd₆): δ = 8.01 – 7.96 (m, 2H, phenyl H), 7.94 – 7.81 (m, 2H, phenyl H), 5.99 (d, 1H, *J* = 11.0 Hz,*CH*=CH–*C*(*CH*₂)=*CH*), 5.79 (ddd, 1H, *J* = 11.1, 8.2, 6.2 Hz, CH=*CH*–*C*(*CH*₂)=*CH*), 5.64 (s, 1H, *CH*=*CH*–*C*(*CH*₂)=*CH*), 4.86 (s, 1H, *SO*₂*N*CH), 4.34 (d, 1H, *J* = 14.6 Hz, *CH*=*CH*–*C*(*CH*₂)=*CH*), 4.26 (dd, 1H, *J* = 14.6 and 4.4 Hz, *CH*=*CH*–*C*(*CH*₂)=*CH*), 2.27 – 2.15 (m, 1H, cyclodecadiene CH₂), 1.47 – 1.34 (m, 1H, cyclodecadiene CH₂), 1.33 – 1.15 (m, 3H, cyclodecadiene CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 148.5, 136.5, 135.1, 134.7, 133.0, 130.9, 129.6, 129.0, 124.8, 124.2, 67.7, 58.5, 35.5, 28.5, 28.4, 25.6, 20.5; UPLC-MS (ESI) m/z: $[M+H]^+$ 349.2; HRMS (ESI) m/z: $[M+H]^+$ calcd. for $C_{17}H_{21}N_2O_4S$ 349.1222, found 349.1238.

(1E,2E)-2-Iodo-10-((2-nitrophenyl)sulfonyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (7b)

(Z)-N-(Cyclooct-2-en-1-yl)-N-(3-iodoprop-2-yn-1-yl)-2-nitrobenzenesulfonami-de (5) (522 mg, 1.10 mmol) was dissolved in dry CH₂Cl₂ (12 mL) and cooled to 5°C, before PPh₃AuCl (27 mg, 5 mol%) was added, followed by AgSbF₆ (42 mg, 10 mol%) dissolved in dry toluene (0.2 mL). The reaction mixture was stirred at this temperature for 1 h and then filtered. The filtrate was washed with water (10 mL) and brine (10 mL), dried (Na₂SO₄), and concentrated *in vacuo* to give vinyl iodide (7b) as light yellow semisolid (458 mg, 88%) contaminated with trace amount of catalyst. Purification by flash column chromatography (4:5, CH₂Cl₂/heptane) afforded pure vinyl iodide. ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (m, 1H, phenyl H), 7.74-7.64 (m, 3H, phenyl H), 6.43 (dd, 1H, J = 6.3 and 8.1 Hz, $CH=CI-C(CH_2)=CH$, 5.75 (m, 1H, $CH=CI-C(CH_2)=CH$), 4.99 (m, 1H, SO_2NCH , 4.54 (td, 1H, J = 14.0 and 2.1 Hz, $CH = CI - C(CH_2) = CH$), 4.40 (ddd, 1H, J = 14.0, 4.7, 1.6 Hz, CH=CI-C(CH₂)=CH), 2.28 -2.16 (m, 2H, cyclodecadiene CH₂), 1.99-1.91 (m, 1H, cyclodecadiene CH₂), 1.68-1.59 (m, 2H, cyclodecadiene CH₂), 1.56-1.44 (m, 2H, cyclodecadiene CH₂), 1.41-1.25 (m, 2H, cyclodecadiene CH₂) 1.22-1.12 (m, 1H, cyclodecadiene CH₂); ¹³C NMR (100 MHz, CDCl₃): δ= 145.7, 138.3, 133.6, 132.4, 131.7, 130.8, 129.8, 126.7, 124.3, 85.2, 67.5, 56.7, 34.9, 29.5, 28.4, 27.6, 20.1. UPLC-MS (ESI) m/z: [M+H]+ 475.0; HRMS (ESI) m/z: [M+H]+ calcd. for C₁₇H₂₁IN₂O₄S 475.0188, found 475.0185.

(3*Z*,4*Z*)-3-(Iodomethylene)-1-((2-nitrophenyl)sulfonyl)-2,3,3a,6,7,8,9,9a-octahydro-1H-cycloocta[*b*]pyrrole (8)

(Z)-*N*-(Cyclooct-2-en-1-yl)-*N*-(3-iodoprop-2-yn-1-yl)-2-nitrobenzenesulfonami-de (**5**) (20 mg, 0.04 mmol) was dissolved in dry THF (1 mL), followed by the adding of Cp*RuCl(COD) (2.29 mg, 10mol%). The reaction mixture was stirred at room temperature for 2 h and filtered through a pad of celite. The filtrate was concentrated *in vacuo*. Purification by flash column chromatography (1:4, EtOAc/heptane) afforded the product as a light yellow solid (12 mg, 60%), mp 136°C -139°C. ¹H NMR (400 MHz, CDCl₃) δ 8.02-8.00 (m, 1H, phenyl H), 7.67-7.65 (m, 2H, phenyl H), 7.60-7.57 (m, 1H, phenyl H), 5.95 (dd, 1H, *J* = 5.2 and 2.4 Hz, *I*CH=*C*), 5.71-5.64 (m, 1H, CH=CH), 5.48-

5.44 (m, 1H, CH=CH), 4.19 (dt, 1H, J = 15.6 and 2.0 Hz, CH₂*NSO*₂), 4.02 (dq, 1H, J = 15.6 and 1.2 Hz, CH₂NSO₂), 3.38-3.34 (m, 1H, *CH=CHCHCHNSO*₂), 3.27-3.20 (m, 1H, *CH=CHCHCHNSO*₂), 2.23-2.13 (m, 2H, cyclooctene CH₂), 2.08-2.01 (m, 1H, cyclooctene CH₂), 1.52-1.41 (m, 2H, cyclooctene CH₂), 1.21-1.14 (m, 3H, cyclooctene CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 148.5 (*ICH=C*), 148.2 (phenyl C), 133.8 (phenyl C), 133.4 (phenyl C), 133.3 (*CH=CH*), 131.8 (phenyl C), 130.4 (phenyl C), 126.7 (CH=*CH*), 124.2 (phenyl C), 70.2 (*I*CH=*C*), 68.2 (cyclooctene CH), 58.7 (CH₂*N*), 50.4 (cyclooctene CH), 30.9 (cyclooctene CH₂), 27.3 (cyclooctene CH₂), 25.0 (cyclooctene CH₂), 20.9 (cyclooctene CH₂). HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₂₀IN₂O₄S 475.0188, found 475.0185.

