Electronic Supplementary Information

for

Chemoselective Acylation of Benzimidazoles with Phenylacetic Acids under Different Cu Catalysts to Fused Five-Membered N-Heterocycles or Tertiary

Amides

Shaoyu Mai^{a, b}, Yingwei Zhao^a and Qiuling Song^{a, c*}

^a Institute of Next Generation Matter Transformation, College of Chemical Engineering at Huaqiao University

^b College of Materials Science at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China

^c Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China Fax: 86-592-6162990; email: qsong@hqu.edu.cn

Table of Contents

General Considerations	S3
Experimental Procedures	S3
Mechanism Studies	S4
Optimization of Decarboxylative Amidation	S9
Characterization of Products	S10
References	S23
Crystal Structure of Product	S24
NMR Spectra of Products	S26

General Considerations

All experiments were conducted with a sealed pressure vessel. Flash column chromatography was performed over silica gel (200-300 mesh). ¹H NMR spectra were recorded on a Bruker AVIII-500M spectrometers, Chemical shifts (in ppm) were referenced to CDCl_3 ($\delta = 7.26$ ppm) or DMSO- d_6 ($\delta = 2.54$ ppm) as an internal standard. ¹³C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl_3 ($\delta = 77.0$ ppm) or DMSO- d_6 ($\delta = 40.45$ ppm). Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Experimental Procedures

1. General procedure for cyclization of benzoimidazoles with *ortho*-halogenated phenyl acetic acids

Condition A: A sealed pressure vessel was charged with 2-fluorophenylacetic acids (0.25 mmol), benzimidazoles (0.35mmol), $Cu(OAc)_2$ (3.6 mg, 0.025 mmol), $BF_3 \cdot Et_2O$ (7.1 mg, 0.05mmol), K_2CO_3 (69mg, 0.5mmol) and DMF (1 mL). The resulting solution was stirred at 120 °C under O_2 (O_2 was blowing into the system several times) monitored by TLC and GC for 18 hours. Upon completion of the reaction, the solvens were removed via rotary evaporator and the residue was purified with flash chromatography (silicagel, ethyl acetate: dichloromethane: petroleum ether: =1:1:4-1:1:10).

Condition A': A sealed pressure vessel was charged with 2-bromophenylacetic acid (0.25 mmol), benzimidazole (0.35mmol), CuI (9.5 mg, 0.05 mmol), DMEDA (8.8 mg, 0.1mmol), K₃PO₄ (106mg, 0.5mmol) and DMSO (1 mL). The resulting solution was stirred at 120 °C under O₂ (O₂ was blowing into the system several times) monitored by TLC and GC for 18 hours. Upon completion of the reaction, the solvents were removed via rotary evaporator and the residue was purified with flash chromatography to give corresponding product **3aa** (22 mg, 40%).(silicagel, ethyl acetate: dichloromethane: petroleum ether: =1:1:4).

2. General procedure for Decarboxylative Amidation Phenylacetic Acids with Benzimidazoles

Condition B: A sealed pressure vessel was charged with phenylacetic acids (0.25 mmol), benzimidazoles (0.5mmol), CuBr (3.6 mg, 0.025 mmol), pyridine (60 mg, 0.75mmol), and *o*-xylene (1 mL). The resulting solution was stirred at 130 °C under O_2 (O_2 was blowing into the system several times) monitored by TLC and GC for 24 hours. Upon completion of the

reaction, the solvents were removed via rotary evaporator and the residue was purified with flash chromatography (silicagel, ethyl acetate: petroleum ether=1:4-1:10).

Mechanism Studies

The Mechanism Studies of cyclization of benzoimidazoles with orthohalogenated phenyl acetic acids

Follow **Condition A**: a sealed pressure vessel was charged with 2-fluorobenzaldehyde (31mg, 0.25 mmol), benzimidazoles (38 mg, 0.35mmol), Cu(OAc)₂ (3.6 mg, 0.025 mmol), BF₃·Et₂O (7.1 mg, 0.05mmol), K₂CO₃ (69mg, 0.5mmol) and DMF (1 mL). The resulting solution was stirred at 120 °C under O₂ (O₂ was blowing into the system several times) monitored by TLC and GC for 18 hours. After cooling to room temperature, solvents were evaporated under reduced pressure and the residue was purified by chromatography on silica gel with ethyl acetate: dichloromethane: petroleum ether (1:1:4) to give corresponding product **3aa** (47 mg, 85%) (eq. 1).

Follow Condition B, no aimed amide product 4a'a was detected. (eq. 2)

Further study to perform the intramolecular annulation of N-arylation intermediate under Cu/O_2 Condition A afforded **3aa** in nearly quantitative yield (eq. 3).

Follow Condition A': A sealed pressure vessel was charged with 2-(2-bromophenyl)-2oxoacetic acid (7) (0.25 mmol), benzimidazole (0.35mmol), CuI (9.5 mg, 0.05 mmol), DMEDA (8.8 mg, 0.1mmol), K₃PO₄ (106mg, 0.5mmol) and DMSO (1 mL). The resulting solution was stirred at 120 °C under O₂ (O₂ was blowing into the system several times) monitored by TLC and GC for 18 hours. Upon completion of the reaction, the solvents were removed via rotary evaporator and the residue was purified with flash chromatography to give corresponding product **3aa** (21 mg, 38%) (silica gel, ethyl acetate: dichloromethane: petroleum ether: =1:1:4) (eq. 4).

The Mechanism Studies of Decarboxylative Amidation Phenylacetic Acids with Benzimidazoles

1. Radical Trapping Experiments

A sealed pressure vessel was charged with phenylacetic acid (0.25 mmol), benzimidazole (0.5mmol), CuBr (3.6 mg, 0.025 mmol), pyridine (60 mg, 0.75mmol), TEMPO (0.5 mmol) or BHT (0.5 mmol) and *o*-xylene (1 mL) (eq. 5 and 6). The resulting solution was stirred at 130 °C under O_2 monitored by TLC and GC for 24 hours. After cooling down to room temperature, the mixture was measured by GC without further purification. The reactions were mostly inhibited, which indicate that a radical pathway might be involved in this reaction.

