Supporting Information

Rhodomentones A and B, Novel Meroterpenoids with Unique

NMR Characteristics from Rhodomyrtus tomentosa

Hong-Xin Liu,^{a,b} Kai Chen,^c Yao Yuan,^a Zhi-Fang Xu,^a Hai-Bo Tan*^a and Sheng-Xiang Qiu*^a

^aProgram for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

^bState Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China

^cSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

Corresponding author: Phone/Fax: +86-20-37081190

E-mail addresses: tanhaibo@scbg.ac.cn; sxqiu@scbg.ac.cn

Contents

S1. Computational methods	S3
Figure S2. ¹ H NMR spectrum (500 MHz, pyridine- <i>d</i> ₅ , at 353K) of 1	S36
Figure S3. ¹³ C NMR spectrum (125 MHz, pyridine- <i>d</i> ₅ , at 353K) of 1	S37
Figure S4. ¹ H NMR spectrum (500 MHz, pyridine- <i>d</i> ₅ , at 333K) of 1	S38
Figure S5. ¹ H NMR spectrum (500 MHz, pyridine- <i>d</i> ₅ , at 323K) of 1	S39
Figure S6. ¹ H NMR spectrum (500 MHz, CDCl ₃ , rt) of 1	S40
Figure S7. ¹³ C NMR spectrum (125 MHz, CDCl ₃ , rt) of 1	S41
Figure S8. ¹ H NMR spectrum (500 MHz, pyridine- <i>d</i> ₅ , at 263K) of 1	
Figure S9. ¹³ C NMR spectrum (125 MHz, pyridine- <i>d</i> ₅ , at 263K) of 1	S43
Figure S10. ¹ H NMR spectrum (500 MHz, pyridine- <i>d</i> ₅ , at 243K) of 1	S44
Figure S11. ¹³ C NMR spectrum (125 MHz, pyridine- <i>d</i> ₅ , at 243K) of 1	
Figure S12. ¹ H NMR spectrum (500 MHz, CDCl ₃ , at 223K) of 1	

Figure S13. ¹³ C NMR spectrum (125 MHz, CDCl ₃ , at 223K) of 1	S47
Figure S14. HSQC spectrum of 1	S48
Figure S15. HRESIMS spectrum of 1	S49
Figure S16. UV spectrum of 1	S50
Figure S17. ¹ H NMR spectrum (500 MHz, CDCl ₃) of 2	S51
Figure S18. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of 2	
Figure S19. ¹ H- ¹ H COSY spectrum (500 MHz, CDCl ₃) of 2	
Figure S20. HSQC spectrum of 2	
Figure S21. HMBC spectrum of 2	S55
Figure S22. NOESY spectrum of 2	
Figure S23. HRESIMS spectrum of 2	
Figure S24. UV spectrum of 2	S58
Figure S25. ¹ H NMR spectrum (500 MHz, CDCl ₃) of synthetic compound 4	
Figure S26. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of synthetic compound 4	S60
Figure S27. ¹ H NMR spectrum (500 MHz, CDCl ₃) of key intermediate i	S61
Figure S28. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of key intermediate i	S62
Figure S29. ¹ H NMR spectrum (500 MHz, CDCl ₃) of synthetic compound 1	S63
Figure S30. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of synthetic compound 1	S64
Figure S31. ¹ H NMR spectrum (500 MHz, CDCl ₃) of synthetic compound 2	S65
Figure S32. ¹³ C NMR spectrum (125 MHz, CDCl ₃) of synthetic compound 2	S66

S1. Computational methods.

Calculation Methods: Conformational search was performed with the help of TINKER7.1¹ by using OPLS-AA forcefield.² To access the global minimum, conformational search is carried out several times using different initial structures. All these structures were checked by python scripts and then optimized at HF/3-21G theoretical level using Gaussian09.³ Duplicate conformers were removed manually. Structures within 10 kcal/mol (electronic energy) from the most stable conformer at HF/3-21G theoretical level were further optimized at the b3lyp⁴/6-31G(d) theoretical level in gas phase. Then, single point calculations were performed in pyridine using SMD⁵ solvent model at b3lyp⁴/6-31G(d) theoretical level, and structures within 3 kcal/mol (electronic energy) from the most stable conformer at SMD(pyridine)-b3lyp/6-31G(d)/b3lyp/6-31G(d) level were selected. Finally, these selected structures were optimized at the SMD(pyridine)⁵-b3lyp⁴/6-31G(d) theoretical level, and frequency calculations were carried out to get the thermal corrections.

For all these optimized structures, dihedral angles of the nine-membered ring were analyzed. These structures could be classified into two clusters, and the most stable conformers of both clusters were selected. The transition structure connecting these two stable structures was successfully located and optimized at the SMD(pyridine)⁵-b3lyp⁴/6-31G(d) theoretical level.

References:

1). Ponder, J. W. Tinker 7, Washington University, St. Louis, http://dasher.wustl.edu/tinker/

2). Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B 2001, 105, 6474-6487.

Srisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
 Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;
 Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;
 Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
 Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers,
 E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.
 P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J.
 E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
 Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski,
 V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;
 Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Gaussian, Inc.: Wallingford,
 CT, USA, 2009.

4). a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648-5652; b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**, 37, 785-789.

5). Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2009, 113, 6378-6396.

1. Conformational sampling by scan program of tinker package.

1.1 Input xyz file for tinker

79									
1	С	-3.660000	-1.811000	0.793000	222	2	6	8	
2	С	-2.173000	-1.935000	1.086000	84	1	3	11	12
3	С	-1.355000	-0.825000	0.486000	86	2	4	19	
4	С	-1.833000	0.209000	-0.195000	86	3	5	13	
5	С	-3.244000	0.317000	-0.539000	222	4	6	7	
6	С	-4.161000	-0.860000	-0.270000	84	1	5	9	10
7	0	-3.685000	1.296000	-1.123000	223	5			
8	0	-4.435000	-2.532000	1.386000	223	1			
9	С	-5.569000	-0.364000	0.094000	80	6	33	34	35
10	С	-4.240000	-1.661000	-1.604000	80	6	36	37	38
11	С	-1.983000	-1.908000	2.622000	80	2	39	40	41
12	С	-1.687000	-3.305000	0.552000	80	2	42	43	44
13	С	-0.952000	1.331000	-0.689000	82	4	14	15	45
14	С	0.535000	0.891000	-0.721000	81	13	20	46	47
15	С	-1.216000	2.659000	0.090000	81	13	16	48	49
16	С	-1.688000	3.818000	-0.814000	82	15	17	18	50
17	С	-2.117000	5.016000	0.054000	80	16	51	52	53
18	С	-0.583000	4.259000	-1.793000	80	16	54	55	56
19	0	-0.047000	-1.000000	0.769000	122	3	20		
20	С	1.006000	-0.008000	0.444000	126	14	19	21	28
21	С	1.170000	0.706000	1.816000	81	20	22	57	58
22	С	2.091000	1.952000	1.931000	81	21	23	59	78
23	С	3.344000	1.787000	1.114000	87	22	24	79	
24	С	4.372000	1.014000	1.404000	86	23	25	74	
25	С	5.320000	0.627000	0.295000	81	24	26	63	64
26	С	4.797000	-0.678000	-0.369000	81	25	27	60	65
27	С	3.361000	-0.594000	-0.922000	82	26	28	29	61
28	С	2.158000	-0.973000	0.043000	82	20	27	30	62
29	С	2.956000	-1.794000	-1.874000	84	27	30	31	32
30	С	1.702000	-2.061000	-0.988000	81	28	29	72	73
31	С	3.910000	-2.992000	-1.905000	80	29	66	67	68
32	С	2.636000	-1.349000	-3.305000	80	29	69	70	71
33	Н	-6.233000	-1.208000	0.213000	85	9			
34	Н	-5.930000	0.286000	-0.689000	85	9			
35	Н	-5.554000	0.192000	1.024000	85	9			
36	Η	-4.896000	-2.512000	-1.473000	85	10			
37	Н	-4.639000	-1.011000	-2.372000	85	10			

38	Н	-3.262000	-2.008000	-1.917000	85	10				
39	Н	-2.589000	-2.687000	3.063000	85	11				
40	Н	-0.942000	-2.069000	2.859000	85	11				
41	Н	-2.294000	-0.953000	3.030000	85	11				
42	Н	-1.781000	-3.365000	-0.525000	85	12				
43	Н	-0.649000	-3.443000	0.818000	85	12				
44	Н	-2.286000	-4.086000	1.001000	85	12				
45	Н	-1.240000	1.509000	-1.717000	85	13				
46	Н	1.171000	1.762000	-0.764000	85	14				
47	Н	0.684000	0.338000	-1.638000	85	14				
48	Н	-1.975000	2.485000	0.843000	85	15				
49	Н	-0.317000	2.973000	0.602000	85	15				
50	Н	-2.546000	3.459000	-1.367000	85	16				
51	Н	-2.462000	5.837000	-0.566000	85	17				
52	Н	-2.924000	4.738000	0.724000	85	17				
53	Н	-1.282000	5.372000	0.651000	85	17				
54	Н	-0.266000	3.446000	-2.436000	85	18				
55	Н	-0.937000	5.064000	-2.430000	85	18				
56	Н	0.283000	4.620000	-1.245000	85	18				
57	Н	0.176000	0.988000	2.139000	85	21				
58	Н	1.515000	-0.056000	2.503000	85	21				
59	Н	2.318000	2.107000	2.981000	85	22				
60	Н	4.863000	-1.491000	0.345000	85	26				
61	Н	3.210000	0.353000	-1.422000	85	27				
62	Н	2.524000	-1.435000	0.949000	85	28				
63	Н	5.367000	1.409000	-0.456000	85	25				
64	Н	6.325000	0.460000	0.668000	85	25				
65	Н	5.463000	-0.923000	-1.189000	85	26				
66	Н	4.829000	-2.757000	-2.430000	85	31				
67	Н	4.162000	-3.332000	-0.908000	85	31				
68	Н	3.429000	-3.815000	-2.426000	85	31				
69	Н	3.539000	-1.022000	-3.812000	85	32				
70	Н	2.206000	-2.169000	-3.872000	85	32				
71	Н	1.930000	-0.527000	-3.312000	85	32				
72	Н	1.648000	-3.059000	-0.575000	85	30				
73	Н	0.769000	-1.837000	-1.481000	85	30				
74	С	4.604000	0.323000	2.730000	80	24	75	76	77	
75	Н	5.585000	0.599000	3.108000	85	74				
76	Н	3.870000	0.597000	3.475000	85	74				
77	Н	4.590000	-0.756000	2.618000	85	74				
78	Н	1.561000	2.834000	1.607000	85	22				
79	Н	3.324000	2.238000	0.138000	89	23				

1.2 Input parameters for tinker

scan input.xyz

oplsaa.prm 2			
25 24 23 22			
74 24 23 22			
74 24 23 79			
25 24 23 79			
5			
50.0			
0.1			

1.2 Python scripts used to distinguish the structures.

Python2.7 script to calculate the dihedral angles and chiral properties (R or S of each chiral center)