(1Z,2Z)-10-((2-Nitrophenyl)sulfonyl)-2-phenyl-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (9a)

(1E,2E)-2-Iodo-10-((2-nitrophenyl)sulfonyl)-10-azabicyclo[7.2.1] dodeca-1(12),2-diene 7b (507) mg, 0.9 mmol), potassium carbonate (251 mg, 1.8 mmol), Pd(II)OAc₂ (20 mg, 0.09 mmol), phenylboronic acid (222 mg, 1.82 mmol), S-phos (75 mg, 0.18 mmol) were dissolved in DMF (2 mL) under argon atmosphere. The reaction mixture was heated to 50°C and stirred for 2 d, before saturated NH₄Cl aqueous solution (25 mL) was added, followed by extraction with EtOAc (3×50 mL). The combined organic phases were washed with water $(3 \times 25 \text{ mL})$ and brine (25 mL), dried (MgSO₄), and concentrated *in vacuo*. Purification by flash column chromatography (7:13, EtOAC/heptane) afforded the desired compound as a foam (145 mg, 38%) with minor impurities. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, 1H, J = 7.3 and 1.8 Hz, phenyl H), 7.74-7.64 (m, 3H, phenyl H), 7.33-7.20 (m, 5H, phenyl H), 6.31 (dd, 1H, J = 8.3 and 7.5 Hz, CH=C-C=CHCHN), 5.56 (m, 1H, CH=C-C=CHCHN), 5.10 (m, 1H, CH=C-C=CHCHN), 4.51 (ddd, 1H, J = 14.4, 4.6, 1.6 Hz, CH₂NSO₂) 4.43 (td, 1H, J = 14.4 and 2.1 Hz, CH₂NSO₂), 2.40-2.23 (m, 2H, cyclodecadiene CH₂), 2.09 (m, 1H, cyclodecadiene CH₂), 1.60-1.46 (m, 6H, cyclodecadiene CH₂), 1.30 (m, 1H, cyclodecadiene CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 136.6, 134.9, 133.6, 132.9, 131.7, 131.1, 130.8, 130.3, 128.7 (2), 127.6, 127.0, 125.5 (2), 124.4, 68.1, 58.4, 34.8, 28.5, 28.4, 25.0, 18.5. UPLC-MS (ESI) m/z: $[M+H]^+$ found 425.3; HRMS (ESI) m/z: $[M+H]^+$ calcd. for $C_{23}H_{25}N_2O_4S$ 425.1535, found 425.1536.

(1Z,2Z)-2-(4-Methoxyphenyl)-10-((2-nitrophenyl)sulfonyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (9b)

(1E,2E)-2-Iodo-10-((2-nitrophenyl)sulfonyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene 7b (207 mg, 0.37 mmol), potassium carbonate (103 mg, 0.74 mmol), Pd(II)OAc₂ (8 mg, 0.04 mmol), (4methoxyphenyl)boronic acid (113 mg, 0.74 mmol), S-phos (31 mg, 0.07 mmol) was dissolved in DMF (4 mL) under argon atmosphere and heated to 50°C stirred overnight. 5% additional catalyst was added and the reaction was stirred for additional 6 h before saturated NH₄Cl aqueous solution (25 mL) was added, followed by extraction with EtOAc (3×50 mL). The combined organic phases were washed with water $(3 \times 25 \text{ mL})$ and brine (25 mL), dried (MgSO₄), and concentrated *in vacuo*. Purification by flash column chromatography (EtOAC/heptane, 4/6, v/v) afforded the desired compound as a foam (98 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, 1H, J = 7.5 and 1.7 Hz, phenyl H), 7.68 (m, 3H; phenyl H), 7.25 (d, 2H, J = 9.0 Hz, phenyl H), 6.81 (d, 2H, J = 9.0 Hz, phenyl H), 6.18 (dd, 1H, J = 8.2 and 7.6 Hz, CH=C-C=CHCHN), 5.53 (m, 1H, CH=C-C=CHCHN) C = CHCHN, 5.07 (m, 1H, CH = C - C = CHCHN), 4.49 (ddd, 1H, J = 14.3, 4.6, 1.5 Hz, CH_2NSO_2), 4.41 (td, 1H, J = 14.4 and 2.1 Hz, CH₂NSO₂), 3.79 (s, 3H, OCH₃), 2.29 (m, 2H, cvclodecadiene CH₂), 2.05 (m, 1H, cyclodecadiene CH₂), 1.62-1.25 (m, 7H, cyclodecadiene CH₂); ¹³C NMR (100 MHz, CDCl₃) & 159.2, 148.6, 136.0, 135.1, 133.6, 132.8, 131.7, 131.0, 130.8, 130.2, 128.6, 126.6, 124.4, 114.0, 68.1, 58.4, 55.4, 34.8, 28.4, 28.4, 24.8, 18.4; UPLC-MS (ESI) m/z: [M+H]⁺ found 455.3; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₄H₂₇N₂O₅S 455.1640, found 455. 1643.

(1*Z*,2*Z*)-2-(3,4-Dichlorophenyl)-10-((2-nitrophenyl)sulfonyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (9c)

(1E,2E)-2-Iodo-10-((2-nitrophenyl)sulfonyl)-10-azabicyclo[7.2.1] dodeca-1(12),2-diene 7b (98 mg, 0.21 mmol), potassium carbonate (57 mg, 0.41 mmol), Pd(II)OAc₂ (5 mg, 0.021 mmol), (3,4dichlorophenyl)boronic acid (79 mg, 0.41 mmol), S-phos (17 mg, 0.041 mmol) dissolved in DMF (2 mL) under argon atmosphere. The reaction mixture was heated to 50°C and stirred overnight. The resulting mixture added saturated NH₄Cl aqueous solution (25 mL) and extracted with EtOAc $(3 \times 25 \text{ mL})$. The combined organic phases were washed with water $(3 \times 25 \text{ mL})$ and brine (25 mL), dried Na₂SO₄ and concentrated *in vacuo*. Purification by flash column chromatography (7:3, CH₂Cl₂/heptane) gave the desired compound as a white foam (56 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (m, 1H, phenyl H), 7.76-7.65 (m, 3H, phenyl H), 7.34 (d, 1H, J = 2.1 Hz, phenyl H), 7.33 (d, 1H, J = 8.4 Hz, phenyl H), 7.16 (dd, 1H, J = 8.4 and 2.1 Hz, phenyl H), 6.32 (dd, 1H, J = 8.3 and 7.5 Hz, CH=C-C=CHCHN), 5.58 (m, 1H, CH=C-C=CHCHN), 5.06 (m, 1H, CH=C-C = CHCHN, 4.49 (ddd, 1H, J = 14.5, 4.7, 1.5 Hz, CH_2NSO_2), 4.39 (td, 1H, J = 14.5 and 2.1 Hz, CH₂NSO₂), 2.39-2.21 (m, 2H, cyclodecadiene CH₂), 2.09 (m, 1H, cyclodecadiene CH₂), 1.65-1.42 (m, 6H, cyclodecadiene CH₂), 1.31-1.24 (m, 1H, cyclodecadiene CH₂); ¹³C NMR (100 MHz, CDCl₃, 25°C, 77.0 ppm): δ= 148.6, 138.5, 134.6, 134.0, 133.8, 132.7, 132.7, 132.6, 132.0, 131.8, 131.3, 130.5, 130.2, 127.4, 124.7, 124.4, 68.1, 58.2, 34.8, 28.5, 28.2, 25.1, 18.5 ppm. UPLC-MS (ESI) m/z: [M+H]⁺ found 493.1; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₃H₂₃Cl₂N₂O₄ 493.0756, found 493. 0750.