2. Labeling Experiments (¹⁸O labeling experiment under ¹⁸O₂.)

A sealed pressure vessel was charged with phenylacetic acid **1f** (0.25 mmol), benzimidazole **2a** (0.5mmol), CuBr (3.6 mg, 0.025 mmol), pyridine (60 mg, 0.75mmol), and o-xylene (1 mL). The resulting solution was stirred at 130 °C under ¹⁸O₂ for 24 hours. Upon completion of the reaction, the solvents were removed via rotary evaporator and the residue was purified with flash chromatography (silica gel, ethyl acetate: petroleum ether=1:4) to give 42 mg of **4fa** in 76% isolated yield as a white solid. Then the amide **4fa** was determined by GC-MS and HRMS (Figure 1). In these cases, part of carbonyl oxygen atom of **4fa** was labeled. The ratio of **4fa**-¹⁸O: **4fa**-¹⁶O = 43: 57 (eq. 7).

Figure S1. ¹⁸O labeling experiment under ¹⁸O₂ measured by GC-MS.

3. Control Experiments

If only phenylacetic acid (1f) was exposed under the standard conditions without benzimidazole, benzaldehyde and benzoic acid (8) can be detected by GC-MS and some unknown products (eq. 9). Pyridine N-oxide was applied to the phenylacetic acid standard conditions in the presence/absence of dioxygen, yet only trace amount of desired product 4fa ever detected, thus it was ruled out possible pathway was as а

In order to figure out which step, S_NAr or aerobic oxidative decarboxylative acylation, occurred first in this tandem process, both compounds **10** and **11** were prepared¹⁹ and subjected to Condition A, desired product were obtained in 68% and 85% yield. However, compound **11** was not observed or detected under either Condition A or Condition B, so we have reasons to believe that SNAr reaction occurred first to lead to C-N bond formation in the tandem process.

Trace amounts of product **4fa** was obtained from compound **12**² (eq. 8), suggesting this compound is also not the intermediate.

Furthermore, no desired or trace amounts of product **4fa** was obtained from the reaction between benzaldehyde, benzyl alcohol (**13**), and 2-hydroxyphenylacetic acid (**14**) with benzimidazole (**2a**) (eqs 13-15), revealing that these three compounds are not intermediate for this reaction. The reactions of 2-oxo-2-phenylacetic acid (**15**) and benzoic acid (**8**) with benzimidazole (**2a**) under Condition B were also investigated and the desired product **4fa** was obtained in 25% and 56% yields respectively (eq.s 16 and 17). These two results indicated that they might be the potential intermediates in the reaction transformation. However, the yields were quite low compared with the ones under the standard conditions (79%).

Compounds **4a'a** and **4aa** were subjected under Condition A, no reaction occurred (eqs. 18 and 19).

In order to figure out whether peroxycarboxylate acts as our key intermediate, the readily available *m*CPBA (3-chloroperoxybenzoic acid) (9) was carried out under the standard conditions and corresponding product **4pa** was obtained in 49% (eq 18). Compared to the isolated yield from *m*-Chlorophenylacetic acid (main text, Scheme 3, **4pa**, 41%), we have reasons to believe that the above proposed mechanism is plausible

Optimization of Decarboxylative Amidation Phenylacetic Acids with

	H H C COOH	+	N Cu salt, N solvent, H time, atm 2a	iligand temp. osphere	O U V N N Afa	
entry	catalyst (mol%)	atmosphere	ligand (equiv.)	temperature	solvent	yield of 3 (%) ^b
1	Cul (10)	O ₂	pyridine (3)	130 °C	<i>p-</i> Xylene	68
2	CuCl (10)	O ₂	pyridine (3)	130 °C	<i>p-</i> Xylene	trace
3	CuBr (10)	O ₂	pyridine (3)	130 °C	<i>p</i> -Xylene	75
4	CuBr (10)	O ₂	pyridine (3)	130 °C	o-Xylene	91(79) ^c
5	FeBr ₃ (10)	O ₂	pyridine (3)	130 °C	o-Xylene	trace
6	CuBr (10)	O ₂	Et ₃ N (3)	130 °C	o-Xylene	0
7	CuBr (10)	O ₂	bi-pyridine (3)	130 °C	o-Xylene	0
8	CuBr (10)	O ₂	1, 10-Phen (3)	130 °C	o-Xylene	0
9	CuBr (10)	O ₂	pyridine (3)	130 °C	PhCl	77
10	CuBr (10)	O ₂	pyridine (3)	130 °C	<i>m</i> -Xylene	39
11 ^d	CuBr (10)	O ₂	pyridine (3)	130 °C	o-Xylene	81
12	CuBr (10)	O ₂	pyridine (3)	120 °C	o-Xylene	11
13	CuBr (10)	O ₂	pyridine (3)	140 °C	o-Xylene	75
14	CuBr (10)	N ₂	pyridine (3)	130 °C	o-Xylene	no product
15	CuBr (10)	air	pyridine (3)	130 °C	o-Xylene	74

Benzimidazoles

Reaction Conditions: ^{*a*} phenylacetic acid (**1f**, 0.25 mmol), benzoimidazole (**2a**, 0.5 mmol), Cu salt (10 mol%), ligand, solvent (1 mL), 24 h, temp., corresponding atmosphere. ^{*b*} GC yield. ^{*c*} Isolated yield. ^{*d*} 20 h.