 $Ring_List = [[20,21,22,23,24,25,26,27,28], [1,2,3,4,5,6], [3,4,13,14,20,19]]$ $Torsion_List = [(4,13,15,16), (13,15,16,17)]$ $Chir_List = [(4,14,13,15), (20,27,28,30), (26,28,27,29), (14,19,20,28)]$

import math

```
class Vec :
                                                   # general class for vector calculations
      def__init__(self, x, y, z) :
            self.x = x; self.y = y; self.z = z
      def Add(self, other) :
            return Vec(self.x + other.x, self.y + other.y, self.z + other.z)
      def Delta(self, other) :
            return Vec( other.x - self.x , other.y - self.y , other.z - self.z )
      def Scalar(self, k) :
            return Vec(self.x * k, self.y * k, self.z * k)
      def Norm(self) :
            temp = self.x * self.x + self.y * self.y + self.z * self.z
            return math.sqrt( temp )
      def Dot(self, other) :
            return (self.x * other.x + self.y * other.y + self.z * other.z)
      def Cross(self, other) :
            x = self.y * other.z - self.z * other.y
            y = self.z * other.x - self.x * other.z
            z = self.x * other.y - self.y * other.x
```

```
def Dihed(A1, A2, A3, A4):
r_{12} = A1.Delta(A2)
r_{23} = A2.Delta(A3)
r_{34} = A3.Delta(A4)
r_{123} = r_{12}.Cross(r_{23})
r_{234} = r_{23}.Cross(r_{34})
cosPhi = r_{123}.Dot(r_{234}) / r_{123}.Norm() / r_{234}.Norm()
Phi = math.acos(cosPhi*0.9999999999) * 180.0 / math.pi
if r_{12}.Dot(r_{234}) < 0.0: Phi = -Phi
return Phi
```

```
def Chir(A1, A2, C1, A4) :
```

return Vec(x, y, z)

```
r_{12} = A1.Delta(A2)
r_{23} = A2.Delta(C1)
r_{34} = C1.Delta(A4)
r_{123} = r_{12}.Cross(r_{23})
r_{234} = r_{23}.Cross(r_{34})
cosChir = r_{123}.Dot(r_{234}) / r_{123}.Norm() / r_{234}.Norm()
Chir = math.acos(cosChir*0.999999999) * 180.0 / math.pi
if r_{12}.Dot(r_{234}) < 0.0 : Chir = - Chir
if Chir > 0:
return 1;
else:
```

return 0;

```
def Torsion_Ring(A_list):
         Dih Ring = []
         Index\_End = len(A\_list) - 1
         for i in range( len(A list) ):
                   if i+1 > Index\_End:
                             Dih_Ring.append(
                                                             Dihed(
                                                                                A_list[i-1],
                                                                                                        A_list[i],
A_list[i+1-len(A_list)],A_list[i+2-len(A_list)]));
                   elifi+2 > Index\_End:
                             Dih Ring.append(
                                                             Dihed(
                                                                                A list[i-1],
                                                                                                        A list[i],
A_list[i+1],A_list[i+2-len(A_list)]));
                   else:
                             Dih_Ring.append(Dihed(A_list[i-1], A_list[i], A_list[i+1], A_list[i+2]));
```

return Dih_Ring;

def Print(L):

for each in L :

```
print '%5.0f' %each,
     #print
def Calc( fname ) :
     ifile = file( fname, 'r' )
    read = False
    Atoms = ['*']
    for line in ifile :
         words = line.split()
         if read and len(words) != 4 :
              break
         if read :
              Atoms.append(Vec(float(words[1]), float(words[2]), float(words[3])))
         elif line[0] == '0':
              read = True
     ifile.close()
    tor chir = []
    A list = []
    for RL_i in range( len( Ring_List ) ):
              A list.append([]);
              for RL_j in Ring_List[ RL_i ]:
                        A_list[RL_i].append(Atoms[RL_j])
                             tor_chir += Torsion_Ring(A_list[RL_i])
    for TL_i in range( len(Torsion_List) ):
              tor chir.append(
                                     Dihed(Atoms[Torsion List[TL i][0]],
                                                                                Atoms[Torsion List[TL i][1]],
Atoms[Torsion_List[TL_i][2]], Atoms[Torsion_List[TL_i][3]]))
```

for CL_i in range(len(Chir_List)): tor_chir.append(Chir(Atoms[Chir_List[CL_i][0]], Atoms[Chir_List[CL_i][1]], Atoms[Chir_List[CL_i][2]], Atoms[Chir_List[CL_i][3]]));

Print(tor_chir);

from glob import glob Files = glob('*.gjf') Files.sort() print 'filename ',

for RL_i in range(len(Ring_List)):
 for RL_j in range(len(Ring_List[RL_i])):
 if RL_j < len(Ring_List[RL_i])-1:
 print '(' +str(Ring_List[RL_i] [RL_j]) + ','+ str(Ring_List[RL_i] [RL_j+1])+')',
 elif RL_j == len(Ring_List[RL_i])-1:
 print '('+str(Ring_List[RL_i] [RL_j]) + ','+ str(Ring_List[RL_i] [0])+')',</pre>

for TL_i in range(len(Torsion_List)):
 print '('+str(Torsion_List[TL_i][0]) + ','+ str(Torsion_List[TL_i][1]) + ','+ str(Torsion_List[TL_i][2])
 + ','+ str(Torsion_List[TL_i][3])+')',

```
for fname in Files :
print fname[:-4],
Calc(fname)
print
```

Python2.7 script to find duplicate conformers

```
import sys
import math
Name_list = [ ]
ifile = file('dihed.txt', 'r')
lines = ifile.readlines()
ifile.close()
ofile=file('duplicate_name.txt','w')
duplicate = []
for i in range(1,len(lines)):
    iwords = lines[i].split()
    v_ = 0
    v_list = []
```

```
index = []
    if len(iwords) > 0:
        for j in range(1,i):
            jwords = lines[j].split()
            v = 0
            for k in range(1,len(jwords)):
                #print jwords[k+4],
                v_+= (float(jwords[k])-float(iwords[k]))**2
            if v_{-} < 50:
                v_list.append(v_)
                add_name = jwords[0]+'.log'
                index.append(jwords[0])
                if add_name not in duplicate:
                    duplicate.append( add_name );
    if len(v_list):
        print iwords[0], index, v list
for each in duplicate:
    ofile.write( each + '\n');
ofile.close()
_____
```

2. Electronic energies after optimized at HF/3-21G theoretical level in gas phase.

Conformers	E _{ele} (Hartree)	Eele(kcal/mol)
RB_15	-1379.70522	0.0
RB_6	-1379.70522	0.0
RB_14	-1379.70512	0.1
RB_7	-1379.70512	0.1
RB_10	-1379.70410	0.7
RB_2	-1379.70410	0.7
RB_5	-1379.70391	0.8
RB_3	-1379.70391	0.8
RB_17	-1379.70372	0.9
RB_25	-1379.70372	0.9
RB_12	-1379.70310	1.3
RB_41	-1379.70310	1.3
RB_46	-1379.70299	1.4
RB_43	-1379.70256	1.7
RB_8	-1379.70218	1.9
RB_35	-1379.70218	1.9
RB_20	-1379.70218	1.9

 Table S1. Electronic energies at HF/3-21G theoretical level.

RB_1	-1379.70218	1.9
RB_40	-1379.70216	1.9
RB_19	-1379.70216	1.9
RB_11	-1379.70209	2.0
RB_18	-1379.70194	2.1
RB_13	-1379.70189	2.1
RB_24	-1379.70075	2.8
RB_57	-1379.70075	2.8
RB_4	-1379.70075	2.8
RB_32	-1379.70075	2.8
RB_22	-1379.70009	3.2
RB_9	-1379.70009	3.2
RB_42	-1379.70002	3.3
RB_64	-1379.70002	3.3
RB_50	-1379.70002	3.3
RB_23	-1379.69988	3.4
RB_27	-1379.69977	3.4
RB_30	-1379.69975	3.4
RB_48	-1379.69934	3.7
RB_56	-1379.69923	3.8
RB_53	-1379.69923	3.8
RB_52	-1379.69923	3.8
RB_31	-1379.69923	3.8
RB_26	-1379.69853	4.2
RB_34	-1379.69853	4.2
RB_49	-1379.69800	4.5
RB_47	-1379.69800	4.5
RB_16	-1379.69792	4.6
RB_60	-1379.69792	4.6
RB_38	-1379.69792	4.6
RB_28	-1379.69792	4.6
RB_21	-1379.69759	4.8
RB_37	-1379.69759	4.8
RB_77	-1379.69759	4.8
RB_155	-1379.69744	4.9
RB_109	-1379.69744	4.9
RB_108	-1379.69744	4.9
RB_66	-1379.69744	4.9
RB_121	-1379.69744	4.9
RB_58	-1379.69733	5.0
RB_45	-1379.69717	5.1
RB_79	-1379.69681	5.3
RB_97	-1379.69681	5.3
RB_112	-1379.69681	5.3

RB_69	-1379.69677	5.3
RB_33	-1379.69677	5.3
RB_76	-1379.69630	5.6
RB_93	-1379.69590	5.9
RB_184	-1379.69590	5.9
RB_100	-1379.69584	5.9
RB_51	-1379.69584	5.9
RB_124	-1379.69584	5.9
RB_131	-1379.69564	6.0
RB_157	-1379.69564	6.0
RB_78	-1379.69564	6.0
RB_63	-1379.69546	6.1
RB_82	-1379.69539	6.2
RB_36	-1379.69492	6.5
RB_70	-1379.69469	6.6
RB_116	-1379.69467	6.6
RB_130	-1379.69467	6.6
RB_71	-1379.69467	6.6
RB_102	-1379.69449	6.7
RB_67	-1379.69448	6.7
RB_132	-1379.69448	6.7
RB_99	-1379.69448	6.7
RB_96	-1379.69448	6.7
RB_68	-1379.69448	6.7
RB_101	-1379.69440	6.8
RB_75	-1379.69440	6.8
RB_59	-1379.69437	6.8
RB_55	-1379.69429	6.9
RB_80	-1379.69420	6.9
RB_85	-1379.69420	6.9
RB_143	-1379.69419	6.9
RB_174	-1379.69418	6.9
RB_126	-1379.69418	6.9
RB_138	-1379.69418	6.9
RB_73	-1379.69413	7.0
RB_88	-1379.69410	7.0
RB_144	-1379.69410	7.0
RB_147	-1379.69410	7.0
RB_142	-1379.69410	7.0
RB_165	-1379.69410	7.0
RB_164	-1379.69410	7.0
RB_62	-1379.69398	7.1
RB_65	-1379.69398	7.1
RB_196	-1379.69398	7.1

RB_86	-1379.69376	7.2
RB_104	-1379.69360	7.3
RB_163	-1379.69360	7.3
RB_92	-1379.69360	7.3
RB_137	-1379.69360	7.3
RB_186	-1379.69360	7.3
RB_44	-1379.69352	7.3
RB_54	-1379.69352	7.3
RB_159	-1379.69341	7.4
RB_152	-1379.69341	7.4
RB_120	-1379.69341	7.4
RB_83	-1379.69341	7.4
RB_113	-1379.69341	7.4
RB_156	-1379.69341	7.4
RB_181	-1379.69341	7.4
RB_61	-1379.69316	7.6
RB_183	-1379.69291	7.7
RB_107	-1379.69291	7.7
RB_91	-1379.69285	7.8
RB_94	-1379.69285	7.8
RB_115	-1379.69275	7.8
RB_81	-1379.69263	7.9
RB_29	-1379.69262	7.9
RB_118	-1379.69262	7.9
RB_119	-1379.69262	7.9
RB_160	-1379.69262	7.9
RB_197	-1379.69262	7.9
RB_169	-1379.69232	8.1
RB_89	-1379.69232	8.1
RB_167	-1379.69230	8.1
RB_162	-1379.69230	8.1
RB_170	-1379.69230	8.1
RB_185	-1379.69230	8.1
RB_114	-1379.69230	8.1
RB_127	-1379.69230	8.1
RB_72	-1379.69215	8.2
RB_74	-1379.69215	8.2
RB_84	-1379.69215	8.2
RB_39	-1379.69215	8.2
RB_106	-1379.69201	8.3
RB_117	-1379.69195	8.3
RB_139	-1379.69195	8.3
RB_153	-1379.69195	8.3
RB_133	-1379.69195	8.3

RB_166	-1379.69190	8.4
RB_87	-1379.69184	8.4
RB_122	-1379.69184	8.4
RB_141	-1379.69151	8.6
RB_179	-1379.69140	8.7
RB_95	-1379.69124	8.8
RB_98	-1379.69124	8.8
RB_136	-1379.69115	8.8
RB_125	-1379.69115	8.8
RB_148	-1379.69100	8.9
RB_103	-1379.69037	9.3
RB_172	-1379.69016	9.5
RB_198	-1379.69016	9.5
RB_176	-1379.69016	9.5
RB_135	-1379.69001	9.6
RB_111	-1379.68988	9.6
RB_123	-1379.68987	9.6
RB_171	-1379.68987	9.6
RB_191	-1379.68987	9.6
RB_145	-1379.68985	9.7
RB_150	-1379.68985	9.7
RB_90	-1379.68935	10.0
RB_105	-1379.68929	10.0
RB_129	-1379.68929	10.0
RB_161	-1379.68918	10.1
RB_194	-1379.68918	10.1
RB_134	-1379.68918	10.1
RB_128	-1379.68918	10.1
RB_192	-1379.68918	10.1
RB_154	-1379.68894	10.2
RB_190	-1379.68894	10.2
RB_193	-1379.68872	10.4
RB_180	-1379.68872	10.4
RB_189	-1379.68854	10.5
RB_199	-1379.68847	10.5
RB_178	-1379.68847	10.5
RB_151	-1379.68841	10.6
RB_175	-1379.68841	10.6
RB_149	-1379.68807	10.8
RB_177	-1379.68799	10.8
RB_195	-1379.68799	10.8
RB_187	-1379.68798	10.8
RB_146	-1379.68796	10.8
RB_158	-1379.68781	10.9

RB_140	-1379.68781	10.9
RB_173	-1379.68736	11.2
RB_168	-1379.68735	11.2
RB_110	-1379.68667	11.6
RB_188	-1379.68639	11.8
RB_182	-1379.65929	28.8
-		

3. Electronic Energies after optimization at b3lyp/6-31G(d) theoretical level.

After removing the duplicate conformers, structures within 10 kcal/mol from the most stable conformer at HF/3-21G theoretical level were further optimized at a higher theoretical level, b3lyp/6-31G(d).