(1*Z*,2*E*)-2-(1-Methyl-3-(trifluoromethyl)-1H-pyrazol-5-yl)-10-((2-nitrophenyl)sulfonyl)-10azabicyclo[7.2.1]dodeca-1(12),2-diene (9d)

The crude iodo-functionalized bicycle (9d) (106 mg, 0.223 mmol), potassium carbonate (62 mg, 0.45 mmol), Pd(II)OAc₂ (5 mg, 0.021 mmol), (1-methyl-3-(trifluoromethyl)-1H-pyrazol-5vl)boronic acid (87 mg, 0.45 mmol), S-phos (18 mg, 0.045 mmol) dissolved in DMF (2 mL) under argon atmosphere. The reaction mixture was heated to 50°C and stirred overnight. The resulting mixture added saturated aqueous solution NH₄Cl (25 mL) and extracted with EtOAc (3 \times 25 mL). The combined organic phases were washed with water $(3 \times 25 \text{ mL})$ and brine (25 mL), dried (MgSO₄) and concentrated in vacuo. Purification by flash column chromatography (9:11, EtOAc/heptane) gave desired compound as a yellow foam (64 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, 1H, J = 7.7 and 1.6 Hz, phenyl H), 7.75-7.61 (m, 3H, phenyl H), 6.30 (s, 1H, pyrazolyl H), 6.14 (dd, 1H, J = 8.7 and 6.8 Hz, CH=C-C=CHCHN), 5.66 (m, 1H, CH=C-C = CHCHN, 5.02 (m, 1H, CH = C - C = CHCHN), 4.51 (ddd, 1H, J = 14.5, 4.7, 1.4 Hz, CH_2NSO_2), 4.39 (td, 1H, J = 14.5 and 2.0 Hz, CH₂NSO₂), 3.79 (s, 3H, CH₃), 2.41 (m, 1H, cyclodecadiene CH₂), 2.18 (m, 2H, cyclodecadiene CH₂), 1.69-1.34 (m, 6H, cyclodecadiene CH₂), 1.22 ppm (m, 1H, cyclodecadiene CH₂); ¹³C NMR (100 MHz, , CDCl₃) δ 148.5, 143.2, 141.7 and 141.3 and 140.9 and 140.5 (${}^{2}J_{C-F}$ = 38 Hz), 138.4, 134.0, 133.7, 132.3, 132.2, 131.8, 130.4, 125.6, 124.3, 122.6 and 119.9 $({}^{1}J_{C-F} = 267 \text{ Hz}), 104.2 \text{ and } 104.2 ({}^{3}J_{C-F} = 3 \text{ Hz}), 67.8, 57.9, 38.8, 35.0, 28.5, 28.2, 25.5, 19.3.$ HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₂H₂₄F₃N₄O₄S 497.1470, found 497.1475.

(1*Z*,2*Z*)-2-Phenyl-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (10a)

(1Z,2Z)-10-((2-Nitrophenyl)sulfonyl)-2-phenyl-10-azabicyclo[7.2.1]dodeca-1(12),2-diene **9a** (110 mg, 0.26 mmol) was dissolved in DMF (2 mL) and added 2-mercaptoacetic acid (72 µl, 1.04 mmol) followed by LiOH (50 mg, 2.07 mmol). The reaction mixture was stirred at rt for 1 h, before saturated NaHCO₃ aqueous solution (25 mL) was added and the resulting mixture was extracted with EtOAc (3 × 25 mL). The combined organic phases were washed with water (3 × 25 mL) and brine (25 mL), dried (Na₂SO₄), and concentrated *in vacuo* to give desired amine **10a**. The crude was used in the next step without further purification. UPLC-MS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₂₂N 240.2, found 240.2.

(1*Z*,2*Z*)-2-(4-Methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (10b)

(1Z,2Z)-2-(4-Methoxyphenyl)-10-((2-nitrophenyl)sulfonyl)-10-azabicyclo[7.2.1]dodeca-1(12),2diene **9b** (510 mg, 1.12 mmol) was dissolved in DMF (5.5 ml) and added 2-mercaptoacetic acid (312 µl, 4.5 mmol) and LiOH (215 mg, 9 mmol).The reaction mixture was stirred at rt for 20 min, before saturated NaHCO₃ aqueous solution (75 mL) was added followed by extraction with EtOAc (3 × 75 mL). The combined organic phases were washed with water (3 × 25 mL) and brine (50 mL), dried (Na₂SO₄), and concentrated *in vacuo* to give desired amine **10b**. The crude was used in the next step without further purification. UPLC-MS (ESI) m/z: [M+H]⁺ calcd. for C₁₈H₂₄NO 270.2, found 270.2.

(1*Z*,2*Z*)-2-(3,4-Dichlorophenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (10c)

(1Z,2Z)-2-(3,4-Dichlorophenyl)-10-((2-nitrophenyl)sulfonyl)-10-azabicyclo[7.2.1]dodeca-1(12),2diene **9c** (89 mg, 0.18 mmol) was dissolved in in DMF (0.9 ml) added 2-mercaptoacetic acid (25 µl, 0.36 mmol) and LiOH (17 mg, 0.72 mmol). The reaction mixture was stirred at rt and monitored by UPLC-MS. After 1 h and 45 min the reaction was almost complete, but formation of side-product was observed. Saturated NaHCO₃ aqueous solution (25 mL) was added and the resulting mixture was extracted with EtOAc (3 × 25 mL). The combined organic phases were washed with water (3 × 25 mL) and brine (25 mL), dried (Na₂SO₄), and concentrated in vacuo to give desired amine **10c** with some impurities. The crude was used in the next step without further purification. UPLC-MS (ESI) m/z: [M+H]⁺ calcd. for C₁₇H₂₀Cl₂N 308.1, found 308.1.