Characterization of Products

11H-benzo[4,5]imidazo[1,2-a]indol-11-one (CAS:138479-49-9)^{3,4}

O 3aa (3a'a)

A sealed pressure vessel was charged with 2-fluorobenzaldehyde (31mg, 0.25 mmol), benzimidazoles (38mg, 0.35mmol), Cu(OAc) ₂ (3.6 mg, 0.025 mmol), BF₃ • Et₂O (7.1 mg, 0.05mmol), K₂CO₃ (69mg, 0.5mmol) and DMF (1 mL). The resulting solution was stirred at 120 °C under O₂ (O₂ was blowing into the system several times). After cooling to room temperature, solvents were evaporated under reduced pressure and the residue was purified by chromatography on silica gel with ethyl acetate: dichloromethane : petroleum ether (1:1:4) to give **11H-benzo[4,5]imidazo[1,2-a]indol-11-one 3aa** yellow solid (44 mg, 80%). ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.2 Hz, 1H), 7.65 (d, *J* = 7.4 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 8.1 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.30 (t, *J* = 8.1 Hz, 2H), 7.19 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 179.81 (s), 148.95 (s), 148.79 (s), 123.91 (s), 111.65 (s), 129.89 (s), 127.97 (s), 127.34 (s), 125.91 (s), 125.81 (s), 124.40 (s), 123.91 (s), 111.65 (s),

2-methyl-11H-benzo[4,5]imidazo[1,2-a]indol-11-one

111.13 (s).

Yellow solid (32mg, 54%).¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 8.2 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.38 – 7.34 (m, 1H), 7.30 (ddd, J = 8.3, 7.2, 1.1 Hz, 1H), 7.18 (d, J = 7.9 Hz, 1H), 2.34 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 180.07 (s), 149.14 (s), 148.70 (s), 141.04 (s), 136.85 (s), 136.03 (s), 129.89 (s), 127.80 (s), 127.43 (s), 126.37 (s), 124.21 (s), 123.86 (s), 111.35 (s), 111.07 (s), 20.99 (s). HRMS m/z (EI) calcd. For C₁₅H₁₀N₂O: 234.0790; found: 234.0793.

3-methoxy-11H-benzo[4,5]imidazo[1,2-a]indol-11-one (new compound)

Yellow solid (31mg, 50%). ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 8.1 Hz, 1H), 7.49 – 7.44 (m, 1H), 7.32 (ddd, J = 8.3, 7.2, 1.1 Hz, 1H), 6.83 (d, J = 2.1 Hz, 1H), 6.62 (dd, J = 8.4, 2.1 Hz, 1H), 3.95 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 178.53 (s), 166.96 (s), 150.30 (s), 148.75 (s), 145.28 (s), 129.93 (s), 128.02 (s), 127.64 (s), 124.26 (s), 123.87 (s), 120.55 (s), 110.95 (s), 108.77 (s), 99.89 (s), 56.26 (s).HRMS m/z (EI) calcd. For C₁₅H₁₀N₂O₂: 250.0749; found: 250.0742

3-phenyl-11H-benzo[4,5]imidazo[1,2-a]indol-11-one

Yellow solid (33mg, 45%). ¹H NMR (500 MHz, CDCl₃) δ 8.26 (d, J = 8.3 Hz, 1H), 8.09 (d, J = 7.8 Hz, 1H), 8.01 (dd, J = 11.9, 4.9 Hz, 3H), 7.91 – 7.80 (m, 5H), 7.76 (dd, J = 7.8, 1.3 Hz, 1H), 7.69 (dd, J = 11.4, 4.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 179.48 (s), 150.38 (s), 149.60 (s), 148.92 (s), 144.02 (s), 139.35 (s), 129.28 (s), 129.22 (s), 127.94 (s), 127.24 (s), 126.26 (s), 126.14 (s), 124.64 (s), 124.44 (s), 124.04 (s), 111.20 (s), 110.50 (s). HRMS m/z (EI) calcd. For C₂₀H₁₂N₂O: 296.0950; found: 296.0949.

2-fluoro-11H-benzo[4,5]imidazo[1,2-a]indol-11-one

Yellow solid (24mg, 40%). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 1H), 7.60 – 7.47 (m, 2H), 7.44 – 7.37 (m, 1H), 7.37 – 7.28 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 178.75 (s), 161.56 (s), 159.58 (s), 149.14 (s), 148.75 (s), 139.37 (s), 129.86 (s), 128.84 (s), 128.32 (s), 124.39 (d, J = 53.5 Hz), 122.69 (d, J = 24.5 Hz), 113.72 (d, J = 25.1 Hz), 112.68

(d, J = 7.7 Hz), 110.94 (s). HRMS m/z (EI) calcd. For C₁₄H₇N₂OF: 238.0543; found: 238.0542.

2-chloro-11H-benzo[4,5]imidazo[1,2-a]indol-11-one(CAS: 1632464-25-5)⁴

Yellow solid (29mg, 45%). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.3 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 8.2 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.39 – 7.34 (m, 2H), 7.21 (dd, *J* = 8.0, 1.7 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 178.52 (s), 148.87 (s), 144.00 (s), 142.98 (s), 129.74 (s), 128.32 (s), 126.83 (s), 125.97 (s), 125.77 (s), 124.82 (s), 124.20 (s), 112.55 (s), 111.11 (s). HRMS m/z (EI) calcd. For C₁₄H₇N₂OCl: 254.0252; found: 254.0251.

2-bromo-11H-benzo[4,5]imidazo[1,2-a]indol-11-one

Yellow solid (46mg, 62%). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.3 Hz, 1H), 7.81 (d, *J* = 1.8 Hz, 1H), 7.74 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.54 (dt, *J* = 15.2, 7.8 Hz, 2H), 7.37 (dd, *J* = 11.2, 4.0 Hz, 1H), 7.27 (s, 1H).¹³C NMR (126 MHz, CDCl₃) δ 178.41 (s), 148.90 (s), 141.89 (s), 138.99 (s), 129.80 (s), 129.00 (s), 128.81 (s), 128.39 (s), 124.77 (s), 124.23 (s), 118.90 (s), 113.07 (s), 111.13 (s). HRMS m/z (EI) calcd. For C₁₄H₇N₂OBr: 297.9745; found: 297.9742.

3-bromo-11H-benzo[4,5]imidazo[1,2-a]indol-11-one (CAS:1632464-23-3)⁴

Yellow solid (36mg, 48%).¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 8.3 Hz, 1H), 7.62 – 7.49 (m, 4H), 7.42 – 7.34 (m, 2H).¹³C NMR (126 MHz, CDCl₃) δ 178.71 (s), 148.90 (s), 143.88 (s), 131.43 (s), 129.74 (s), 129.02 (s), 128.35 (s), 126.90 (s), 126.20 (s), 124.85 (s),

124.22 (s), 115.33 (s), 111.15 (s).