 Table S2. Electronic energies at b3lyp/6-31G(d) theoretical level

Conformers	Eele(Hartree)	Eele(kcal/mol)
RB_2	-1396.53440	0.0
RB_6	-1396.53425	0.1
RB_5	-1396.53398	0.3
RB_7	-1396.53388	0.3
RB_8	-1396.53253	1.2
RB_46	-1396.53249	1.2
RB_25	-1396.53249	1.2
RB_13	-1396.53239	1.3
RB_11	-1396.53236	1.3
RB_41	-1396.53224	1.4
RB_43	-1396.53211	1.4
RB_40	-1396.53158	1.8
RB_35	-1396.53140	1.9
RB_57	-1396.53119	2.0
RB_9	-1396.53101	2.1
RB_23	-1396.52999	2.8
RB_31	-1396.52981	2.9
RB_56	-1396.52981	2.9
RB_64	-1396.52968	3.0
RB_34	-1396.52947	3.1
RB_49	-1396.52938	3.2
RB_27	-1396.52935	3.2
RB_48	-1396.52935	3.2
RB_30	-1396.52916	3.3
RB_60	-1396.52907	3.3
RB_77	-1396.52860	3.6
RB_69	-1396.52811	3.9
RB_58	-1396.52790	4.1
RB_97	-1396.52778	4.2

RB_63	-1396.52756	4.3
RB_76	-1396.52733	4.4
RB_66	-1396.52714	4.6
RB_59	-1396.52712	4.6
RB_51	-1396.52697	4.7
RB_78	-1396.52657	4.9
RB_65	-1396.52657	4.9
RB_36	-1396.52634	5.1
RB_45	-1396.52633	5.1
RB_71	-1396.52617	5.2
RB_85	-1396.52614	5.2
RB_159	-1396.52600	5.3
RB_55	-1396.52588	5.4
RB_75	-1396.52586	5.4
RB_82	-1396.52571	5.5
RB_99	-1396.52558	5.5
RB_143	-1396.52554	5.6
RB_70	-1396.52548	5.6
RB_61	-1396.52547	5.6
RB_73	-1396.52544	5.6
RB_88	-1396.52539	5.7
RB_81	-1396.52538	5.7
RB_84	-1396.52521	5.8
RB_29	-1396.52514	5.8
RB_93	-1396.52500	5.9
RB_86	-1396.52497	5.9
RB_54	-1396.52489	6.0
RB_94	-1396.52479	6.0
RB_83	-1396.52448	6.2
RB_92	-1396.52443	6.3
RB_174	-1396.52433	6.3
RB_102	-1396.52398	6.5
RB_103	-1396.52389	6.6
RB_115	-1396.52386	6.6
RB_183	-1396.52385	6.6
RB_87	-1396.52370	6.7
RB_150	-1396.52339	6.9
RB_185	-1396.52334	6.9
RB_98	-1396.52322	7.0
RB_106	-1396.52317	7.1
RB_141	-1396.52275	7.3
RB_153	-1396.52273	7.3
RB_197	-1396.52251	7.5
RB_136	-1396.52234	7.6

RB_166	-1396.52223	7.6
RB_148	-1396.52210	7.7
RB_89	-1396.52191	7.8
RB_179	-1396.52176	7.9
RB_191	-1396.52162	8.0
RB_111	-1396.52123	8.3
RB_90	-1396.52106	8.4
RB_135	-1396.52102	8.4
RB_198	-1396.52097	8.4
RB_18	-1396.51909	9.6

4. Electronic Energies at SMD(pyridine)-b3lyp/6-31G(d)//b3lyp/6-31G(d) theoretical level.

Single point calculations were performed in pyridine using SMD solvent model after optimization in gas phase at b3lyp/6-31G(d) theoretical level.

Conformers RB_25, RB_27, RB_31, RB_61, and RB_81 are duplicate structures of other structures, and are removed from the conformer space.

Table S3. Electronic energies at SMD(pyridine)-b3lyp/6-31G(d)//b3lyp/6-31G(d) theoreticallevel.

Conformers	E _{ele} (Hartree)	Eele(kcal/mol)
RB_6	-1396.57386	0.0
RB_2	-1396.57374	0.1
RB_7	-1396.57326	0.4
RB_5	-1396.57317	0.4
RB_11	-1396.57148	1.5
RB_40	-1396.57133	1.6
RB_46	-1396.57117	1.7
RB_35	-1396.57093	1.8
RB_8	-1396.57080	1.9
RB_41	-1396.57075	2.0
RB_13	-1396.57062	2.0
RB_43	-1396.57061	2.0
RB_57	-1396.57007	2.4
RB_9	-1396.56976	2.6
RB_23	-1396.56951	2.7
RB_56	-1396.56940	2.8
RB_64	-1396.56892	3.1
RB_34	-1396.56780	3.8
RB_69	-1396.56777	3.8
RB_48	-1396.56764	3.9
RB_49	-1396.56763	3.9
RB_60	-1396.56734	4.1
RB_30	-1396.56726	4.1

RB_58	-1396.56693	4.4
RB_97	-1396.56679	4.4
RB_77	-1396.56676	4.5
RB_78	-1396.56628	4.8
RB_65	-1396.56596	5.0
RB_66	-1396.56577	5.1
RB_63	-1396.56575	5.1
RB_71	-1396.56572	5.1
RB_76	-1396.56549	5.3
RB_51	-1396.56530	5.4
RB_99	-1396.56529	5.4
RB_45	-1396.56528	5.4
RB_75	-1396.56522	5.4
RB_59	-1396.56519	5.4
RB_82	-1396.56457	5.8
RB_86	-1396.56448	5.9
RB_55	-1396.56434	6.0
RB_54	-1396.56425	6.0
RB_83	-1396.56416	6.1
RB_84	-1396.56412	6.1
RB_93	-1396.56412	6.1
RB_29	-1396.56410	6.1
RB_94	-1396.56407	6.1
RB_143	-1396.56402	6.2
RB_159	-1396.56398	6.2
RB_73	-1396.56394	6.2
RB_92	-1396.56391	6.3
RB_36	-1396.56385	6.3
RB_88	-1396.56378	6.3
RB_70	-1396.56368	6.4
RB_103	-1396.56354	6.5
RB_85	-1396.56352	6.5
RB_183	-1396.56338	6.6
RB_115	-1396.56295	6.8
RB_174	-1396.56283	6.9
RB_150	-1396.56278	7.0
RB_185	-1396.56272	7.0
RB_102	-1396.56240	7.2
RB_98	-1396.56225	7.3
RB_87	-1396.56194	7.5
RB_141	-1396.56189	7.5
RB_106	-1396.56178	7.6
RB_153	-1396.56119	8.0
RB_197	-1396.56098	8.1

RB_148	-1396.56072	8.2
RB_135	-1396.56051	8.4
RB_198	-1396.56046	8.4
RB_136	-1396.56041	8.4
RB_179	-1396.56038	8.5
RB_89	-1396.56026	8.5
RB_166	-1396.56003	8.7
RB_191	-1396.56003	8.7
RB_90	-1396.55978	8.8
RB_18	-1396.55944	9.1
RB_111	-1396.55908	9.3

5. Optimization at SMD(pyridine)-b3lyp/6-31G(d) theoretical level.

Structures within 3 kcal/mol at SMD(pyridine)-b3lyp/6-31G(d)//b3lyp/6-31G(d) theoretical level were chosen, then were further optimization at SMD(pyridine)-b3lyp/6-31G(d) theoretical level. Frequency calculations were carried out at the same theoretical level, SMD(pyridine)-b3lyp/6-31G(d), to get thermal correction.

Table	S4 .	Electronic	energies	and	thermal	properties	after	optimized	at
SMD(py	ridine)-b3lyp/6-31G	(d) theoretic	al level	l and freque	ency calculation	ons at the	same level.	

Conformers	E _{ele}	E ₀	Е	Н	G	$\Delta G(\text{kcal/mol})$
RB_5	-1396.57425	-1395.87242	-1395.83753	-1395.83659	-1395.93651	0.0
RB_2	-1396.57472	-1395.87275	-1395.83785	-1395.83690	-1395.93649	0.0
RB_6	-1396.57479	-1395.87265	-1395.83780	-1395.83686	-1395.93627	0.2
RB_7	-1396.57429	-1395.87227	-1395.83734	-1395.83639	-1395.93625	0.2
RB_11	-1396.57248	-1395.87100	-1395.83596	-1395.83501	-1395.93487	1.0
RB_46	-1396.57241	-1395.87049	-1395.83555	-1395.83460	-1395.93465	1.2
RB_43	-1396.57178	-1395.87007	-1395.83504	-1395.83410	-1395.93457	1.2
RB_8	-1396.57192	-1395.87028	-1395.83531	-1395.83436	-1395.93431	1.4
RB_35	-1396.57211	-1395.87008	-1395.83517	-1395.83423	-1395.93390	1.6
RB_57	-1396.57101	-1395.86974	-1395.83470	-1395.83376	-1395.93346	1.9
RB_40	-1396.57231	-1395.87020	-1395.83540	-1395.83446	-1395.93331	2.0
RB_13	-1396.57175	-1395.86978	-1395.83498	-1395.83404	-1395.93331	2.0
RB_9	-1396.57081	-1395.86940	-1395.83439	-1395.83345	-1395.93322	2.1
RB_23	-1396.57066	-1395.86895	-1395.83388	-1395.83294	-1395.93266	2.4
RB_56	-1396.57053	-1395.86886	-1395.83382	-1395.83287	-1395.93234	2.6

 Table S5. Dihedral angles in the nine-membered ring of conformers located after optimization at

 SMD(pyridine)-b3lyp/6-31G(d) level.

Conformers	ΔG (kcal/mol)	9-8-7-6	8-7-6-5	7-6-5-4	6-5-4-3	5-4-3-2	4-3-2-1	3-2-1-9	2-1-9-8	1-9-8-7
RB_5	0.0	79	-52	118	-158	34	50	-99	101	-99

RB_2	0.0	78	-51	119	-158	34	51	-99	101	-99
RB_6	0.2	84	-45	-72	157	-87	58	-89	114	-94
RB_7	0.2	85	-45	-74	157	-86	59	-89	112	-94
RB_11	1.0	76	-49	118	-158	33	51	-98	102	-100
RB_46	1.2	88	-47	-73	156	-87	60	-89	109	-92
RB_43	1.2	87	-47	-71	156	-87	59	-90	112	-93
RB_8	1.4	79	-51	117	-158	33	51	-99	100	-100
RB_35	1.6	84	-44	-74	157	-86	59	-89	113	-94
RB_57	1.9	81	-52	117	-157	32	52	-96	98	-102
RB_40	2.0	81	-42	-74	158	-87	58	-89	115	-95
RB_13	2.0	79	-52	118	-157	33	51	-99	100	-100
RB_9	2.1	81	-52	117	-157	32	53	-96	98	-102
RB_23	2.4	92	-51	-72	154	-87	63	-90	102	-87
RB_56	2.6	92	-51	-72	154	-87	63	-91	102	-88

So, from the dihedral angle analysis, we could find that these conformers could be classified into two clusters. In cluster α , there are 7 conformers, in which dihedral angle of 7-6-5-4 is in 117°~119°, and dihedral angle of 5-4-3-2 in 32°~34°. However, in cluster β , there are 8 conformers, in which dihedral angle of 7-6-5-4 is in -74°~-71°, and dihedral angle of 5-4-3-2 in -87°~-86°.

RB_5 is the most stable conformer in cluster α , and RB_6 is the most stable conformer in cluster β . Transition state connecting these two conformers were successfully located, referred to $\alpha 1_TS_\beta 1$.