(1*Z*,2*E*)-2-(1-Methyl-3-(trifluoromethyl)-1H-pyrazol-5-yl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (10d)

(1Z,2E)-2-(1-Methyl-3-(trifluoromethyl)-1H-pyrazol-5-yl)-10-((2-nitrophenyl)sulfonyl)-10azabicyclo[7.2.1]dodeca-1(12),2-diene (**9d**) (55 mg, 0.11 mmol) was dissolved in DMF (1 ml) and added 2-mercaptoacetic acid (31 µl, 0.44 mmol) and LiOH (21 mg, 0.89 mmol). The reaction mixture was stirred for 1 h at 25 °C, before saturated NaHCO₃ aqueous solution (25 mL) was added followed by extraction with EtOAc (3 × 25 mL). The combined organic phases were washed with water (25 mL) and brine (25 mL), dried (Na₂SO₄). Concentration *in vacuo* afforded the desired amine **10d**, which was used in the next step without further purification. UPLC-MS (ESI) m/z: [M+H]⁺ calcd. for C₁₆H₂₁F₃N₃ 312.2, found 312.2.

(1*Z*,2*Z*)-2-(4-Methoxyphenyl)-N-phenyl-10-azabicyclo[7.2.1]dodeca-1(12),2-diene-10-carboxamide (11a)

(1*Z*,2*Z*)-2-(4-Methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene **10b** (30 mg, 0.11 mmol) was dissolved in DMF (1 mL) and phenyl isocyanate (19 mg, 0.18 mmol) was added followed by triethylamine (16 µl, 0.11 mmol). After stirring the reaction mixture at rt for 1 h, additional 4 mg of phenyl isocyanate was added, and the reaction mixture was stirred for another 1 h, after which full conversion of the starting amine was observed as monitored by UPLC-MS. Purification by preparative HPLC (acetonitrile/water, 0.1% HCOOH) afforded the desired urea **11a** (32 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, 2H, *J* = 7.6 Hz, phenyl H), 7.35 (d, 2H, *J* = 8.8 Hz, phenyl H), 7.28 (m, 2H, phenyl H), 7.02 (t, *J* = 7.4 Hz, 1H, phenyl H), 6.85 (d, 2H, *J* = 8.8 Hz, phenyl H), 6.21 (m, 2H, NH and CH=*C*–*C*=*CHCHN*), 5.67 (m, 1H, *CH*=*C*–*C*=*CHCHN*), 5.08 (m, 1H, *CH*=*C*–*C*=*CHCHN*), 4.42 (m, 2H, CH₂*NCONH*), 3.81 (s, 3H, OCH₃), 2.36 (m, 2H, cyclodecadiene CH₂), 2.09 (m, 1H, cyclodecadiene CH₂), 1.63-1.31 (m, 7H, cyclodecadiene CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 153.4, 139.1, 136.7, 131.3, 129.0 (2), 129.0, 128.3, 126.8 (2), 123.1, 120.0, 119.7 (2), 114.0 (2), 64.7, 56.5, 55.5, 32.8, 28.6, 28.6, 25.0, 18.9. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₅H₂₉N₂O₂ 389.2229, found 389.2225.

(1*Z*,2*Z*)-*N*-(4-Chlorophenyl)-2-(4-methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene-10-carboxamide (11b)

(1*Z*,2*Z*)-2-(4-Methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene **10b** (30 mg, 0.11 mmol) was dissolved in DMF (1 mL) and 4-chlorophenyl isocyanate (21 μ l, 0.17 mmol) was added followed by triethylamine (16 μ l, 0.11 mmol). After stirring the reaction mixture at rt for 1 h, additional 4 μ l of chlorophenyl isocyanate was added, and the reaction mixture was stirred for another 1 h, after which full conversion of the starting amine was observed as monitored by UPLC-MS. Purification by preparative HPLC (acetonitrile/water, 0.1% HCOOH) afforded the desired urea **11b** (30 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.9 Hz, 2H, phenyl H), 7.34 (d, 2H, *J* = 8.8 Hz, phenyl H), 7.23 (d, 2H, *J* = 8.8 Hz, phenyl H), 6.85 (d, 2H, *J* = 8.8 Hz, phenyl H), 6.21 (m, 2H, NH and CH=*C*-*C*=*CHCHN*), 5.68 (m, 1H, *CH*=*C*-*C*=*CHCHN*), 5.07 (m, 1H, *CH*=*C*-*C*=*CHCHN*), 4.42 (m, 2H, CH₂*NCONH*), 3.80 (s, 3H, OCH₃), 2.34 (m, 2H, cyclodecadiene CH₂),

2.09 (m, 1H, cyclodecadiene CH₂), 1.63-1.33 (m, 7H, cyclodecadiene CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 153.1, 137.8, 136.6, 131.3, 129.0, 129.0 (2), 128.4, 127.9, 126.8 (2), 121.2, 120.8 (2), 114.0 (2), 64.8, 56.5, 55.5, 32.8, 28.6, 28.6, 25.0, 19.0. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₅H₂₈ClN₂O₂ 423.1839, found 423.1837.

(1Z,2Z)-10-(4-Methoxybenzyl)-2-phenyl-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (12a)

(1Z,2Z)-2-(4-Methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene 10a (27 mg, 0.11 mmol) was dissolved in CH₂Cl₂ (1 mL) and added AcOH (1.3 µl, 0.022 mmol), sodium triacetoxyhydroborate (71 mg, 0.33 mmol), and anisaldehyde (26 mg, 0.19 mmol). The reaction mixture was stirred overnight at rt, before water was added followed by extraction with CH_2Cl_2 (3 × 25 mL). The combined organic phases were washed with brine (25 mL), dried (Na₂SO₄), and concentrated vacuo. Purification by flash column chromatography (5:25:75,in triethylamine/EtOAc/heptane) afforded desired amine 12a (16 mg, 36%) with trace impurities. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 7.6 Hz, 2H, phenyl H), 7.30 (m, 4H, phenyl H), 7.20 (m, 1H, phenyl H), 6.85 (d, 2H, J = 8.6 Hz, phenyl H), 6.19 (dd, 1H, J = 8.4 and 6.8 Hz, CH=C-C=CHCHN), 5.61 (m, 1H, CH=C-C=CHCHN), 4.11 (m, 1H, CH=C-C=CHCHN), 3.93 (d, 1H, J = 13.5 Hz, benzyl CH₂), 3.91 (d, 1H, J = 13.5 Hz, benzyl CH₂), 3.82 (m, 1H, CH₂), 3.80 (s, 3H, OCH₃), 3.60 (td, 1H, J = 14.2 and 2.5 Hz, $CH = CCH_2N$), 2.43 (m, 1H, cvclodecadiene CH₂), 2.04 (m, 1H, cyclodecadiene CH₂), 1.72 (m, 2H, cyclodecadiene CH₂), 1.64-1.30 (m, 6H, cyclodecadiene CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 139.6, 138.5, 136.9, 133.4, 129.7, 129.5, 128.4, 128.4, 127.0, 125.8, 113.7, 70.4, 64.0, 58.7, 55.4, 34.8, 28.9, 28.5, 25.7, 20.0; HRMS (ESI) m/z: $[M+H]^+$ calcd. for C₂₅H₃₀NO 360.2327, found 360.2342.