2-(trifluoromethyl)-11H-benzo[4,5]imidazo[1,2-a]indol-11-one

Yellow solid (25mg, 35%).¹H NMR (500 MHz, CDCl₃) δ 8.01 – 7.86 (m, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 178.26 (s), 149.06 (s), 145.28 (s), 133.99 (dd, J = 7.6, 3.9 Hz), 129.80 (s), 128.68 (s), 128.65 (s), 128.38 (s), 127.70 (s), 125.18 (s), 124.41 (s), 124.30 (s), 123.12 (q, J = 3.7 Hz), 111.74 (s), 111.24 (s). HRMS m/z (EI) calcd. For C₁₅H₇N₂OF₃: 288.0505; found: 288.0510.

8-methyl-11H-benzo[4,5]imidazo[1,2-a]indol-11-one

Yellow solid (44mg, 76%). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 1H), 7.62 (ddd, *J* = 11.7, 5.9, 5.3 Hz, 3H), 7.56 (tdd, *J* = 7.7, 2.2, 1.3 Hz, 2H), 7.38 (d, *J* = 8.3 Hz, 1H), 7.32-7.23 (m, 5H), 7.17 (td, *J* = 7.5, 3.2 Hz, 2H), 7.09 (dd, *J* = 8.4, 1.0 Hz, 1H), 2.50 (s, 3H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 179.85 (s), 179.71 (s), 149.17 (s), 148.93 (s), 148.60 (s), 147.02 (s), 143.23 (s), 143.15 (s), 138.83 (s), 136.61 (s), 136.55 (s), 134.44 (s), 130.15 (s), 129.69 (s), 127.98 (s), 127.52 (s), 127.38 (s), 126.25 (s), 125.82 – 125.59 (m), 123.35 (d, *J* = 8.8 Hz), 111.58 (s), 111.49 (s), 110.92 (s), 110.56 (s), 22.17 (s), 21.58 (s). HRMS m/z (EI) calcd. For C₁₅H₁₀N₂O : 234.0785; found: 234.0793.

7,8-dimethyl-11H-benzo[4,5]imidazo[1,2-a]indol-11-one (CAS: 138479-56-8)⁴

Yellow solid (37mg, 60%).¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 7.4 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.28 (d, J = 7.1 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 179.78 (s), 148.77 – 148.00 (m), 147.60 (s), 143.28 (s), 138.28 (s), 136.44 (s), 133.91 (s), 128.58 (s), 127.65 (s), 125.62 (d, J = 3.4 Hz), 123.52 (s), 111.45 (s), 111.16 (s), 20.97 (s), 20.40 (s).

8-methoxy-11H-benzo[4,5]imidazo[1,2-a]indol-11-one

Yellow solid (62mg, 84%) ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 8.9 Hz, 1H), 7.62 (t, J = 7.7 Hz, 2H), 7.55 (tdd, J = 7.7, 4.3, 1.1 Hz, 2H), 7.39 (d, J = 8.9 Hz, 1H), 7.26 – 7.21 (m, 3H), 7.17 (dd, J = 13.2, 7.4 Hz, 2H), 7.09 (dd, J = 8.9, 2.4 Hz, 1H), 6.92 – 6.86 (m, 2H), 3.91 (s, 3H), 3.85 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 179.60 (s), 179.20 (s), 160.53 (s), 157.39 (s), 149.88 (s), 149.08 (s), 148.36 (s), 143.44 (s), 143.14 (s), 142.85 (s), 136.48 (s), 136.32 (s), 130.90 (s), 127.76 (s), 127.37 (s), 125.82 (s), 125.79 (s), 125.69 (s), 125.65 (s), 124.60 (s), 124.51 (s), 119.07 (s), 114.38 (s), 111.47 (s), 111.45 (s), 111.23 (s), 104.58 (s), 93.89 (s), 55.92 (s), 55.73 (s). HRMS m/z (EI) calcd. For C₁₅H₁₀N₂O₂: 250.0739; found: 250.0742.

8-chloro-11H-benzo[4,5]imidazo[1,2-a]indol-11-one 9H-imidazo[1,2-a]indol-9-one

Yellow solid (32mg, 50%) ¹H NMR (500 MHz, CDCl₃) δ 7.87 (s, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.74 – 7.69 (m, 2H), 7.67 – 7.61 (m, 2H), 7.59 (s, 1H), 7.48 (dd, *J* = 24.9, 8.2 Hz, 2H), 7.37 – 7.29 (m, 3H), 7.28 – 7.21 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 179.48 (s), 179.41 (s), 149.90 (s), 149.57 (s), 149.47 (s), 147.37 (s), 142.92 (s), 142.79 (s), 136.93 (s), 133.94 (s), 130.25 (s), 130.02 (s), 128.50 (s), 127.31 (s), 127.19 (s), 126.37 (s), 126.35 (s), 126.13 (s), 125.29 (s), 124.76 (s), 123.56 (s), 111.82 (s), 111.78 (s), 111.69 (s), 111.28 (s). HRMS m/z (EI) calcd. For C₁₄H₇N₂OCl : 254.0255; found: 254.0247.

9H-imidazo[1,2-a]indol-9-one (CAS: 120614-25-7)^{3,4}

Yellow solid (24mg, 56%) ¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, J = 7.4, 0.7 Hz, 1H), 7.51 (td, J = 7.8, 1.2 Hz, 1H), 7.37 (d, J = 1.0 Hz, 1H), 7.26 (d, J = 1.0 Hz, 1H), 7.22 (td, J = 7.8, 0.8 Hz, 1H), 7.15 (d, J = 7.7 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 177.76 (s), 146.00 (s), 141.41 (s), 137.40 (s), 135.60 (s), 128.27 (s), 127.26 (s), 125.33 (s), 115.19 (s), 111.62 (s).