6. Coordinates of stable conformers and transition structure $\alpha 1_TS_\beta 1$.

$\alpha 1_TS$	_β1			С	0.189875	5.052928	0.022882
С	4.077335	-1.501018	-0.444012	0	0.385762	-1.161845	-0.695335
С	2.627107	-1.839522	-0.831859	С	-0.795288	-0.301516	-0.429496
С	1.628275	-0.794456	-0.354367	С	-0.935462	0.497015	-1.776058
С	1.923367	0.323980	0.368165	С	-1.975532	1.648001	-1.832227
С	3.300648	0.602159	0.758163	С	-3.220341	1.128333	-1.181156
С	4.455566	-0.094349	0.015214	С	-4.525380	1.380185	-1.056459
0	3.569925	1.443725	1.623439	С	-5.269750	0.387828	-0.163380
0	4.934573	-2.364514	-0.556185	С	-4.635596	-1.028916	-0.023168
С	4.738975	0.755232	-1.263448	С	-3.246969	-1.245953	0.652487
С	5.722799	-0.138534	0.881273	С	-1.889683	-1.413089	-0.172561
С	2.575804	-1.954941	-2.381055	С	-2.976064	-2.670765	1.273725
С	2.271578	-3.216224	-0.216367	С	-1.500277	-2.549936	0.808969
С	0.839154	1.252618	0.885853	С	-3.688743	-3.823751	0.554110
С	-0.539295	0.556691	0.819123	С	-3.203160	-2.770690	2.781755
С	0.923683	2.650955	0.217011	С	-5.295563	2.520588	-1.661333
С	0.097273	3.777471	0.874713	Н	5.062018	1.759044	-0.961780
С	0.534915	4.070663	2.317497	Н	3.853320	0.859396	-1.899591

Н	5.541338	0.292562	-1.850743				
Н	6.552237	-0.579022	0.320831				
Н	6.001046	0.873530	1.187044	RB_2			
Н	5.566711	-0.737293	1.786642	С	4.008933	-1.592386	-0.230874
Н	3.302061	-2.703402	-2.716478	С	2.567425	-1.957683	-0.624844
Н	1.576802	-2.269718	-2.698328	С	1.562170	-0.865518	-0.285609
Н	2.807471	-1.003006	-2.873344	С	1.840037	0.306026	0.356463
Н	2.265602	-3.172050	0.879905	С	3.202762	0.605670	0.776118
Н	1.284124	-3.540534	-0.554990	С	4.380510	-0.161061	0.148225
Н	3.012936	-3.957721	-0.527339	О	3.448585	1.519586	1.573022
Н	1.061791	1.404438	1.953300	О	4.867435	-2.461348	-0.271004
Н	-1.354241	1.300238	0.909401	С	4.743961	0.586237	-1.172994
Н	-0.621069	-0.098908	1.707621	С	5.598766	-0.157103	1.083940
Н	1.977881	2.963812	0.223332	С	2.558361	-2.233537	-2.153537
Н	0.635354	2.570946	-0.838761	С	2.184606	-3.258892	0.126351
Н	-0.960198	3.473576	0.898053	С	0.743330	1.275971	0.761451
Н	-0.031989	4.912335	2.735372	С	-0.643009	0.598246	0.661676
Н	0.378889	3.213823	2.982744	С	0.880296	2.635091	0.025246
Н	1.600474	4.333600	2.360998	С	0.067415	3.810700	0.609509
Н	-0.155119	4.878639	-1.004110	С	0.487779	4.174388	2.041939
Н	-0.420252	5.861132	0.445716	С	0.194673	5.036129	-0.308053
Н	1.225101	5.416284	-0.033811	О	0.333151	-1.247083	-0.651028
Н	0.066606	0.890499	-2.033623	С	-0.847370	-0.339937	-0.535258
Н	-1.191639	-0.250440	-2.554788	С	-0.864227	0.343137	-1.932641
Н	-2.117064	1.959860	-2.878344	С	-1.884284	1.477714	-2.192753
Н	-4.619645	-1.495636	-1.019628	С	-3.245284	0.992530	-1.804854
Н	-3.104531	-0.500838	1.447363	С	-4.076132	1.473628	-0.870009
Н	-2.135169	-1.847944	-1.154565	С	-5.146067	0.557991	-0.299188
Н	-5.411640	0.829290	0.839822	С	-4.698757	-0.915566	-0.205084
Н	-6.289835	0.240699	-0.554692	С	-3.340755	-1.158665	0.489726
Н	-5.355588	-1.611984	0.570610	С	-1.984020	-1.393049	-0.293685
Н	-4.768327	-3.828690	0.747433	С	-3.137092	-2.566191	1.168606
Н	-3.545191	-3.789127	-0.532284	С	-1.650062	-2.510517	0.734178
Н	-3.290324	-4.784872	0.905184	С	-3.873912	-3.717339	0.470177
Н	-4.268986	-2.678856	3.032868	С	-3.400969	-2.610107	2.673170
Н	-2.857572	-3.736910	3.174626	С	-3.979811	2.842999	-0.246168
Н	-2.666349	-1.981400	3.322855	Н	5.577167	0.079352	-1.674521
Н	-1.049600	-3.445209	0.367279	Н	5.052517	1.610741	-0.931994
Н	-0.847670	-2.200905	1.616331	Н	3.897449	0.639100	-1.866634
Н	-5.778588	3.132494	-0.883674	Н	6.448435	-0.652327	0.605637
Н	-4.651452	3.180786	-2.254775	Н	5.878983	0.871072	1.327213
Н	-6.104450	2.158403	-2.314208	Н	5.382508	-0.681737	2.022538
Н	-1.593893	2.534159	-1.302045	Н	2.786506	-1.331185	-2.733801
Н	-2.958980	0.270069	-0.612745	Н	3.306675	-2.997145	-2.391852

Н	1.573913	-2.598583	-2.462215	С	3.174293	0.683848	0.745638
Н	2.166181	-3.099289	1.211752	С	4.352648	-0.259066	0.445044
Н	1.195977	-3.602564	-0.189116	0	3.405758	1.674399	1.453848
Н	2.917536	-4.040095	-0.094850	0	4.964730	-1.911470	-1.158790
Н	0.912822	1.482854	1.829446	С	5.568608	0.570750	-0.017304
Н	-1.446292	1.358048	0.650354	С	4.709698	-0.988896	1.773016
Н	-0.790106	0.006567	1.586223	С	2.466625	-1.971345	-2.425565
Н	1.940904	2.923310	0.038526	С	2.369211	-3.129216	-0.181186
Н	0.610411	2.509636	-1.031155	С	0.718722	1.346740	0.673090
Н	-0.995152	3.527178	0.633873	С	-0.650112	0.629806	0.609352
Н	-0.073602	5.044981	2.404384	С	0.810489	2.692548	-0.096013
Н	0.309118	3.356585	2.749293	С	-0.013070	3.863275	0.484759
Н	1.555866	4.425792	2.089173	С	0.485249	4.317024	1.865044
Н	-0.140216	4.812676	-1.328936	С	-0.002222	5.046687	-0.494938
Н	-0.405323	5.877113	0.062179	0	0.348287	-1.145947	-0.791558
Н	1.237168	5.377257	-0.370229	С	-0.868187	-0.302299	-0.589085
Н	0.154234	0.732167	-2.130034	С	-0.995746	0.397871	-1.972505
Н	-1.040360	-0.462742	-2.674591	С	-2.078215	1.489128	-2.150538
Н	-1.818782	1.726957	-3.265124	С	-3.391068	0.934807	-1.695024
Н	-4.698247	-1.382400	-1.200041	С	-4.183951	1.356432	-0.700459
Н	-3.190428	-0.390414	1.260163	С	-5.178439	0.380957	-0.092662
Н	-2.210242	-1.855902	-1.266162	С	-4.660296	-1.072088	-0.055918
Н	-5.390764	0.912589	0.714620	С	-3.255307	-1.266500	0.555191
Н	-6.090954	0.625020	-0.865450	С	-1.934874	-1.416431	-0.306290
Н	-5.471578	-1.451195	0.367578	С	-2.946581	-2.676912	1.186580
Н	-4.956024	-3.684341	0.646263	С	-1.488684	-2.533328	0.679025
Н	-3.713233	-3.716487	-0.614505	С	-3.658666	-3.848062	0.496146
Н	-3.511198	-4.680786	0.852601	С	-3.132451	-2.768726	2.700643
Н	-2.850426	-1.821824	3.201999	С	-4.107659	2.713337	-0.047636
Н	-4.468403	-2.475817	2.897376	Н	6.437936	-0.076847	-0.162117
Н	-3.095240	-3.573721	3.103867	Н	5.363340	1.085529	-0.964592
Н	-1.216137	-3.433590	0.334025	Н	5.806625	1.324869	0.737676
Н	-1.003534	-2.152181	1.542554	Н	4.982695	-0.243247	2.527736
Н	-3.764386	2.785938	0.831646	Н	3.867950	-1.575370	2.161168
Н	-3.221620	3.477810	-0.715981	Н	5.559758	-1.662399	1.614536
Н	-4.945295	3.365695	-0.334652	Н	2.600122	-1.025077	-2.964840
Н	-1.609210	2.385101	-1.642528	Н	3.229093	-2.674131	-2.772154
Н	-3.476611	0.008117	-2.214189	Н	1.479111	-2.372050	-2.669330
				Н	2.409009	-3.029669	0.909966
RB_5				Н	1.386974	-3.527471	-0.453205
С	4.046130	-1.335600	-0.593677	Н	3.137404	-3.844966	-0.494537
С	2.602559	-1.768284	-0.895810	Н	0.895570	1.582034	1.733443
С	1.571130	-0.752469	-0.425693	Н	-1.474746	1.365732	0.629970
С	1.831486	0.393704	0.270665	Н	-0.750124	0.028047	1.533863

Н	1.865065	3.000370	-0.116877	С	1.894815	-3.339700	-0.017235
Н	0.516140	2.537808	-1.141628	С	0.934848	1.281492	0.881650
Н	-1.058134	3.538128	0.595986	С	-0.516421	0.745858	0.863922
Н	-0.118657	5.151348	2.244025	С	1.160504	2.642291	0.170055
Н	0.437482	3.515670	2.611249	С	0.440580	3.865188	0.779720
Н	1.527733	4.659258	1.814786	С	0.870696	4.149179	2.226742
Н	-0.406691	4.764231	-1.475075	С	0.684150	5.100938	-0.100329
Н	-0.601848	5.884245	-0.116252	0	0.184790	-1.136764	-0.576383
Н	1.019410	5.418444	-0.653867	С	-0.896300	-0.135308	-0.335682
Н	-0.008592	0.833528	-2.222812	С	-0.968901	0.594792	-1.707613
Н	-1.180839	-0.404088	-2.716430	С	-1.801897	1.895456	-1.834267
Н	-2.086662	1.760012	-3.219566	С	-3.140661	1.761735	-1.169439
Н	-4.696897	-1.519144	-1.059339	С	-4.185066	1.038978	-1.597205
Н	-3.097144	-0.510815	1.336315	С	-5.209910	0.613365	-0.575075
Н	-2.191513	-1.873458	-1.273959	С	-4.776050	-0.722513	0.076128
Н	-5.383968	0.703964	0.940181	С	-3.401367	-0.739565	0.774421
Н	-6.154649	0.413723	-0.606272	С	-2.087988	-1.108821	-0.029472
Н	-5.373662	-1.653687	0.547909	С	-3.144583	-1.974567	1.729577
Н	-4.733487	-3.865527	0.714135	С	-1.768839	-2.192871	1.042153
Н	-3.541072	-3.822447	-0.593745	С	-4.076486	-3.179132	1.548022
Н	-3.239148	-4.800562	0.846550	С	-3.070894	-1.598922	3.211417
Н	-2.757526	-3.724435	3.092761	С	-4.309718	0.435772	-2.973577
Н	-2.598166	-1.964311	3.221818	Н	3.733790	0.474319	-1.999197
Н	-4.193059	-2.696397	2.979182	Н	5.374932	-0.218231	-2.007227
Н	-1.027156	-3.424343	0.238969	Н	5.054072	1.315357	-1.162262
Н	-0.822197	-2.154309	1.461660	Н	6.044747	0.422490	0.975175
Н	-3.845183	2.638343	1.018546	Н	5.508477	-1.122948	1.657130
Н	-3.391306	3.384641	-0.532067	Н	6.420478	-1.100984	0.136780
Н	-5.092595	3.205308	-0.083033	Н	2.464817	-1.359368	-2.847054
Н	-1.811760	2.397903	-1.598567	Н	2.828379	-3.082715	-2.603584
Н	-3.602751	-0.050405	-2.113501	Н	1.148063	-2.504473	-2.522012
				Н	1.972110	-3.226044	1.071302
RB_6				Н	0.857734	-3.579688	-0.266890
С	3.833557	-1.826478	-0.458904	Н	2.533913	-4.173376	-0.322375
С	2.338648	-2.047218	-0.748895	Н	1.196391	1.438256	1.939749
С	1.467142	-0.884414	-0.292636	Н	-1.235830	1.583619	0.922201
С	1.899689	0.226247	0.370203	Н	-0.658249	0.153428	1.787578
С	3.311782	0.377356	0.697503	Н	2.239657	2.851851	0.182613
С	4.359213	-0.444847	-0.076059	Н	0.879167	2.554655	-0.887675
0	3.698482	1.209662	1.526381	Н	-0.642737	3.672745	0.783879
0	4.603894	-2.766970	-0.583115	Н	0.377895	5.051339	2.611118
С	4.640861	0.328234	-1.402764	Н	0.616824	3.327098	2.905696
С	5.664175	-0.570709	0.722509	Н	1.955438	4.309654	2.292324
С	2.186171	-2.256217	-2.280661	Н	0.343791	4.936555	-1.130532