(1Z,2Z)-10-Benzyl-2-(4-methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (12b)

(1Z,2Z)-2-(4-Methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene **10b** (30 mg, 0.11 mmol), AcOH (1.3 µl, 0.022 mmol), sodium triacetoxyhydroborate (71 mg, 0.33 mmol), and benzaldehyde (18 mg, 0.17 mmol) were dissolved in DMA (1 mL). The reaction mixture was stirred at rt overnight. Purification by preparative HPLC (acetonitrile/H₂O, 0.1% HCOOH) afforded amine **12b** (23 mg, 57%) with traces of HCOOH. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (m, 2H, phenyl H), 7.43

(m, 3H, phenyl H), 7.08 (d, 2H, J = 8.8 Hz, phenyl H), 6.81 (d, 2H, J = 8.8 Hz, phenyl H), 6.21 (t, 1H, J = 8.0 Hz, CH=C-C=CHCHN), 5.67 (m, 1H, CH=C-C=CHCHN), 4.71 (d, 1H, J = 16.4 Hz, CH=CCH₂N), 4.62 (m, 1H, CH=C-C=CHCHN), 4.54 (d, 1H, J = 13.0 Hz, benzyl CH₂), 4.26 (d, 1H, J = 13.0 Hz, benzyl CH₂), 3.89 (dd, 1H, J = 16.4 and 2.0 Hz, CH=CCH₂N), 3.81 (s, 3H, OCH₃), 2.30-2.11 (m, 3H, cyclodecadiene CH₂), 1.71-1.25 (m, 7H, cyclodecadiene CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 159.4, 135.3, 134.8, 130.8, 130.7, 130.3, 129.9, 129.7, 129.4, 129.1, 126.7, 114.1, 72.3, 60.8, 59.4, 55.5, 30.7, 28.2, 27.8, 24.6, 19.6; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₅H₃₀NO 360.2327, found 360.2342.

(1*Z*,2*Z*)-2-(3,4-Dichlorophenyl)-10-(pyridin-2-ylmethyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (12c)

(1*Z*,2*Z*)-2-(3,4-Dichlorophenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene **10c** (31 mg, 0.10 mmol) was dissolved in CH₂Cl₂ (4 ml) and added 4Å molecular sieves, picolinaldehyde (30 mg, 0.28 mmol), and sodium triacetoxyhydroborate (44 mg, 0.21 mmol). The reaction mixture was stirred at rt for 1 h before being diluted with CH₂Cl₂ (25 mL). The organic phase was washed with water (25 mL) and brine (25 mL), dried (Na₂SO₄), and concentrated in vacuo. Purification by flash column chromatography (1:2:18, triethylamine/EtOAc/heptane) afforded the desired compound **12c** with minor impurities (10 mg, 24%). ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d,1 H, *J* = 4.6 Hz, pyridinyl H), 7.69 (m, 1H, pyridinyl H), 7.59 (m, 1H, pyridinyl H), 7.43 (d, 1H, *J* = 1.2 Hz, phenyl H), 7.32 (d, 1H, *J* = 8.4 Hz, phenyl H), 7.19 (m, 2H, phenyl and pyridinyl H), 6.22 (m, 1H, CH=*C*-*C*=*CHCHN*), 5.64 (m, 1H, *CH*=*C*-*C*=*CHCHN*), 4.35-4.02 (m, 4H, *CH*=*C*-*C*=*CHCHN*), *CH*=*C*CH₂*N*CH₂), 3.74 (d, 1H, *J* = 13.7 Hz, *CH*=*C*CH₂*N*CH₂), 2.42 (m, 1H, cyclodecadiene CH₂), 2.07 (m, 1H, cyclodecadiene CH₂), 1.89 (m, 1H, cyclodecadiene CH₂), 1.69-1.25 (m, 7H, cyclodecadiene CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 149.0, 137.2, 136.6, 132.4, 130.8, 130.2, 127.4, 125.7, 124.9, 122.5, 122.0, 121.7, 121.0, 119.1, 70.8, 63.7, 60.6, 31.6, 28.5, 28.1, 25.4, 19.8. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₃H₂₅Cl₂N₂ 399.1395, found 399.1401.

(1*Z*,2*Z*)-2-(3,4-Dichlorophenyl)-10-(phenylsulfonyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene (14a)

Triethylamine (19 µl, 0.14 mmol) and benzenesulfonyl chloride (15 µl, 0.14 mmol) were dissolved in dry CH₂Cl₂ (0.4 mL) under argon atmosphere and cooled to 0 °C. A solution of amine **10c** (0.9 mmol) in CH₂Cl₂ (0.5 mL) was added and the reaction mixture was allowed to warm to rt. After stirring for 1 h the reaction mixture was concentrated in vacuo. Purification by flash column chromatography (3: 17, EtOAc/heptane) afforded the desired sulfonamide **14a** (12 mg, 30%) with solvent traces. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (m, 2H, phenyl H), 7.65 (m, 1H, phenyl H), 7.57 (m, 2H, phenyl H), 7.25 (d, 1H, *J* = 8.4 Hz, phenyl H), 7.10 (d, 1H, *J* = 2.2 Hz, phenyl H), 6.89 (dd, 1H, *J* = 8.4 and 2.2 Hz, phenyl H), 6.28 (dd, 1H, *J* = 8.2 and 7.3 Hz, CH=*C*–*C*=*CHCHN*), 5.45 (m, 1H, *CH*=*C*–*C*=CH*CHN*), 4.89 (m, 1H, *CH*=*C*–*C*=*CHCHN*), 4.34 (ddd, 1H, *J* = 15.0, 4.6, 1.6 Hz, CH₂*NSO*₂), 4.22 (td, 1H, *J* = 15.0 and 2.0 Hz, CH₂*NSO*₂), 2.28 (m, 2H, cyclodecadiene CH₂), 2.06 (m, 1H, cyclodecadiene CH₂), 1.54 (m, 6H, cyclodecadiene CH₂), 1.23 (m, 1H, cyclodecadiene CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 138.0, 134.5, 134.3, 133.0, 132.7, 132.4, 132.2, 131.3, 130.4, 129.4, 127.3, 127.2, 124.5, 67.9, 58.2, 35.7, 28.6, 28.3, 25.2, 19.0; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₃H₂₄Cl₂NO₂S 448.0905, found 448.0900.