(1H-benzo[d]imidazol-1-yl)(2-fluorophenyl)methanone (CAS:314055-15-7)⁵

A sealed pressure vessel was charged with 2-fluorophenylacetic acids (0.25 mmol), benzimidazoles (0.5mmol), CuBr (3.6 mg, 0.025 mmol), pyridine (60 mg, 0.75mmol), and *o*-xylene (1 mL). The resulting solution was stirred at 130 °C under O₂ (O₂ was blowing into the system several times) for 24 hours. After cooling to room temperature, solvents were evaporated under reduced pressure and the residue was purified by chromatography on silica gel with ethyl acetate: dichloromethane : petroleum ether (1:1:4) to give **4a'a** as white solid (44 mg, 40%). ¹H NMR (500 MHz, CDCl₃) δ 8.25 (dd, *J* = 6.9, 2.0 Hz, 1H), 8.06 (d, *J* = 2.8 Hz, 1H), 7.83 (dd, *J* = 6.8, 2.0 Hz, 1H), 7.71-7.64 (m, 2H), 7.49-7.43 (m, 2H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.32-7.27 (m, 1H).¹³C NMR (126 MHz, CDCl₃) δ 162.96 (s), 160.21 (s), 158.19 (s), 144.07 (s), 142.70 (d, *J* = 2.8 Hz), 134.45 (d, *J* = 8.3 Hz), 130.50 (d, *J* = 1.9 Hz), 126.01 (s), 125.56 (s), 125.05 (d, *J* = 3.6 Hz), 121.68 (d, *J* = 14.8 Hz), 120.58 (s), 116.80 (d, *J* = 20.9 Hz), 115.47 (s).

(1H-benzo[d]imidazol-1-yl)(2-bromophenyl)methanone(CAS:326901-39-7)⁵

Yellow oil (33 mg, 44%).¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, J = 5.1 Hz, 1H), 7.90 (s, 1H), 7.86-7.80 (m, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.56-7.44 (m, 5H).¹³C NMR (126 MHz, CDCl₃) δ 165.31 (s), 144.29 (s), 142.71 (s), 135.36 (s), 133.63 (s), 132.71 (s), 131.33 (s), 129.22 (s), 127.93 (s), 126.11 (s), 125.63 (s), 120.67 (s), 119.76 (s), 115.49 (s).

(1H-benzo[d]imidazol-1-yl)(2-chlorophenyl)methanone (CAS:331429-94-8)⁵

White solid (29 mg, 46%). ¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, J = 5.8 Hz, 1H), 7.91 (s, 1H), 7.83 (dd, J = 6.5, 2.3 Hz, 1H), 7.58 (ddd, J = 7.9, 6.1, 1.2 Hz, 3H), 7.52-7.43 (m, 3H).¹³C NMR (126 MHz, CDCl₃) δ 164.61 (s), 144.26 (s), 142.66 (s), 133.18 (s), 132.70 (s), 131.47 (s), 131.35 (s), 130.52 (s), 129.27 (s), 127.43 (s), 126.10 (s), 125.62 (s), 120.66 (s), 115.47 (s).

(1H-benzo[d]imidazol-1-yl)(2-methoxyphenyl)methanone(CAS: 816441-32-4)7

White oil (29 mg, 83%). ¹H NMR: (500 MHz, CDCl₃, ppm) δ 8.27-8.25 (m, 1 H), 7.97 (s, 1 H), 7.81-7.79 (m, 1 H), 7.60 -7.53(m, 2 H), 7.46–7.40 (m, 2 H); 7.15-7.12 (m, 1H), 7.07-7.05 (m, 1H), 3.78(s, 3H); ¹³C NMR: (125 MHz, CDCl₃, ppm).) δ 165.81, 156.49, 144.09, 143.59, 133.48, 131.58, 129.91, 125.68, 125.12, 122.93, 121.15, 120.32, 115.50, 111.60, 55.71.

(1H-benzo[d]imidazol-1-yl)(3-methoxyphenyl)methanone (CAS: 349111-08-6)⁵

White solid (47 mg, 75%). ¹H NMR (500 MHz, CDCl₃) δ 8.25 (s, 1H), 8.22 – 8.18 (m, 1H), 7.86 – 7.82 (m, 1H), 7.50 – 7.41 (m, 3H), 7.35 – 7.31 (m, 2H), 7.23 – 7.19 (m, 1H), 3.87 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 166.87 (s), 159.91 (s), 143.97 (s), 143.08 (s), 133.99 (s), 132.05 (s), 130.05 (s), 125.74 (s), 125.27 (s), 121.63 (s), 120.47 (s), 119.34 (s), 115.45 (s), 114.33 (s), 55.54 (s).

(1H-benzo[d]imidazol-1-yl)(m-tolyl)methanone (CAS:325811-40-3)⁵

White solid (36 mg, 75%). ¹H NMR (500 MHz, CDCl₃) δ 8.17 (dd, J = 6.0, 3.0 Hz, 1H), 7.97 (s, 1H), 7.83 (dd, J = 6.0, 3.1 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.47 – 7.41 (m, 3H), 7.37 (dd, J = 16.6, 8.1 Hz, 2H), 2.40 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 167.58 (s), 144.20 (s), 143.00 (s), 136.75 (s), 132.94 (s), 131.61 (s), 131.36 (s), 127.92 (s), 126.03 (s), 125.84 (s), 125.34 (s), 120.56 (s), 115.43 (s), 19.47 (s).

(1H-benzo[d]imidazol-1-yl)(phenyl)methanone (CAS: 62573-86-8) ⁴

White solid (44 mg, 79%). ¹HNMR: (500 MHz, CDCl₃, ppm) δ8.22(s, 1 H), 8.21–8.19 (m, 1 H), 7.85–7.83 (m, 1 H), 7.82-7.80(m, 2 H), 7.71–7.68 (m, 1 H), 7.61–7.58 (m, 2 H), 7.47–7.42 (m, 2 H); ¹³CNMR: (125 MHz, CDCl₃, ppm).) δ 167.1, 144.0, 143.1, 133.2,132.8, 132.1, 129.5, 129.0, 125.8, 125.3, 120.5, 115.4.