Н	0.154103	5.979772	0.288369	0	0.194875	-0.999750	-0.762380
Н	1.753036	5.351590	-0.141525	С	-0.922346	-0.077311	-0.391364
Н	0.071062	0.823598	-2.015719	С	-1.136747	0.703574	-1.719741
Н	-1.355220	-0.144540	-2.437130	С	-2.035477	1.965094	-1.714951
Н	-1.892637	2.116730	-2.907959	С	-3.300559	1.728446	-0.943231
Н	-4.812678	-1.520532	-0.680002	С	-4.360174	1.002966	-1.326671
Н	-3.274042	0.190773	1.342283	С	-5.266667	0.462212	-0.248008
Н	-2.356886	-1.585173	-0.984352	С	-4.722896	-0.893042	0.266109
Н	-5.301683	1.377239	0.211067	С	-3.299733	-0.893615	0.859659
Н	-6.208541	0.482751	-1.020254	С	-2.028574	-1.136330	-0.051985
Н	-5.537756	-0.984293	0.826293	С	-2.918389	-2.180519	1.696868
Н	-5.090394	-2.982508	1.918337	С	-1.567288	-2.247121	0.934906
Н	-4.158024	-3.490469	0.500086	С	-3.777038	-3.425042	1.440459
Н	-3.684303	-4.036551	2.111405	С	-2.803967	-1.930932	3.201953
Н	-2.378757	-0.765206	3.382610	С	-4.607197	0.513028	-2.730707
Н	-4.055021	-1.295375	3.594673	Н	5.972771	0.803981	0.544774
Н	-2.726149	-2.445556	3.821112	Н	5.437252	0.742282	-1.146895
Н	-1.596330	-3.200347	0.647166	Н	6.409340	-0.584255	-0.481277
Н	-0.921236	-1.941552	1.687540	Н	3.792902	-1.976916	1.851404
Н	-5.261695	0.734344	-3.438597	Н	5.429163	-2.216131	1.192773
Н	-3.500900	0.737373	-3.647342	Н	5.080159	-0.819874	2.244693
Н	-4.320541	-0.663710	-2.934324	Н	2.735384	-2.682773	-3.048004
Н	-1.255163	2.737900	-1.394671	Н	1.038498	-2.226223	-2.773799
Н	-3.191932	2.139177	-0.146119	Н	2.254998	-0.975473	-3.110562
				Н	2.207242	-3.162868	0.669787
RB_7				Н	1.041206	-3.499253	-0.624800
С	3.859918	-1.525268	-0.893313	Н	2.747645	-3.956692	-0.828282
С	2.363702	-1.822805	-1.084899	Н	1.203516	1.526766	1.842222
С	1.473957	-0.749110	-0.473990	Н	-1.251549	1.588211	0.940917
С	1.897883	0.319370	0.263726	Н	-0.594995	0.149028	1.729753
С	3.292271	0.448283	0.652272	Н	2.161259	2.937101	0.013774
С	4.342691	-0.587424	0.211009	Н	0.745282	2.617542	-0.975199
0	3.670186	1.365802	1.394954	Н	-0.689588	3.706001	0.806934
0	4.673537	-2.099072	-1.602741	Н	0.437546	5.140875	2.525812
С	5.622518	0.139073	-0.249207	Н	0.746142	3.428468	2.825093
С	4.676638	-1.463383	1.454932	Н	2.003741	4.434971	2.091633
С	2.077255	-1.931747	-2.602762	Н	0.097223	4.969654	-1.194198
С	2.072612	-3.197285	-0.417478	Н	0.005461	6.026967	0.223930
С	0.920040	1.352997	0.793144	Н	1.576130	5.430770	-0.336828
С	-0.513745	0.774013	0.820225	Н	-0.136534	0.993567	-2.098815
С	1.086317	2.713445	0.063913	Н	-1.549967	-0.021048	-2.449699
С	0.384374	3.926890	0.712527	Н	-2.232688	2.226923	-2.764590
С	0.922091	4.245405	2.116051	Н	-4.782608	-1.636224	-0.542666
С	0.521384	5.155701	-0.199337	Н	-3.170572	-0.004197	1.489184

Η	-2.339780	-1.585082	-1.007211	С	-4.906810	-0.336421	-0.036365
Н	-5.316344	1.166704	0.595409	С	-3.547360	-0.792000	0.536425
Н	-6.296175	0.316109	-0.610007	С	-2.267504	-1.093722	-0.348605
Н	-5.411330	-1.245705	1.049677	C	-3.464549	-2.270140	1.073908
Н	-4.783539	-3.334801	1.867301	C	-2.000889	-2.322305	0.565356
Н	-3.886497	-3.643275	0.371719	C	-4.350603	-3.268892	0.316417
Н	-3.304877	-4.301847	1.903804	С	-3.664595	-2.430907	2.580504
Н	-2.384333	-2.803570	3.721559	С	-3.750804	3.307227	0.160584
Н	-2.155399	-1.073402	3.420441	Н	5.480232	-0.459273	-1.435241
Н	-3.786838	-1.724049	3.647728	Н	5.177456	1.029187	-0.509100
Н	-1.330914	-3.213697	0.475882	Н	3.931962	0.402850	-1.609412
Н	-0.713191	-1.957350	1.555548	Н	6.092318	-1.573559	0.787944
Н	-5.609055	0.816921	-3.071384	Н	5.698767	-0.079570	1.669917
Н	-3.879332	0.899191	-3.451830	Н	4.936453	-1.611310	2.131916
Н	-4.586710	-0.585541	-2.788393	Н	1.254995	-2.269115	-2.801605
Н	-1.491777	2.814399	-1.284777	Н	2.672964	-1.201828	-2.780476
Н	-3.264168	2.020610	0.108151	Н	2.889312	-2.964967	-2.698360
				Н	2.193305	-4.274969	-0.638980
RB_8				Н	1.457334	-3.460364	0.756102
С	3.608740	-2.026990	-0.287389	Н	0.560345	-3.583790	-0.772491
С	2.170021	-2.108547	-0.824334	Н	0.909085	1.429312	1.841848
С	1.300562	-0.936297	-0.383461	Н	-1.433918	1.520490	0.754488
С	1.707885	0.125769	0.373441	Н	-0.885032	0.038432	1.561513
С	3.048905	0.123573	0.949008	Н	0.987002	2.355248	-1.068151
С	4.154148	-0.723889	0.291828	Н	0.036993	3.171925	0.166884
0	3.341021	0.829912	1.920379	Н	3.067387	2.828221	0.320173
0	4.327904	-3.011367	-0.371533	Н	3.154889	5.224069	-0.382210
С	4.714382	0.114673	-0.899260	Н	2.422451	4.219649	-1.643646
С	5.291035	-1.016613	1.281644	Н	1.399731	5.232420	-0.612071
С	2.254647	-2.131743	-2.377196	Н	2.039938	3.184360	2.561375
С	1.552168	-3.442105	-0.336648	Н	2.922028	4.625064	2.048250
С	0.733793	1.221691	0.775876	Н	1.154583	4.594952	1.945035
С	-0.713139	0.685295	0.678263	Н	-0.031810	0.937343	-2.162549
С	0.939661	2.560236	0.009232	Н	-1.375066	-0.086951	-2.698435
С	2.155349	3.435192	0.387010	Н	-1.953080	2.201952	-3.103738
С	2.291122	4.589674	-0.618677	Н	-5.025348	-0.708572	-1.063567
С	2.060410	3.985742	1.816361	Н	-3.267456	-0.124084	1.362340
0	0.047748	-1.119685	-0.818579	Н	-2.593360	-1.446875	-1.338510
С	-1.046887	-0.132793	-0.573746	Н	-5.309407	1.470448	1.078811
С	-1.071568	0.644559	-1.921529	Н	-6.151292	1.401627	-0.456605
С	-1.976419	1.893968	-2.045025	Н	-5.699688	-0.831394	0.545557
С	-3.354822	1.530488	-1.591737	Н	-5.414294	-3.136481	0.548872
С	-4.056017	2.018090	-0.559163	Н	-4.236125	-3.188718	-0.771163
С	-5.182405	1.180733	0.023503	Н	-4.081819	-4.296088	0.597052

Н	-3.008859	-1.758969	3.148445	С	-4.580362	1.699045	-1.344285
Н	-4.700273	-2.209038	2.873624	Н	6.007176	1.148345	-0.075661
Н	-3.446779	-3.458065	2.904793	Н	5.005016	2.220035	0.938611
Н	-1.680197	-3.245994	0.071639	Н	4.605689	1.984920	-0.777007
Н	-1.287568	-2.095971	1.365363	Н	5.695509	-0.716072	1.619974
Н	-3.459159	3.129313	1.206840	Н	4.677564	0.357002	2.617063
Н	-2.959068	3.890415	-0.320724	Н	4.071490	-1.235879	2.124590
Н	-4.649878	3.941997	0.199683	Н	2.079664	-2.268980	-2.937843
Н	-1.567168	2.728689	-1.465397	Н	2.934573	-0.722947	-3.131654
Н	-3.727021	0.615848	-2.055526	Н	3.854170	-2.210190	-2.830719
				Н	1.914250	-3.390342	-0.685044
RB_9				Н	2.732600	-2.723488	0.744073
С	4.128034	-0.748789	-0.594510	Н	3.690795	-3.406681	-0.589799
С	2.844120	-1.450713	-1.061687	Н	-0.130549	1.139274	1.157679
С	1.594265	-0.639697	-0.742673	Н	-0.511305	1.277873	-1.875734
С	1.552548	0.514638	-0.009419	Н	-1.778922	1.188637	-0.635022
С	2.693523	0.848009	0.829145	Н	1.302941	3.144924	0.614278
С	4.093565	0.288671	0.526710	Н	0.861822	2.978375	-1.084300
0	2.578448	1.597897	1.809210	Н	-1.539151	3.435921	-0.475560
0	5.200328	-1.073506	-1.083645	Н	-2.057345	4.390121	1.781722
С	4.986658	1.488405	0.124697	Н	-1.574128	2.696762	1.914521
С	4.670790	-0.374796	1.803379	Н	-0.426665	3.975520	2.337014
С	2.930433	-1.677274	-2.590261	Н	-0.024460	5.259106	-1.246100
С	2.791304	-2.829955	-0.345414	Н	-1.199169	5.868692	-0.068305
С	0.257014	1.301077	0.137604	Н	0.474630	5.567609	0.424905
С	-0.773999	0.817669	-0.899726	Н	-0.663105	-0.692653	-3.267883
С	0.498174	2.823133	-0.055966	Н	-1.519947	-2.113518	-2.621260
С	-0.715089	3.748334	0.182601	Н	-3.071559	-0.802324	-3.904629
С	-1.221005	3.695260	1.631805	Н	-4.250259	-2.320076	0.380474
С	-0.346718	5.190179	-0.199377	Н	-2.461456	-0.005084	1.272961
0	0.522443	-1.231314	-1.279866	Н	-1.819122	-2.494732	-0.417928
С	-0.862619	-0.691828	-1.121017	Н	-4.984823	0.602837	0.958310
С	-1.431346	-1.011119	-2.535450	Н	-6.008912	-0.595459	0.195157
С	-2.779517	-0.363571	-2.936176	Н	-4.510106	-1.540376	1.924301
С	-3.777988	-0.641832	-1.857543	Н	-3.340800	-3.303614	2.924558
С	-4.421669	0.225945	-1.064321	Н	-2.498412	-3.860151	1.470446
С	-4.960714	-0.258102	0.271141	Н	-1.670866	-3.872707	3.031889
С	-4.106548	-1.370231	0.913944	Н	-1.017001	-1.719273	4.195018
С	-2.598047	-1.075078	1.062606	Н	-1.262807	-0.159614	3.392654
С	-1.487191	-1.548964	0.035928	Н	-2.650268	-1.057684	4.030852
С	-1.837642	-1.884159	2.179900	Н	-0.027543	-2.834437	1.202375
С	-0.589838	-1.895491	1.260182	Н	0.104262	-1.094126	1.521730
С	-2.373333	-3.304778	2.407490	Н	-5.647210	1.972701	-1.331496
С	-1.683374	-1.164924	3.519655	Н	-4.177755	1.997316	-2.317739