1-(4-(((1*Z*,2*Z*)-2-(4-Methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-dien-10-yl)sulfonyl) phenyl)ethan-1-one (14b)

Triethylamine (23 µl, 0.16 mmol) and 4-acetylbenzenesulfonyl chloride (35 mg, 0.16 mmol) were dissolved in dry CH₂Cl₂ (0.5 mL) and the reaction mixture was cooled to 0 °C. (1Z,2Z)-2-(4-methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene **10b** (29 mg, 0.11 mmol) dissolved in dry CH₂Cl₂ (0.5 mL) was added to the reaction mixture, which was stirred and allowed to warm to rt over 1 h. Concentration *in vacuo* and purification by preparative HPLC (acetonitrile/H₂O, 0.1% HCCOH) afforded pure sulfonamide **14b** (20 mg, 41%). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, 2H, J = 8.5 Hz, phenyl H), 7.96 (d, 2H, J = 8.5 Hz, phenyl H), 6.97 (d, 2H, J = 8.8 Hz, phenyl H), 6.71 (d, 2H, J = 8.8 Hz, phenyl H), 6.13 (dd, 1H, J = 8.1 and 7.5 Hz, CH=*C*–*C*=*CHCHN*), 5.43 (m, 1H, *CH*=*C*–*C*=CH*CHN*), 4.90 (m, 1H, *CH*=*C*–*C*=*CHCHN*), 4.35 (ddd, 1H, J = 14.8, 4.5, 1.5 Hz, CH₂*NSO*₂), 4.24 (td, 1H, J = 14.8 and 1.9 Hz, CH₂*NSO*₂), 3.78 (s, 3H, OCH₃), 2.68 (s, 3H, COCH₃), 2.25 (m, 2H, cyclodecadiene CH₂), 2.02 (m, 1H, cyclodecadiene CH₂), 1.63-1.36 (m, 6H, cyclodecadiene CH₂), 1.26 (m, 1H, cyclodecadiene CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 159.2, 142.3, 140.1, 135.7, 135.4, 130.9, 130.7, 129.1, 128.4, 127.7, 126.4, 113.9, 68.0, 58.3, 55.4, 35.6, 28.6, 28.5, 27.0, 25.0, 19.0; HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₆H₃₀NO₄S 452.1895, found 452.1897.

(3-Fluorophenyl)((1*Z*,2*Z*)-2-(4-methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-dien-10-yl)methanone (15a)

(1Z,2Z)-2-(4-Methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene 10b (30 mg, 0.11 mmol), 3-fluorobenzoic acid (20 mg, 0.14 mmol), N-ethyl-N-diisopropylamine (24 µL, 0.14 mmol) were dissolved in dry DMF (1 ml) under argon atmosphere. TBTU (45 mg, 0.14 mmol) was added to the reaction mixture which was stirred at rt for 10 min. Purification by preparative HPLC (acetonitrile/H₂O, 0.1% HCOOH) afforded the desired amide 15a (28 mg, 64%). ¹H NMR (400 MHz, CDCl₃) Rotamers 2/1. Rotamer I: δ 7.45-7.25 (m, 5H, phenyl H), 7.12 (m, 1H, phenyl H), 6.87 (d, 2H, J = 8.8 Hz, phenyl H), 6.20 (m, 1H, CH=C-C=CHCHN), 5.72 (m, 1H, CH=C-C = CHCHN, 5.39 (m, 1H, CH = C - C = CHCHN), 4.47 (ddd, 1H, J = 14.8, 4.0, 1.4 Hz, CH_2NCO), 4.17 (d, 1H, J = 14.9 Hz, CH₂NCO), 3.78 (s, 3H, OCH₃), 2.58 (m, 1H, cyclodecadiene CH₂), 2.31 (m, 1H, cyclodecadiene CH₂), 2.09 (m, 1H, cyclodecadiene CH₂), 1.69-1.14 (m, 7H, cyclodecadiene CH₂). Rotamer II: δ 7.45-7.25 (m, 5H; phenyl H), 7.12 (m, 1H, phenyl H), 6.82 (d, 2H, J = 8.8 Hz, phenyl H), 6.20 (m, 1H, CH=C-C=CHCHN), 5.53 (m, 1H, CH=C-C=CHCHN), 4.93 (m, 1H, CH₂NSO₂), 4.65 (m, 2H, CH₂NSO₂ and CH=C-C=CHCHN), 3.82 (s, 3H, OCH₃), 2.31 (m, 1H, , cyclodecadiene CH₂), 2.09 (m, 1H, , cyclodecadiene CH₂), 1.69-1.14 (m, 8H, cyclodecadiene CH₂). ¹³C NMR (100 MHz, CDCl₃), major rotamer: 168.5 and 168.5 (${}^{4}J_{C,F}$ = 2 Hz), 163.8 and 161.3 (${}^{1}J_{C,F}$ = 246 Hz), 159.2, 139.2 and 139.1 (${}^{3}J_{C,F}$ = 8 Hz), 136.6, 134.4, 131.8, 131.1 and 130.7 (${}^{2}J_{C,F} = 22$ Hz), 130.4 and 130.3 (${}^{3}J_{C,F} = 8$ Hz), 128.4, 126.7 (2), 122.7 and 122.7 (${}^{4}J_{C,F} = 8$ Hz) 2 Hz), 116.9, 114.4 and 114.2 (${}^{2}J_{C,F}$ = 22 Hz), 114.0 (2), 65.0, 59.4, 55.4, 32.2, 28.9, 28.6, 25.0, 19.3. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₅H₂₇FNO₂ 392.2026, found 392.2029.