(1H-benzo[d]imidazol-1-yl)(4-methoxyphenyl)methanone (CAS:13361-55-2)⁷

White solid (54 mg, 85%). ¹H NMR (500 MHz, CDCl₃) δ 8.27 (s, 1H), 8.13 (dd, J = 6.5, 2.6 Hz, 1H), 7.86 – 7.78 (m, 3H), 7.46 – 7.40 (m, 2H), 7.06 (d, J = 8.8 Hz, 2H), 3.92 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 166.41 (s), 163.74 (s), 143.99 (s), 143.08 (s), 132.28 (s), 132.13 (s), 125.50 (s), 124.98 (s), 124.73 (s), 120.45 (s), 115.25 (s), 114.36 (s), 55.64 (s).

(1H-benzo[d]imidazol-1-yl)(4-(tert-butyl)phenyl)methanone (CAS: 20208-57-5) ⁶

White solid (49 mg, 70%) ¹HNMR: (500 MHz, CDCl₃, ppm)δ8.26 (s, 1 H), 8.23–8.21 (m, 1 H), 7.85-7.83 (m, 1 H), 7.77-7.75(m, 2 H), 7.61–7.59 (m, 2 H), 7.47–7.41 (m, 2 H), 1.39(s, 9 H); ¹³CNMR: (125 MHz, CDCl₃, ppm).) δ 167.1, 157.2, 144.1, 143.2, 132.2, 130.0, 129.7, 126.0, 125.7, 125.1, 120.5, 115.5, 35.3, 31.1.

(1H-benzo[d]imidazol-1-yl)(p-tolyl)methanone (CAS: 28997-00-4)⁶

White solid (34 mg, 57%). ¹HNMR: (500 MHz, CDCl₃, ppm) δ8.24 (s, 1 H), 8.19-8.17 (m, 1 H), 7.84-7.83 (m, 1 H), 7.72-7.71(m, 2 H), 7.46-7.41 (m, 2 H), 7.39-7.38 (m, 2 H), 2.49 (s, 1 H); ¹³CNMR: (125 MHz, CDCl₃, ppm).) δ 167.1, 144.3, 144.1, 143.1,132.2, 130.0, 129.8, 129.7, 125.6, 125.1, 120.5, 115.4, 21.7.

(1H-benzo[d]imidazol-1-yl)(4-fluorophenyl)methanone (CAS: 154786-24-0) ⁶

White solid (47 mg, 45%). ¹H NMR: (500 MHz, CDCl₃, ppm) δ 8.21 (s, 1 H), 8.16-8.14 (m, 1 H), 7.87-7.83 (m, 3 H), 7.48-7.42(m, 2 H), 7.30-7.27 (m, 2 H); ¹³C NMR: (125 MHz, CDCl₃, ppm).) δ165.88, 165.61(d, *J*= 254.63Hz), 144.06, 142.73, 132.23(d, *J*= 9.13Hz), 132.09, 129.50(d, *J*= 3.38Hz), 125.83, 125.35, 120.64, 116.45(d, *J*= 22.13Hz), 115.34.

(1H-benzo[d]imidazol-1-yl)(4-chlorophenyl)methanone (CAS:71589-37-2) ⁶

White solid (33 mg, 52%). ¹H NMR: (500 MHz, CDCl₃, ppm) δ 8.19 (s, 1 H), 8.17–8.15 (m, 1 H), 7.85-7.83 (m, 1 H), 7.78 -7.75(m, 2 H), 7.59–7.57 (m, 2 H); 7.48-7.43 (m, 2H) ; ¹³C NMR: (125 MHz, CDCl₃, ppm).) δ 166.00, 144.00, 142.66, 139.86, 131.96, 131.07, 130.94, 129.46, 125.90, 125.43, 120.63, 115.36.

(1H-benzo[d]imidazol-1-yl)(4-bromophenyl)methanone (CAS: 304668-33-5) ⁶

White solid (38 mg, 50%). ¹H NMR: (500 MHz, CDCl₃, ppm) δ 8.18 (s, 1 H), 8.17-8.13 (m, 1

H), 7.85-7.81 (m, 1 H), 7.75 -7.73(m, 2 H), 7.69-7.66 (m, 2 H); 7.47-7.42 (m, 2H); ¹³C NMR: (125 MHz, CDCl₃, ppm).) δ 166.08, 144.03, 142.61, 132.41, 131.96, 131.58, 130.96, 128.35, 125.88, 125.42, 120.63, 115.35.

(1H-benzo[d]imidazol-1-yl)(naphthalen-1-yl)methanone (CAS: 26670-22-4) ⁶

White solid (41 mg, 60%). ¹H NMR: (500 MHz, CDCl₃, ppm) δ 8.32-8.30 (m, 1H), 8.12–8.10 (m, 1H), 8.00-7.96 (m, 3H), 7.86 -7.84(m, 1H), 7.74-7.72 (m, 1H); 7.62-7.55(m, 3H), 7.50-7.46 (m, 2H); ¹³C NMR: (125 MHz, CDCl₃, ppm).) δ 167.06, 144.21, 143.18, 133.57, 132.42, 131.83, 130.58, 130.19, 128.67, 128.13, 127.35, 127.14, 125.90, 125.42, 124.53, 124.48, 120.60, 115.64.

(1H-benzo[d]imidazol-1-yl)(naphthalen-2-yl)methanone (new compound)

White solid (51 mg, 75%). ¹H NMR: (500 MHz, CDCl₃, ppm) δ 8.33-8.32 (m, 2 H), 8.23-8.22 (m, 1 H), 8.05-8.04 (m, 1 H), 7.98 -7.96(m, 2 H), 7.88–7.86 (m, 2 H); 7.70-7.67(m, 1H), 7.65-7.62 (m, 1H), 7.49-7.44 (m, 2H); ¹³C NMR: (125 MHz, CDCl₃, ppm).) δ 167.16, 144.03, 143.22, 135.31, 132.20, 131.11, 129.90, 129.19, 128.99, 127.98, 127.56, 125.78, 125.28, 125.03, 120.55, 115.44. HRMS m/z (EI) calcd. for C9H10F3O2 M+ 272.0950, found 272.0953.