Н	-4.100087	2.315394	-0.569370	Н	-1.488940	-2.672669	2.428415
Н	-2.654150	0.713208	-3.103262	Н	-2.746019	-1.450355	2.702984
Н	-3.804597	-1.693171	-1.568203	Н	-3.206539	-3.128760	2.338468
				Н	-2.027893	-3.153748	-1.254566
RB_11				Н	-1.060905	-3.644001	0.153073
С	-3.934222	-1.718648	0.184804	Н	-2.767008	-4.131608	0.031095
С	-2.486346	-2.045771	0.588732	Н	-0.935178	1.485923	-1.799346
С	-1.513372	-0.919345	0.269898	Н	1.426625	1.409229	-0.626808
С	-1.825013	0.256704	-0.346490	Н	0.807424	0.049583	-1.581928
С	-3.197706	0.542645	-0.736659	Н	-1.870900	2.614925	0.582760
С	-4.352193	-0.287941	-0.146502	Н	-0.133534	2.746988	0.767174
0	-3.473131	1.495079	-1.477163	Н	-1.746769	3.722024	-1.628914
0	-4.761478	-2.618179	0.180112	Н	-1.356347	6.015407	-0.717327
С	-4.753068	0.398972	1.195988	Н	-2.245516	5.019725	0.446187
С	-5.563446	-0.292265	-1.092081	Н	-0.517806	5.331200	0.683213
С	-2.482537	-2.337622	2.114750	Н	0.618246	3.215124	-2.289332
С	-2.055221	-3.326186	-0.171318	Н	0.300962	4.951767	-2.323035
С	-0.760240	1.268035	-0.733174	Н	1.209322	4.249812	-0.976753
С	0.645847	0.625933	-0.649807	Н	-0.170622	0.732234	2.114548
С	-0.927895	2.626830	0.019369	Н	0.999521	-0.480994	2.673569
С	-0.944401	3.873362	-0.891466	Н	1.792773	1.656545	3.353300
С	-1.286112	5.127762	-0.075598	Н	4.769548	-1.280658	1.186581
С	0.367823	4.078357	-1.661483	Н	3.226848	-0.275598	-1.249659
0	-0.273526	-1.269119	0.629223	Н	2.284671	-1.801814	1.255439
С	0.876572	-0.320508	0.535814	Н	5.372660	1.095499	-0.658505
С	0.853074	0.341472	1.943629	Н	6.096735	0.779895	0.905324
С	1.867328	1.465852	2.269643	Н	5.536794	-1.275442	-0.385752
С	3.236004	1.020252	1.864919	Н	5.088118	-3.525622	-0.685046
С	4.056288	1.561358	0.953699	Н	3.848868	-3.610946	0.576651
С	5.149218	0.699684	0.345050	Н	3.672733	-4.560914	-0.903005
С	4.749849	-0.783409	0.206580	Н	2.927564	-1.689222	-3.213056
С	3.398345	-1.051327	-0.491239	Н	4.562526	-2.304441	-2.918690
С	2.047728	-1.334983	0.287545	Н	3.218120	-3.435111	-3.138973
С	3.235952	-2.454092	-1.190025	Н	1.346905	-3.392190	-0.363053
С	1.748858	-2.450667	-0.753402	Н	1.088630	-2.104859	-1.556053
С	4.007698	-3.592435	-0.508173	Н	3.706382	2.932916	-0.690553
С	3.499271	-2.469861	-2.695473	Н	3.155337	3.549967	0.886008
С	3.925956	2.952908	0.387715	Н	4.879495	3.493733	0.493243
Н	-5.098366	1.418648	0.986944	Н	1.591216	2.400683	1.768953
Н	-3.915110	0.459256	1.899290	Н	3.488034	0.024850	2.232104
Н	-5.570449	-0.155712	1.672452				
Н	-5.876247	0.734216	-1.300420	RB_13			
Н	-5.321939	-0.775060	-2.046841	С	-3.683018	-1.721673	0.685680
Н	-6.399106	-0.833064	-0.639012	С	-2.198740	-1.973424	0.990084

С	-1.311104	-0.841866	0.484587	Н	1.439024	1.553378	-0.749238
С	-1.710336	0.189007	-0.322376	Н	0.857902	0.068127	-1.525251
С	-3.017346	0.144630	-0.958830	Н	-0.959876	2.395181	1.131015
С	-4.102147	-0.842966	-0.490969	Н	-0.023242	3.224440	-0.106422
0	-3.302836	0.888657	-1.907711	Н	-3.053430	2.869082	-0.243487
0	-4.536079	-2.285661	1.355503	Н	-3.156428	5.252047	0.502737
С	-5.356212	-0.029535	-0.096582	Н	-2.412803	4.230443	1.743835
С	-4.459712	-1.783256	-1.674999	Н	-1.400695	5.269195	0.727370
С	-2.026888	-2.133924	2.518764	Н	-2.036135	3.273709	-2.479452
С	-1.804911	-3.309692	0.296256	Н	-2.928750	4.697845	-1.938662
С	-0.731235	1.279123	-0.725901	Н	-1.160710	4.681237	-1.841848
С	0.711015	0.727110	-0.646631	Н	0.146388	1.070570	2.207919
С	-0.923995	2.610710	0.055333	Н	1.470562	0.009781	2.720566
С	-2.146514	3.484912	-0.301316	Н	2.139533	2.291766	3.037723
С	-2.287371	4.619901	0.725360	Н	5.024343	-0.810605	1.000711
С	-2.060848	4.062051	-1.720846	Н	3.222831	-0.206969	-1.388341
0	-0.062815	-1.013661	0.927599	Н	2.565976	-1.443053	1.357393
С	1.059691	-0.076118	0.610723	Н	5.338741	1.296867	-1.207974
С	1.163958	0.731937	1.936188	Н	6.227105	1.229873	0.300944
С	2.119407	1.947726	1.990123	Н	5.644234	-1.004426	-0.622881
С	3.466853	1.511042	1.509418	Н	5.257740	-3.288585	-0.548005
С	4.166240	1.945509	0.452283	Н	4.106080	-3.260322	0.795701
С	5.233664	1.041385	-0.141414	Н	3.877570	-4.391472	-0.543089
С	4.891948	-0.459262	-0.032031	Н	2.856830	-1.869926	-3.131279
С	3.497432	-0.867313	-0.554727	Н	4.533824	-2.383145	-2.880507
С	2.229906	-1.093242	0.369640	Н	3.230542	-3.579986	-2.856568
С	3.336330	-2.351605	-1.055036	Н	1.534262	-3.223823	0.009037
С	1.884221	-2.326115	-0.512409	Н	1.161815	-2.083429	-1.299691
С	4.194444	-3.370495	-0.291745	Н	3.593849	3.056626	-1.321691
С	3.496476	-2.555444	-2.561189	Н	3.154518	3.864073	0.201390
С	3.910001	3.236444	-0.282809	Н	4.837513	3.826704	-0.346239
Н	-5.151271	0.630946	0.755634	Н	1.726682	2.778444	1.393171
Н	-6.173027	-0.701890	0.181543	Н	3.804758	0.587074	1.980343
Н	-5.673249	0.587082	-0.942622				
Н	-5.248605	-2.482016	-1.374154	RB_23			
Н	-4.820338	-1.180236	-2.514851	С	3.789136	-1.750139	-0.200015
Н	-3.595152	-2.363009	-2.019483	С	2.399573	-2.011569	-0.806591
Н	-0.992763	-2.391337	2.760665	С	1.423891	-0.859730	-0.589370
Н	-2.287104	-1.208624	3.048003	С	1.711910	0.337523	0.000097
Н	-2.682865	-2.929873	2.881273	С	2.982816	0.488482	0.700935
Н	-1.846780	-3.233375	-0.796210	С	4.194330	-0.350292	0.257003
Н	-0.784865	-3.586894	0.580481	0	3.128186	1.316158	1.607782
Н	-2.484638	-4.107490	0.617399	0	4.583420	-2.675590	-0.125365
Н	-0.913296	1.497982	-1.787808	С	4.812258	0.376548	-0.978513

С	5.248124	-0.435757	1.370351	Н	0.802704	4.462484	1.905166
С	2.594331	-2.228612	-2.334577	Н	1.263881	5.121510	-1.841382
С	1.844750	-3.316931	-0.183973	Н	0.358630	6.156754	-0.724661
С	0.670689	1.442432	0.105397	Н	1.939463	5.514750	-0.251864
С	-0.548552	1.124480	-0.783585	Н	-0.882805	-0.654131	-3.021861
С	1.262764	2.813419	-0.321555	Н	-2.177814	-1.584752	-2.229650
С	0.328632	4.035488	-0.184931	Н	-3.180944	0.038708	-3.683577
С	-0.080018	4.302703	1.271022	Н	-4.458701	-1.797307	0.837480
С	1.009325	5.275085	-0.784978	Н	-2.768510	0.732046	1.248718
0	0.217698	-1.199881	-1.062481	Н	-2.032505	-1.983888	-0.001463
С	-0.992086	-0.338028	-0.896426	Н	-5.194332	1.155938	0.406979
С	-1.692903	-0.589136	-2.268164	Н	-6.280155	-0.231039	0.209558
С	-2.724308	0.451379	-2.772463	Н	-4.807019	-0.622093	2.092627
С	-3.739250	0.741905	-1.705633	Н	-3.706935	-2.216422	3.423920
С	-4.712623	-0.080393	-1.290559	Н	-2.788363	-3.038585	2.151385
С	-5.233354	0.096707	0.112742	Н	-2.045617	-2.738316	3.725156
С	-4.364139	-0.731137	1.089471	Н	-1.402448	-0.416968	4.468631
С	-2.872237	-0.361514	1.219885	Н	-1.614783	0.963746	3.379437
С	-1.710153	-0.986353	0.335972	Н	-3.026559	0.199645	4.129012
С	-2.159293	-0.958589	2.494325	Н	-0.350029	-2.103209	1.767385
С	-0.879630	-1.151659	1.643701	Н	-0.167505	-0.342035	1.809424
С	-2.714452	-2.309599	2.967002	Н	-6.267429	-1.291490	-2.157540
С	-2.043813	-0.000355	3.679778	Н	-4.727096	-1.399471	-3.028039
С	-5.173881	-1.309304	-2.032608	Н	-4.945179	-2.231541	-1.478097
Н	5.152957	1.374325	-0.675934	Н	-2.213657	1.374721	-3.075283
Н	5.675779	-0.188558	-1.349470	Н	-3.517744	1.601709	-1.070384
Н	4.092815	0.495762	-1.795840				
Н	6.128332	-0.982502	1.020393	RB_35			
Н	5.553697	0.569139	1.673917	С	-3.815268	-1.590050	0.852890
Н	4.854104	-0.951700	2.254151	С	-2.333560	-1.727642	1.244606
Н	1.644914	-2.522821	-2.793215	С	-1.446409	-0.702545	0.552252
Н	2.951217	-1.320462	-2.834511	С	-1.883392	0.320848	-0.236939
Н	3.325533	-3.027072	-2.501776	С	-3.273863	0.398675	-0.650956
Н	1.710329	-3.216511	0.899986	С	-4.226472	-0.780570	-0.374187
Н	0.880382	-3.570863	-0.631417	0	-3.696934	1.355900	-1.312670
Н	2.544676	-4.137220	-0.366648	0	-4.656586	-2.183458	1.511487
Н	0.361279	1.522775	1.160429	С	-5.675042	-0.289214	-0.227990
Н	-0.299006	1.460721	-1.810998	С	-4.129175	-1.730531	-1.608163
Н	-1.415075	1.728537	-0.459151	С	-2.220680	-1.516971	2.777636
Н	2.165933	3.012479	0.267160	С	-1.888975	-3.174270	0.900172
Н	1.582336	2.731425	-1.372657	С	-0.935604	1.390650	-0.742464
Н	-0.587282	3.852073	-0.765545	С	0.510010	0.837443	-0.772368
Н	-0.707355	5.200241	1.345143	С	-1.136830	2.745592	0.006065
Н	-0.649549	3.471653	1.702973	С	-1.191873	3.990491	-0.904640