Cyclopropyl((1*Z*,2*Z*)-2-(4-methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-dien-10-yl) methanone (15b)

(1*Z*,2*Z*)-2-(4-Methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene **10b** (30 mg, 0.11 mmol), cyclopropanecarboxylic acid (12 mg, 0.14 mmol), and *N*-ethyl-*N*-diisopropylamine (24 μL, 0.14 mmol) were dissolved in dry DMF (1 ml) under argon atmosphere. TBTU (45 mg, 0.14 mmol) was added to the reaction mixture, which was stirred for another 10 min. Purification by preparative HPLC (acetonitrile/H₂O, 0.1% HCOOH) afforded amide **15b** (28 mg, 75%). ¹H NMR (400 MHz, CDCl₃), rotamers 1:1, δ 7.37 (d, 2H, *J* = 8.8 Hz, aromatic H), 6.84 (d, 2H, *J* = 8.8 Hz, aromatic H), 6.19 (m, 1H, CH=*C*-*C*=*CHCHN*), 5.65 and 5.57 (m, 1H, *CH*=*C*-*C*=*CHCHN*), 5.11 (m, 1H, *CH*=*C*-*C*=*CHCHN*), 4.63-4.33 (m, 2H, CH₂*NCO*), 3.80/3.79 (s, 3H, OCH₃), 2.50-2.28 (m, 2H, cyclodecadiene CH₂), 2.10-2.04 (m, 1H, cyclopropyl CH), 1.73-1.24 (m, 8H, cyclodecadiene CH₂), 1.13-0.74 (m, 4H, cyclopropyl CH₂). ¹³C NMR (100 MHz, CDCl₃), rotamer one: δ 172.3, 159.1,

137.1, 135.9, 131.6, 130.6, 127.5, 126.7 (2), 113.9 (2), 64.3, 57.0, 55.4, 34.2, 28.7, 28.4, 25.0, 18.9, 12.7, 8.2, 7.7; rotamer two: 171.9, 159.2, 136.8, 134.1, 132.3, 131.4, 128.3, 126.8 (2), 114.0 (2), 64.8, 57.2, 55.4, 31.8, 28.6, 28.3, 24.5, 18.3, 12.7, 7.8, 7.4. HRMS (ESI) m/z: $[M+H]^+$ calcd. for $C_{22}H_{28}NO_2$ 338.2120, found 338.2128.

t-Butyl (2-((1*Z*,2*Z*)-2-(4-methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-dien-10-yl)-2-oxoethyl)carbamate (15c)

(1Z,2Z)-2-(4-Methoxyphenyl)-10-azabicyclo[7.2.1]dodeca-1(12),2-diene 10b (30 mg, 0.11 mmol), (tert-butoxycarbonyl)glycine (24 mg, 0.14 mmol), and N-ethyl-N-diisopropylamine (24 µL, 0.14 mmol) were dissolved in dry DMF (1 ml) under argon atmosphere. TBTU (45 mg, 0.14 mmol) was added to the reaction mixture, which was stirred for another 10 min. Purification by preparative HPLC (acetonitrile/H₂O, 0.1% HCOOH) afforded pure amide 15c (30 mg, 63%). ¹H NMR (400 MHz, CDCl₃), rotamers 2:1, major rotamer: δ 7.32 (d, 2H, J = 8.8 Hz, phenyl H), 6.85 (d, 2H, J =8.8 Hz, phenyl H), 6.21-6.19 (m, 1H, CH=C-C=CHCHN), 5.66 (d, 1H, J = 1.6 Hz CH=C-C=CHCHN), 5.48 (br s, 1H, NH), 5.14 (m, 1H, CH=C-C=CHCHN), 4.40-4.30 (m, 2H, CH₂NCO), 3.92-3.88 (m, 2H, NCOCH₂), 3.81 (s, 3H, OCH₃), 2.52-2.46 (m, 1H, cyclodecadiene CH₂), 2.30-2.07 (m, 2H, cyclodecadiene CH₂), 1.60-1.53 (m, 3H, cyclodecadiene CH₂), 1.44 (s, 9H, t-butyl CH₃), 1.42-1.28 (m, 4H, cyclodecadiene CH₂). Minor rotamer: δ 7.31 (d, 2H, J = 8.8 Hz, phenyl H), 6.84 (d, 2H, J = 8.8 Hz, phenyl H), 6.20-6.18 (m, 1H, CH=C-C=CHCHN), 5.56 (d, 1H, J = 1.6 Hz, CH=C-C=CHCHN), 5.24 (br s, 1H, NH), 4.89 (m, 1H, CH=C-C=CHCHN), 4.55-4.34 (m, 2H, CH₂NCO), 4.10-3.92 (m, 2H, NCOCH₂), 3.80 (s, 3H, OCH₃), 2.31-2.07 (m, 3H, cyclodecadiene CH₂), 1.60-1.53 (m, 3H, cyclodecadiene CH₂), 1.44 (s, 9H, t-butyl CH₃), 1.42-1.28 (m, 4H, cyclodecadiene CH₂). ¹³C NMR (100 MHz, CDCl₃), major rotamer: δ 166.7, 159.3, 156.0, 136.4, 134.0, 131.9, 131.1, 128.5, 126.7 (2), 114.0 (2), 79.7, 65.2, 55.8, 55.4, 43.1, 31.5, 28.5(3), 28.3, 28.2, 24.9, 19.0. Minor rotamer: δ 167.4, 159.2, 156.0, 136.7, 135.6, 131.3, 130.3, 127.7, 126.7 (2), 113.9 (2), 79.8, 64.0, 56.9, 55.4, 42.8, 33.3, 28.5 (3), 28.3, 28.2, 24.5, 18.3. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₅H₃₅N₂O₄ 427.2597, found 427.2598 and 327.2067.

((1*Z*,2*E*)-2-(1-Methyl-3-(trifluoromethyl)-1H-pyrazol-5-yl)-10-azabicyclo[7.2.1]dodeca-1(12),2-dien-10-yl)(phenyl)methanone (15d)