[1,1'-biphenyl]-4-yl(1H-benzo[d]imidazol-1-yl)methanone (CAS: 349407-41-6)⁶

White solid (46 mg, 62%). ¹H NMR (500 MHz, CDCl₃) δ 8.31 (s, 1H), 8.25 – 8.20 (m, 1H), 7.90 (d, J = 8.3 Hz, 2H), 7.88 – 7.84 (m, 1H), 7.81 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 7.2 Hz, 2H), 7.56 – 7.41 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.84, 146.19, 144.09, 143.03,

139.32, 132.17, 131.35, 130.24, 129.09, 128.58, 127.64, 127.30, 125.74, 125.25, 120.56, 115.44.

(1H-benzo[d]imidazol-1-yl)(3-chlorophenyl)methanone(CAS :200626-53-5)⁷

White solid (26 mg, 41%). ¹H NMR (500 MHz, CDCl₃) δ 8.23 (s, 1H), 8.21-8.18 (m, 1H), 7.86-7.83 (m, 1H), 7.82-7.79 (m, 2H), 7.72-7.68 (m, 1H), 7.61-7.57 (m, 2H), 7.48-7.41 (m, 2H).¹³C NMR (126 MHz, CDCl₃) δ 167.08 (s), 144.02 (s), 143.05 (s), 133.20 (s), 132.83 (s), 132.09 (s), 129.51 (s), 129.03 (s), 125.76 (s), 125.27 (s), 120.52 (s), 115.45 (s).

(1H-benzo[d]imidazol-1-yl)(3-bromophenyl)methanone(CAS:299418-27-2)⁷

White solid (45 mg, 47%).¹H NMR (500 MHz, CDCl₃) δ 8.21-8.15 (m, 2H), 7.96 (t, J = 1.6 Hz, 1H), 7.87-7.80 (m, 2H), 7.72 (d, J = 7.7 Hz, 1H), 7.49-7.42 (m, 3H).¹³C NMR (126 MHz, CDCl₃) δ 165.46 (s), 143.99 (s), 142.63 (s), 136.16 (s), 134.66 (s), 132.35 (s), 131.92 (s), 130.53 (s), 127.86 (s), 125.99 (s), 125.53 (s), 123.24 (s), 120.64 (s), 115.43 (s).

(1H-benzo[d]imidazol-1-yl)(thiophen-3-yl)methanone

White solid (30 mg, 52%). ¹HNMR: (500 MHz, CDCl₃, ppm)δ8.404 (s, 1 H), 8.21-8.20(m, 1 H), 8.074-8.066 (m, 1 H), 7.851-7.834(m,1 H), 7.586-7.574 (m, 1 H); 7.542-7.526 (m, 1H), 7.475-7.416(m, 2H); ¹³CNMR: (125 MHz, CDCl₃, ppm).) δ 161.46, 144.02, 142.53, 134.71, 133.22, 132.13, 128.20, 127.60, 125.74, 125.25, 120.56, 115.39. HRMS m/z (EI) calcd. for C9H10F3O2 M+ 228.0357, found 228.0361.

(1H-benzo[d]imidazol-1-yl)(3,4-dimethoxyphenyl)methanone (CAS:333347-80-1)⁸

White solid (53 mg, 75%).¹H NMR (500 MHz, CDCl₃) δ 8.30 (s, 1H), 8.12 (dd, J = 6.6, 2.2 Hz, 1H), 7.83 (dd, J = 6.4, 2.2 Hz, 1H), 7.47-7.36 (m, 4H), 6.99 (d, J = 8.2 Hz, 1H), 3.99 (s, 3H), 3.94 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 166.46 (s), 153.55 (s), 149.46 (s), 144.04 (s), 143.16 (s), 132.34 (s), 125.56 (s), 125.06 (s), 124.87 (s), 124.19 (s), 120.50 (s), 115.28 (s), 112.42 (s), 110.53 (s), 56.25 (s), 56.20 (s).

(1H-benzo[d]imidazol-1-yl)(mesityl)methanone (93330-85-9)9

White oil (30 mg, 46%).¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, *J* = 6.3 Hz, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.69 (s, 1H), 7.48 (dd, *J* = 17.4, 6.9 Hz, 2H), 6.99 (s, 2H), 2.37 (s, 3H), 2.21 (s, 6H).¹³C NMR (126 MHz, CDCl₃) δ 168.60 (s), 142.82 (s), 140.69 (s), 134.78 (s), 131.27 (s), 128.80 (s), 126.03 (s), 125.50 (s), 120.58 (s), 115.88 (s), 21.31 (s), 19.21 (s).

(1H-benzo[d]imidazol-1-yl)(3-fluoro-4-methoxyphenyl)methanone

White solid (66 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 8.26 (s, 1H), 8.18-8.14 (m, 1H), 7.86 (dd, J = 6.3, 2.5 Hz, 1H), 7.50-7.43 (m, 3H), 7.37 (ddd, J = 8.3, 4.2, 2.1 Hz, 1H), 7.28 (t, J = 5.2 Hz, 1H), 3.98 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 165.92 (s), 156.45 (s), 154.41 (s), 148.47 (d, J = 11.1 Hz), 144.05 (s), 142.79 (s), 132.09 (s), 129.14 (d, J = 3.9 Hz), 125.56 (d, J = 57.7 Hz), 122.96 (d, J = 7.9 Hz), 120.61 (s), 116.47 (d, J = 19.4 Hz), 115.31 (s), 114.67 (d, J = 3.2 Hz), 56.44 (s).HRMS m/z (EI) calcd. For C₁₅H₁₁FN₂O₂: 270.0805, found 270.0807.