С	-1.533576	5.238520	-0.078582	Н	4.767295	-1.668076	0.472038
С	0.092955	4.220790	-1.713206	Н	3.131379	-0.012332	-1.520503
0	-0.169172	-0.898290	0.886386	Н	2.353157	-1.529112	1.030803
С	0.945018	-0.002334	0.440512	Н	5.342020	1.104467	-0.718413
С	1.221102	0.803893	1.741564	Н	6.335669	0.239248	0.465353
С	2.166194	2.031514	1.687832	Н	5.348636	-1.314561	-1.146772
С	3.395967	1.744794	0.877502	Н	4.629532	-3.389144	-1.932479
С	4.444382	0.990296	1.234946	Н	3.795405	-3.658109	-0.393334
С	5.299609	0.411319	0.134695	Н	3.125636	-4.316800	-1.888541
С	4.699709	-0.932990	-0.343429	Н	2.160515	-2.811194	-3.680144
С	3.256594	-0.897947	-0.885073	Н	2.000219	-1.071411	-3.391081
С	2.016054	-1.090907	0.079404	Н	3.598125	-1.776441	-3.683270
С	2.805577	-2.183606	-1.689580	Н	1.247165	-3.158903	-0.385294
С	1.487618	-2.205650	-0.869099	Н	0.615569	-1.903547	-1.458126
С	3.642025	-3.448135	-1.458296	Н	5.735388	0.790417	2.947822
С	2.630603	-1.946736	-3.190941	Н	4.018227	0.910299	3.372785
С	4.718898	0.504994	2.635461	Н	4.677871	-0.592557	2.700754
Н	-5.967234	0.275872	-1.116961	Н	1.637508	2.894907	1.264657
Н	-5.787924	0.364809	0.645288	Н	3.333931	2.028671	-0.175263
Н	-6.355478	-1.136962	-0.107624				
Н	-3.105548	-2.080316	-1.783254	RB_40			
Н	-4.778179	-2.602534	-1.463293	С	-3.774643	-1.924223	0.387229
Н	-4.463185	-1.190464	-2.502098	С	-2.278075	-2.117652	0.688723
Н	-2.869823	-2.228512	3.296073	С	-1.430867	-0.922689	0.273255
Н	-1.188969	-1.674578	3.105103	С	-1.886127	0.202832	-0.346626
Н	-2.524180	-0.501632	3.061921	С	-3.302140	0.352754	-0.650763
Н	-1.909785	-3.365599	-0.179061	С	-4.334273	-0.541722	0.059752
Н	-0.870639	-3.348691	1.259784	0	-3.707735	1.242350	-1.408794
Н	-2.559731	-3.888096	1.390546	0	-4.521016	-2.888982	0.461432
Н	-1.215306	1.577093	-1.791539	С	-4.666667	0.155704	1.416008
Н	1.232444	1.665110	-0.890855	С	-5.618980	-0.668099	-0.772259
Н	0.600332	0.216597	-1.683514	С	-2.136459	-2.361464	2.216671
Н	-2.083829	2.706054	0.560839	С	-1.794370	-3.379465	-0.070460
Н	-0.352451	2.885546	0.761206	С	-0.949191	1.296920	-0.825486
Н	-2.012241	3.826549	-1.620607	С	0.518264	0.800065	-0.812735
Н	-1.641492	6.123747	-0.718345	С	-1.209281	2.650924	-0.096093
Н	-2.473696	5.111302	0.473053	С	-1.244309	3.894096	-1.010999
Н	-0.746124	5.457639	0.655737	С	-1.653971	5.133765	-0.203042
Н	0.325063	3.376835	-2.373024	С	0.074308	4.155255	-1.753581
Н	-0.001557	5.111810	-2.347275	0	-0.144087	-1.155344	0.551065
Н	0.957368	4.379181	-1.053768	С	0.913514	-0.118869	0.353798
Н	0.240301	1.140822	2.134699	С	0.957883	0.556202	1.754916
Н	1.623564	0.081564	2.479836	С	1.806162	1.837544	1.971525
Н	2.406999	2.299501	2.726778	С	3.139338	1.749597	1.290014

С	4.200188	1.027773	1.676345	Н	4.235566	-3.384211	-0.633422
С	5.225520	0.672634	0.627947	Н	3.754946	-3.866953	-2.262456
С	4.808083	-0.632490	-0.091331	Н	2.752680	-2.227193	-3.890825
С	3.430179	-0.634623	-0.783335	Н	2.381693	-0.571454	-3.382358
С	2.126657	-1.054454	0.012155	Н	4.064164	-1.063965	-3.632198
С	3.185454	-1.833240	-1.787055	Н	1.672901	-3.128993	-0.738622
С	1.820978	-2.104117	-1.097196	Н	0.962978	-1.847422	-1.726384
С	4.139012	-3.028485	-1.665861	Н	5.294462	0.656086	3.494934
С	3.089409	-1.399362	-3.251479	Н	3.534710	0.616326	3.712237
С	4.345292	0.362389	3.021191	Н	4.375704	-0.733524	2.928555
Н	-5.392718	-0.443585	1.978664	Н	1.262932	2.715906	1.601872
Н	-5.107889	1.139451	1.215092	Н	3.173757	2.173489	0.283937
Н	-3.775935	0.301103	2.036951				
Н	-6.370650	-1.247848	-0.229121	RB_43			
Н	-6.023394	0.324902	-0.985508	С	3.409377	-2.071428	-0.726479
Н	-5.427318	-1.169818	-1.728523	С	1.970830	-1.887686	-1.238969
Н	-2.762167	-3.210261	2.513283	С	1.222234	-0.769789	-0.524645
Н	-1.095049	-2.591393	2.462201	С	1.754364	0.098870	0.385630
Н	-2.440872	-1.485519	2.802143	С	3.099657	-0.116877	0.900430
Н	-1.857405	-3.237637	-1.156616	С	4.092493	-0.999929	0.122354
Н	-0.756388	-3.604094	0.189294	0	3.494497	0.438537	1.933402
Н	-2.420238	-4.234378	0.201473	0	4.025395	-3.075397	-1.052444
Н	-1.208155	1.467438	-1.883534	С	4.852466	-0.057294	-0.861892
Н	1.212955	1.659821	-0.820929	С	5.106142	-1.653921	1.076535
Н	0.692054	0.252852	-1.758832	С	2.059821	-1.542830	-2.753859
Н	-2.178590	2.599555	0.417599	С	1.227441	-3.235570	-1.077449
Н	-0.460912	2.806831	0.691196	С	0.905016	1.212045	0.973183
Н	-2.023494	3.713733	-1.767912	С	-0.581420	0.784862	0.954757
Н	-1.747848	6.017556	-0.846937	С	1.157891	2.589827	0.299496
Н	-2.617938	4.986424	0.300364	С	2.489437	3.306875	0.611689
Н	-0.908909	5.367673	0.569913	С	2.676119	4.489866	-0.351224
Н	0.358948	3.317302	-2.400316	С	2.568452	3.787412	2.067263
Н	-0.009445	5.043844	-2.392581	0	-0.054418	-0.752069	-0.923193
Н	0.900695	4.334063	-1.052014	С	-1.090490	0.172099	-0.357845
Н	-0.088327	0.789172	2.041209	С	-1.296041	1.165646	-1.538653
Н	1.309787	-0.221318	2.462275	С	-2.063420	2.489148	-1.292482
Н	1.905931	1.976083	3.057910	С	-3.330080	2.250036	-0.522651
Н	4.861356	-1.468415	0.621416	С	-4.443208	1.655739	-0.975429
Н	3.289508	0.317729	-1.310093	С	-5.368290	1.026005	0.035889
Н	2.408083	-1.558649	0.948809	С	-4.923996	-0.430948	0.315794
Н	5.302097	1.478975	-0.116102	С	-3.490533	-0.629600	0.848322
Н	6.228027	0.533484	1.061665	С	-2.267964	-0.841081	-0.137337
Н	5.569106	-0.842612	-0.858305	С	-3.195000	-2.046048	1.486783
Н	5.145989	-2.799732	-2.036401	С	-1.879561	-2.117002	0.664150

С	-4.164657	-3.171912	1.106920	Н	-5.731750	1.766752	-2.698379
С	-3.010189	-2.015195	3.005319	Н	-4.007146	1.830232	-3.105678
С	-4.738290	1.377483	-2.427978	Н	-4.766006	0.297872	-2.638078
Н	4.174326	0.459007	-1.550800	Н	-1.425716	3.199597	-0.753765
Н	5.573108	-0.636328	-1.451892	Н	-3.254778	2.395508	0.556967
Н	5.400024	0.698926	-0.287047				
Н	5.838801	-2.236918	0.511782	RB_46			
Н	5.629934	-0.884554	1.649641	С	-3.500552	-1.707269	1.051059
Н	4.607838	-2.326482	1.785548	С	-2.036313	-1.577932	1.501324
Н	2.616427	-2.328126	-3.277175	С	-1.250229	-0.600622	0.638820
Н	1.052910	-1.482818	-3.179729	С	-1.772095	0.184190	-0.352825
Н	2.563459	-0.584262	-2.926316	С	-3.083911	-0.105182	-0.904033
Н	1.137660	-3.517845	-0.021540	С	-3.925390	-1.273757	-0.348988
Н	0.224720	-3.169625	-1.506122	0	-3.529537	0.508368	-1.883526
Н	1.781674	-4.022736	-1.596276	0	-4.310385	-2.215826	1.812512
Н	1.181262	1.307547	2.033301	С	-5.417832	-0.897356	-0.350386
Н	-1.222191	1.648517	1.214274	С	-3.702241	-2.484574	-1.304847
Н	-0.714540	0.042979	1.765027	С	-2.020636	-1.052670	2.960818
Н	1.079384	2.474195	-0.789511	С	-1.411397	-2.998353	1.473542
Н	0.341742	3.266416	0.598670	С	-0.923664	1.282122	-0.967698
Н	3.318606	2.607675	0.442217	С	0.557803	0.834501	-0.961573
Н	3.618070	5.018844	-0.157694	С	-1.152559	2.665347	-0.298790
Н	2.690344	4.159352	-1.397848	С	-2.496843	3.372702	-0.574685
Н	1.862052	5.221070	-0.248443	С	-2.672259	4.550177	0.396914
Н	2.511536	2.954444	2.775608	С	-2.613952	3.858432	-2.025952
Н	3.513581	4.312372	2.256597	0	0.021108	-0.549941	1.042062
Н	1.751941	4.486417	2.296600	С	1.085209	0.269095	0.366584
Н	-0.294886	1.419564	-1.936596	С	1.399756	1.321444	1.469729
Н	-1.814582	0.601131	-2.339298	С	2.209835	2.587250	1.089134
Н	-2.256902	2.936543	-2.278699	С	3.417283	2.228396	0.272851
Н	-5.064161	-1.032864	-0.594040	С	4.534812	1.631939	0.710597
Н	-3.270504	0.151244	1.587110	С	5.368185	0.875428	-0.293705
Н	-2.639208	-1.117745	-1.135556	С	4.854108	-0.580084	-0.406118
Н	-5.341866	1.590912	0.979337	С	3.392911	-0.780038	-0.854758
Н	-6.413796	1.016726	-0.309394	С	2.184757	-0.832232	0.169351
Н	-5.618688	-0.847104	1.061584	С	3.027255	-2.248044	-1.311640
Н	-5.144374	-3.060707	1.587819	С	1.686964	-2.123321	-0.540845
Н	-4.329173	-3.235415	0.024890	С	3.905550	-3.357477	-0.718014
Н	-3.751762	-4.137224	1.429915	С	2.906385	-2.432249	-2.824785
Н	-2.653368	-2.983242	3.383547	С	4.915279	1.476701	2.161400
Н	-2.281856	-1.252705	3.308096	Н	-6.028126	-1.750031	-0.039387
Н	-3.956314	-1.790527	3.517200	Н	-5.720482	-0.590912	-1.354896
Н	-1.747325	-3.024198	0.064884	Н	-5.619050	-0.066407	0.337105
Н	-0.983907	-1.993783	1.281417	Н	-4.269196	-3.354884	-0.953213