(1Z,2E)-2-(1-Methyl-3-(trifluoromethyl)-1H-pyrazol-5-yl)-10-azabicyclo[7.2.1]dodeca-1(12),2diene 10d (34 mg, 0.11 mmol) was dissolved in dry DMF (1 mL) under argon atmosphere. TBTU (44 mg, 0.14 mmol) and DIPEA (18 mg, 0.14 mmol) were added. The reaction mixture was stirred for 1.5 h, before saturated NH₄Cl aqueous solution (25 mL) was added, followed by extraction with EtOAc (3 ×25 mL). The combined organic phases were washed with brine (25 mL), dried (MgSO4), and concentrated in vacuo. Purification by flash column chromatography (11: 9, EtOAc/heptane) afforded the desired amide 15d (24 mg, 53%) with trace impurities. ¹H NMR (400 MHz, CDCl₃), rotamers 5:3, major rotamer, δ 7.53-7.40 (m, 5H, phenyl H), 6.34 (s, 1H, pyrazolyl H), 6.17-6.10 (m, 1H, CH=C-C=CHCHN), 5.87 (m, 1H, CH=C-C=CHCHN), 5.38 (m, 1H, CH=C-C=CHCHN, 4.51 (dd, 1H, J = 16.8 and 2.8 Hz, CH_2NCO), 4.14 (d, 1H, J = 16.8 Hz, CH₂NCO), 3.82 (s, 3H, NCH₃), 2.57-2.37 (m, 2H, cyclodecadiene CH₂), 2.23-2.18 (m, 1H, cyclodecadiene CH₂), 1.71-1.55 (m, 4H, cyclodecadiene CH₂), 1.37-1.21 (m, 3H, cyclodecadiene CH₂). ¹³C NMR (100 MHz, CDCl₃), major rotamer, δ 170.3, 141.4 and 141.0 (²J_{C-F} = 35 Hz), 139.9, 138.2, 136.9, 133.3, 133.2, 130.2, 128.7 (2), 127.0 (2), 126.3, 122.6 and 119.9 (${}^{1}J_{C-F} = 267 \text{ Hz}$), 104.3 and 104.3 (${}^{3}J_{C-F} = 3$ Hz), 64.7, 59.1, 38.8, 32.5, 28.9, 28.4, 25.8, 20.2. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₃H₂₅F₃N₃O 416.1949, found 416.1948. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₂₃H₂₅F₃N₃O 416.1949, found 416.1948.

Characterization Spectra

3, ¹H NMR (400 MHz, DMSO-*d*₆):

4, ¹³C NMR (100 MHz, DMSO-*d*₆):

1, ¹H NMR (400 MHz, DMSO-*d*₆):

1, ¹³C NMR (100 MHz, DMSO-*d*₆):

5, ¹³C NMR (100 MHz, DMSO-*d*₆):

6, ¹H NMR (400 MHz, CDCl₃):

6, ¹³C NMR (100 MHz, CDCl₃):

6, COSY (400 MHz, CDCl₃):

6, HSQC (400 MHz, CDCl₃):

6, HMBC (400 MHz, CDCl₃):

S32

6, H2BC (400 MHz, CDCl₃):

7a, ¹H NMR (400 MHz, DMSO-*d*₆):

		2.20E+08 2.10E+08 2.00E+08 1.90E+08 1.60E+08 1.60E+08 1.60E+08 1.30E+08 1.30E+08 1.30E+08 2.00E+07 3.00E+07
$\begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	<u>, , , , , , , , , , , , , , , , , , , </u>	2.10E+08 2.00E+08 2.00E+08 1.30E+08 1.50E+08 1.50E+08 1.30E+08 1.30E+08 1.30E+08 3.00E+07 3.00E+07
		2.00E+08 L.90E+08 L.80E+08 L.60E+08 L.60E+08 L.60E+08 L.30E+08 L.30E+08 L.30E+08 L.10E+08 S.00E+07 S.00E+07
	<u> </u>	L.90E+08 L.80E+08 L.60E+08 L.60E+08 L.40E+08 L.30E+08 L.30E+08 L.30E+08 S.300E+07 S.300E+07
	<u> </u>	L.80E+08 L.70E+08 L.60E+08 L.60E+08 L.40E+08 L.30E+08 L.30E+08 L.10E+08 L.00E+07 3.00E+07
	<u> </u>	L.70E+08 L.60E+08 L.50E+08 L.40E+08 L.30E+08 L.30E+08 S.00E+07 S.00E+07
	<u></u>	L.60E+08 L.50E+08 L.40E+08 L.30E+08 L.30E+08 L.10E+08 L.00E+08 3.00E+07
	<u> </u>	L.50E+08 L.40E+08 L.30E+08 L.20E+08 L.30E+08 3.00E+07 3.00E+07
		L.40E+08 L.30E+08 L.20E+08 L.10E+08 L.00E+08 3.00E+07 3.00E+07
	<u>-</u>	L.30E+08 L.20E+08 L.10E+08 L.00E+08 9.00E+07 3.00E+07
		L.20E+08 L.10E+08 L.00E+08 9.00E+07 3.00E+07
	<u></u>	L.10E+08 L.00E+08 9.00E+07 3.00E+07
		L.00E+08 9.00E+07 8.00E+07
	6	9.00E+07 8.00E+07
		3.00E+07
	<u><u> </u></u>	
	-2-	7.00E+07
	<u> </u>	5.00E+07
	· · · · · · · · · · · · · · · · · · ·	5.00E+07
		4.00E+07
	· ŕ .	3.00E+07
		2.00E+07
		1.00E+07
	0	0.00E+00
	I	·1.00E+07
	H-2	·2.00E+07

7a, ¹³C NMR (100 MHz, DMSO-*d*₆):

7b, ¹H NMR (400 MHz, CDCl₃):

8, ¹H NMR (400 MHz, CDCl₃):

8, ¹³C NMR (100 MHz, CDCl₃):

8, COSY (400 MHz, CDCl₃):

(mqq) fì

8, HSQC (400 MHz, CDCl₃):

8, HMBC (400 MHz, CDCl₃):

8, H2BC (400 MHz, CDCl₃):

9a, ¹H NMR (400 MHz, CDCl₃):

9a, ¹³C NMR (100 MHz, CDCl₃):

9b, ¹³C NMR (100 MHz, CDCl₃):

9d, ¹H NMR (400 MHz, CDCl₃):

9d, ¹³C NMR (100 MHz, CDCl₃):

S52

9d, ¹³C NMR (100 MHz, CDCl₃), partially enlarged showing the C-F splitting peaks (100-150 ppm):

11a, ¹H NMR (400 MHz, CDCl₃):

11a, ¹³C NMR (100 MHz, CDCl₃):

11b, ¹³C NMR (100 MHz, CDCl₃):

12a, ¹H NMR (400 MHz, CDCl₃):

12a, ¹³C NMR (100 MHz, CDCl₃):

12b, ¹³C NMR (100 MHz, CDCl₃):

12c, ¹H NMR (400 MHz, CDCl₃):

12c, ¹³C NMR (100 MHz, CDCl₃):

14a, ¹H NMR (400 MHz, CDCl₃):

14a, ¹³C NMR (100 MHz, CDCl₃):

14b, ¹H NMR (400 MHz, CDCl₃):

15a, ¹H NMR (400 MHz, CDCl₃):

15a, ¹³C NMR (100 MHz, CDCl₃), partially enlarged showing C-F splitting peaks (120-140 ppm):

S72

15c, ¹H NMR (400 MHz, CDCl₃):

15c, ¹³C NMR (100 MHz, CDCl₃):

15d, ¹³C NMR (100 MHz, CDCl₃):