(1H-benzo[d]imidazol-1-yl)(2-bromo-4-methoxyphenyl)methanone

White solid (35 mg, 42%). ¹H NMR (500 MHz, CDCl₃) δ 8.16 (dd, J = 6.6, 2.3 Hz, 1H), 7.97 (s, 1H), 7.82 (dd, J = 6.4, 2.4 Hz, 1H), 7.49 – 7.41 (m, 3H), 7.25 (d, J = 2.4 Hz, 1H), 7.02 (dd, J = 8.6, 2.4 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 165.34 (s), 162.30 (s), 144.30 (s), 142.97 (s), 131.49 (s), 130.90 (s), 127.27 (s), 125.95 (s), 125.44 (s), 121.23 (s), 120.58 (s), 119.04 (s), 115.42 (s), 113.79 (s), 55.87 (s).HRMS m/z (EI) calcd. For C₁₅H₁₁BrN₂O₂: 330.0004, found 329.9999.

(5,6-dimethyl-1H-benzo[d]imidazol-1-yl)(phenyl)methanone (CAS: 16109-46-9) ⁶

White solid (39 mg, 63%). ¹HNMR: (500 MHz, CDCl₃, ppm) δ8.09 (s, 1 H), 8.00 (s, 1 H), 7.80-7.78 (m, 2 H), 7.69-7.66(m,1 H), 7.59-7.56 (m, 3 H), 2.42(s, 3H), 2.40(s, 3H);¹³CNMR: (125 MHz, CDCl₃, ppm).) δ 167.11, 142.52, 142.37, 135.06, 134.30, 133.08, 132.99, 130.47, 129.46, 128.96, 120.53, 115.67, 20.53, 20.32.

(5-chloro-6-fluoro-1H-benzo[d]imidazol-1-yl)(phenyl)methanone

White solid (36 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, *J* = 6.7 Hz, 1H), 8.25 (d, *J* = 5.6 Hz, 2H), 8.07 (d, *J* = 8.9 Hz, 1H), 7.88 (d, *J* = 6.6 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 4H), 7.75 (t, *J* = 7.5 Hz, 2H), 7.63 (dd, *J* = 14.4, 8.2 Hz, 5H).¹³C NMR (126 MHz, CDCl₃) δ 166.63 (s)166.58 (s), 157.08 (d, *J* = 45.6 Hz)155.13 (d, *J* = 45.0 Hz), 144.54 (s), 144.10 (d, *J* = 3.4 Hz), 143.08 (s) 143.00 (s), 140.30 (s), 133.60 (d, *J* = 4.3 Hz), 132.11 (d, *J* = 3.2 Hz), 130.83 (s), 129.53 (s)129.19 (s), 128.51 (s), 121.64 (s)116.94 (s), 119.66 (d, *J* = 20.5 Hz)119.03 (d, *J* = 20.5 Hz), 107.61 (d, *J* = 24.3 Hz)103.74 (d, *J* = 29.0 Hz).HRMS m/z (EI) calcd. For C₁₄H₈CIFN₂O: 274.0309, found 274.0313.

References

- 1. Stephen L. Buchwald et al. J. Am. Chem. Soc. 2001, 123, 7727-7729
- 2. V. K. A. Kalalbandi et al. Eur. J. Med. Chem. 2014, 79, 194-202
- 3. Judi Rosevear and John E K. Wilshire, Aust. J. Chem., 1991, 44, 1097-1114.
- 4. Yang, J. et al. Chin. Chem. Lett. 2014, 27,340-344
- 5. Fuwei Li et al. Direct N-acylation of azoles via a metal-freecatalyzed oxidative crosscoupling strategy. *Chem. Comm.* **2014**, *50*, 4751-4754.
- 6. Ding, W.; Song, Q. Org. Chem. Front. 2015, 2, 765-770.
- 7. Ding, W.; Mai, S.; Song, Q. Beilstein. J. Org. Chem. 2015, 11, 2158-216
- 8. Dos Santos, Aurelie; El Kaim, Laurent; Grimaud, Laurence. Org. Biomol. Chem. 2013,11, 3282-3287.
- Mannschreck, A.; Staab, H. A.; Wurmb-Gerlich, D. *Tetrahedron Lett.* 1963, 29, 2003-2008

Crystal Structure of Product 3a'c

Prob = 50 Temp = 298

RES= 0 127 X

Crystal data and structure refinement for $3a^{\circ}c$.

Identification code	3a' c			
Empirical formula	$C_{16}H_{12}N_2O$			
Formula weight	248.28			
Temperature/K	298.15			
Crystal system	monoclinic			
Space group	$P2_1/c$			
a/Å	7.0964(5)			
b/Å	11. 9998 (8)			
c/Å	14. 4434 (11)			
α /°	90			
β / °	98. 551 (6)			
γ /°	90			
Volume/Å ³	1216. 27 (15)			
Z	4			
$ ho_{calc}g/cm^3$	1.356			
$\mu \ / mm^{-1}$	0. 087			
F (000)	520.0			
Crystal size/mm ³	$0.1 \times 0.1 \times 0.05$			
Radiation	MoK α ($\lambda = 0.71073$)			
2Θ range for data	6 64 to 57 908			
collection/°	0.04 10 57.908			
Index ranges	$-9 \leq h \leq 9$, $-14 \leq k \leq 16$, $-18 \leq$			
	$1 \leqslant 18$			
Reflections collected	8165			
Independent reflections	$2835 [R_{int} = 0.0303, R_{sigma} = 0.0384]$			
	S 24			

Data/restraints/parameters	2835/0/175		
Goodness-of-fit on F^2	1.051		
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0528, wR_2 = 0.1149$		
Final R indexes [all data]	$R_1 = 0.0793, wR_2 = 0.1286$		
Largest diff. peak/hole / e Å ⁻³	0.16/-0.15		

CCDC-

1464636 contains the supplementary crystallographic data for this paper.

These data can be obtained free of charge from The Cambridge Crystallo

graphic Data Centre via @www.ccdc.cam.ac.uk/data_request/cif.

NMR Spectra of Products

 $\begin{array}{c}
\mathsf{Ph} \\
\mathsf{N} \\
\mathsf{N} \\
\mathsf{N} \\
\mathsf{O} \\
\mathsf{3d'a}
\end{array}$

S 35

S 40

S 46

S 55

S 59