Η	-4.056625	-2.215443	-2.306690	С	3.857460	-1.548837	-0.583543
Н	-2.645063	-2.763658	-1.381698	С	2.415365	-1.953658	-0.923042
Н	-2.612037	-1.715790	3.598419	С	1.421918	-0.828089	-0.661953
Н	-0.994688	-1.019149	3.338820	С	1.704571	0.366236	-0.059032
Н	-2.447448	-0.043848	3.023461	С	2.946928	0.500111	0.686044
Н	-1.376418	-3.414856	0.460515	С	4.147971	-0.417061	0.401905
Н	-0.391731	-2.966280	1.868389	0	3.082129	1.363774	1.564769
Н	-2.008440	-3.669142	2.101321	0	4.785337	-2.184205	-1.063028
Н	-1.211547	1.371739	-2.024896	С	5.273193	0.473340	-0.182529
Н	1.204406	1.677461	-1.268553	С	4.636190	-1.056614	1.727013
Н	0.661291	0.060176	-1.744947	С	2.354698	-2.359803	-2.415156
Н	-1.039672	2.557522	0.788061	С	2.069215	-3.190676	-0.045119
Н	-0.346533	3.339970	-0.628644	С	0.657710	1.464225	0.049852
Н	-3.314049	2.663056	-0.389935	С	-0.574069	1.133177	-0.816089
Н	-3.621817	5.072931	0.224591	С	1.240017	2.832512	-0.399425
Н	-2.662967	4.215099	1.442107	С	0.304766	4.053645	-0.262367
Н	-1.865738	5.287769	0.280741	С	-0.095492	4.327588	1.194706
Н	-2.564065	3.028615	-2.738447	С	0.979944	5.291093	-0.872982
Н	-3.568974	4.373483	-2.191651	0	0.211749	-1.182321	-1.106297
Н	-1.810606	4.567403	-2.270641	С	-1.006007	-0.333730	-0.914249
Н	0.435222	1.648728	1.902041	С	-1.732171	-0.597025	-2.270061
Н	1.938338	0.787535	2.278291	С	-2.789674	0.427905	-2.752478
Н	2.478377	3.092958	2.028129	С	-3.784130	0.706493	-1.663607
Н	5.017875	-1.094500	0.552047	С	-4.739488	-0.125617	-1.226639
Н	3.169680	-0.090037	-1.679072	С	-5.230338	0.048288	0.187950
Н	2.564853	-1.081483	1.171764	С	-4.327645	-0.764507	1.146665
Н	5.301270	1.353966	-1.281938	С	-2.838431	-0.373630	1.242155
Н	6.432996	0.852440	-0.013966	С	-1.688565	-0.987787	0.335135
Н	5.494646	-1.097750	-1.137365	С	-2.090408	-0.956475	2.503201
Н	4.916210	-3.365567	-1.144193	С	-0.828143	-1.140700	1.625118
Н	4.003529	-3.271960	0.370715	С	-2.620854	-2.310228	2.995964
Н	3.454526	-4.336809	-0.926984	С	-1.957889	0.009517	3.680654
Н	2.498173	-3.421602	-3.073916	С	-5.204390	-1.360481	-1.956477
Н	2.244832	-1.679885	-3.272309	Н	6.168177	-0.126733	-0.372718
Н	3.884642	-2.347412	-3.318291	Н	5.518436	1.267872	0.529175
Н	1.431786	-2.961959	0.115554	Н	4.962973	0.938891	-1.126844
Н	0.836708	-1.947521	-1.208078	Н	3.866359	-1.691223	2.183389
Н	5.933721	1.857780	2.332670	Н	5.525288	-1.669427	1.541950
Н	4.241683	2.012253	2.838391	Н	4.891190	-0.265897	2.439490
Н	4.929385	0.420612	2.469125	Н	3.105945	-3.128275	-2.616219
Н	1.573952	3.286959	0.533437	Н	1.367412	-2.756971	-2.664583
Н	3.280371	2.278221	-0.809255	Н	2.559206	-1.501913	-3.067809
				Н	2.110475	-2.957077	1.025184
RB_56				Н	1.059989	-3.542438	-0.282565

Н	2.778703	-4.000182	-0.251348	0	5.088724	-1.725798	-0.219614
Н	0.365206	1.554249	1.108643	С	4.604549	1.363764	-0.709633
Н	-0.346820	1.466389	-1.849764	С	5.120756	0.398236	1.566160
Н	-1.440210	1.731010	-0.478648	С	3.124256	-1.527173	-2.475464
Н	2.150571	3.037394	0.175449	С	2.587856	-2.993824	-0.491018
Н	1.545446	2.740986	-1.453886	С	0.275507	1.284017	0.182556
Н	-0.614510	3.865800	-0.836372	С	-0.747622	0.821417	-0.872519
Н	-0.720633	5.226692	1.268571	С	0.528261	2.806522	0.010517
Н	-0.664517	3.499461	1.632909	С	-0.681021	3.736949	0.249691
Н	0.790845	4.488021	1.823620	С	-1.193589	3.676797	1.696277
Н	0.327837	6.171882	-0.814898	С	-0.302546	5.179371	-0.120178
Н	1.229866	5.131652	-1.929624	0	0.524151	-1.246383	-1.244960
Н	1.912148	5.535556	-0.345723	С	-0.852654	-0.685178	-1.108710
Н	-0.937597	-0.651617	-3.040960	С	-1.400495	-0.983204	-2.535884
Н	-2.201884	-1.599390	-2.219482	С	-2.733833	-0.315961	-2.953593
Н	-3.260691	0.007075	-3.652402	С	-3.755377	-0.593316	-1.896478
Н	-4.412562	-1.832697	0.899834	С	-4.401881	0.274236	-1.105325
Н	-2.748995	0.721285	1.263744	С	-4.974430	-0.217354	0.213193
Н	-2.007157	-1.989428	0.006495	С	-4.143907	-1.343521	0.862275
Н	-5.199217	1.108779	0.478643	С	-2.635526	-1.064930	1.040786
Н	-6.270080	-0.293341	0.309593	С	-1.512067	-1.542829	0.029371
Н	-4.748848	-0.658785	2.159367	С	-1.904588	-1.892531	2.164240
Н	-3.602546	-2.223814	3.476827	С	-0.641482	-1.912120	1.266056
Н	-2.708205	-3.044251	2.186221	С	-2.462003	-3.307993	2.370825
Н	-1.929621	-2.728757	3.739623	С	-1.763803	-1.186884	3.512652
Н	-1.544205	0.975775	3.365952	С	-4.533819	1.752666	-1.369900
Н	-2.932374	0.203054	4.150193	Н	3.914670	1.401296	-1.559838
Н	-1.295623	-0.397020	4.457439	Н	4.676900	2.371952	-0.283524
Н	-0.287412	-2.087012	1.740851	Н	5.595384	1.067156	-1.074180
Н	-0.120461	-0.323908	1.772845	Н	4.820825	-0.296387	2.359989
Н	-6.300814	-1.355840	-2.053972	Н	6.119435	0.113254	1.223554
Н	-4.781378	-1.446056	-2.962654	Н	5.167285	1.402407	1.995939
Н	-4.950610	-2.279409	-1.407312	Н	2.284014	-1.970422	-3.019419
Н	-2.299091	1.357816	-3.068186	Н	3.283708	-0.511499	-2.857035
Н	-3.557245	1.568563	-1.033264	Н	4.023922	-2.118579	-2.677150
				Н	3.477920	-3.593947	-0.700421
RB_57				Н	2.384302	-3.046131	0.585255
С	4.092295	-1.018688	-0.236322	Н	1.738258	-3.424374	-1.027377
С	2.829475	-1.533515	-0.948021	Н	-0.126433	1.112561	1.195794
С	1.596714	-0.677733	-0.678689	Н	-0.465742	1.287459	-1.840266
С	1.564394	0.483316	0.040536	Н	-1.751141	1.203269	-0.617891
С	2.731444	0.845234	0.838516	Н	1.328257	3.116862	0.691913
С	4.126743	0.371038	0.395891	Н	0.902563	2.972457	-1.012395
0	2.635733	1.570458	1.835385	Н	-1.503908	3.433911	-0.414154

Н	-2.028636	4.373109	1.846541
Н	-1.550733	2.677711	1.971585
Н	-0.401574	3.950895	2.406512
Н	0.023051	5.254485	-1.165442
Н	-1.151055	5.862211	0.013898
Н	0.519442	5.546750	0.509271
Н	-0.616031	-0.666218	-3.251665
Н	-1.499888	-2.083571	-2.634687
Н	-3.013649	-0.740994	-3.931744
Н	-4.286905	-2.287118	0.317648
Н	-2.491534	0.001679	1.263209
Н	-1.847973	-2.480004	-0.439184
Н	-5.005537	0.636726	0.908503
Н	-6.023659	-0.544391	0.110716
Н	-4.567798	-1.518384	1.863384
Н	-3.437006	-3.298604	2.873452
Н	-2.580305	-3.853479	1.427134
Н	-1.776404	-3.890576	3.000484
Н	-1.327636	-0.186352	3.401555
Н	-2.737648	-1.071130	4.008603
Н	-1.116238	-1.756010	4.194004
Н	-0.090987	-2.857865	1.209107
Н	0.058884	-1.122277	1.545700
Н	-5.596345	2.042809	-1.369543
Н	-4.111955	2.056449	-2.333474
Н	-4.055891	2.352446	-0.580594
Н	-2.592807	0.760936	-3.106925
Н	-3.801896	-1.647531	-1.620171

Figure S2. ¹H NMR spectrum (500 MHz, pyridine-*d*₅, at 353K) of **1**.

Figure S3. ¹³C NMR spectrum (125 MHz, pyridine- d_5 , at 353K) of **1**.

Figure S4. ¹H NMR spectrum (500 MHz, pyridine-*d*₅, at 333K) of **1**.

Figure S5. ¹H NMR spectrum (500 MHz, pyridine-*d*₅, at 323K) of **1**.

Figure S6. ¹H NMR spectrum (500 MHz, CDCl₃, rt) of **1**.

Figure S7. ¹³C NMR spectrum (125 MHz, CDCl₃, rt) of 1.

Figure S8. ¹H NMR spectrum (500 MHz, pyridine-*d*₅, at 263K) of **1**.

Figure S9. ¹³C NMR spectrum (125 MHz, pyridine- d_5 , at 263K) of 1.

Figure S10. ¹H NMR spectrum (500 MHz, pyridine-*d*₅, at 243K) of **1**.

Figure S11. ¹³C NMR spectrum (125 MHz, pyridine-*d*₅, at 243K) of **1**.

Figure S12. ¹H NMR spectrum (500 MHz, CDCl₃, at 223K) of 1.

Figure S13. ¹³C NMR spectrum (125 MHz, CDCl₃, at 223K) of 1.

Figure S14. HSQC spectrum (500 MHz, pyridine-*d*₅, at 353K) of **1**.

Figure S15. HRESIMS spectrum of **1**.

Figure S16. UV spectrum of **1**.

Figure S17. ¹H NMR spectrum (500 MHz, CDCl₃) of **2**.

Figure S18. ¹³C NMR spectrum (125 MHz, CDCl₃) of **2**.

Figure S19. ¹H-¹H COSY spectrum (500 MHz, CDCl₃) of **2**.

Figure S20. HSQC spectrum of **2**.

Figure S21. HMBC spectrum of **2**.

Figure S22. NOESY spectrum of **2**.

Figure S24. UV spectrum of 2.

Figure S25. ¹H NMR spectrum (500 MHz, CDCl₃) of key intermediate **4**.

Figure S26. ¹³C NMR spectrum (125 MHz, CDCl₃) of key intermediate **4**.

Figure S27. ¹H NMR spectrum (500 MHz, CDCl₃) of key intermediate i.

Figure S28. ¹³C NMR spectrum (125 MHz, CDCl₃) of key intermediate i.

Figure S29. ¹H NMR spectrum (500 MHz, CDCl₃) of synthetic compound **1**.

Figure S30. ¹³C NMR spectrum (125 MHz, CDCl₃) of synthetic compound 1.

Figure S31. ¹H NMR spectrum (500 MHz, CDCl₃) of synthetic compound **2**.

S65

Figure S32. ¹³C NMR spectrum (125 MHz, CDCl₃) of synthetic compound **2**.