Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Efficient Generation of Perfluoroalkyl Radicals from Sodium Perfluoroalkanesulfinates and a Hypervalent Iodine(III) Reagent: Mild, Metal-free Synthesis of Perfluoroalkylated Organic Molecules

Ryu Sakamoto, Hirotaka Kashiwagi, Selvakumar Sermadurai, Shin A. Moteki, and Keiji Maruoka*

Laboratory of Synthetic Organic Chemistry and Special Laboratory of Organocatalytic Chemistry, Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

General Information

¹H NMR spectra were measured on JEOL JNM-ECA500 (500 MHz) spectrometer. Data were reported as follows: chemical shifts in ppm from tetramethylsilane as an internal standard in CDCl₃, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet-doublet, m = multiplet, br = broad), coupling constants (Hz), and assignment. ¹³C NMR spectra were measured on JEOL JNM-ECA500 (125 MHz) spectrometer with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. ¹⁹F NMR spectra were measured on JEOL JNM-ECA500 (470 MHz) spectrometer. Infrared (IR) spectra were recorded on a Thermo Scientific Nicolet iS5 spectrometer. High-resolution mass spectra (HRMS) were performed on Brucker microTOF and Thermo Exactive plus. YMC syringe pump (model number: YSP-101) was used when slow addition of a solution was conducted. The products were purified by flash column chromatography (silica gel 60, Merck, 230-400 mesh) or preparative thin layer chromatography silica gel (PLC 60 F254. 0.5 mm). Hypervalent iodine(III) reagents were prepared according to the literature procedure.^[1-2] Sodium sulfinates 1 were prepared according to the literature procedure.^[3] N-Arylacrylamides 2^[4] isocyanobiphenyls 4^[5] 3,3-diarylacrylates **6a-e**,^[6] were prepared according to the literature procedure. 4-Phenylcoumarin 6X and 1-methyl-4-phenyl-2quinolinone **6Y** were prepared according to the literature procedure.^[7] Commercially available reagents were purchased from Wako, Aldrich, TCI and Alfa-aesar chemicals and used as received.

Optimization of Reaction Condition of Perfluoroalkylation/Cyclization of *N*-Methyl-*N*-acrylamide 2a with 1a.

The effect of solvents were summarized in Table S1. When the reaction of 2a (1.0 equiv.) with 1a (1.2 equiv.) in the presence of PIFA (1.2 equiv.) was carried out in acetonitrile, the desired product 3a was obtained in 72% yield (entry 1). Other solvents, such as hexafluoroisopropanol, dichloromethane, DMF, DMSO or methanol were found to be less satisfactory than acetonitrile in term of chemical yield (entries 2-6).

Me	1a (1.2 equiv.) PIFA (1.2 equiv	.) Me C ₄ F ₉
N O Me	solvent, rt, 3 h	N O Me
2a		3a
entry	solvent	Yield 3a (%) ^[b]
1	CH ₃ CN	72
2	HFIP	8
3	CH_2Cl_2	49
4	DMF	56
5	DMSO	34
6	МеОН	30

Table S1. Perfluoroalkylation/cyclization of **2a** with **1a**^[a]

The reactions of **2a** (1.0 equiv.) with **1a** (1.2 equiv.) were carried out in the presence of PIFA (1.2 equiv) in a solvent (0.1 M). [b] Yield was determined by ¹H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard.

General Procedure for Perfluoroalkylation/Cyclization of *N*-Arylacrylamide 2 (Scheme 2)

To a stirred solution of *N*-arylacrylamide **2** (0.1 mmol) and R_fSO_2Na **1** (0.12 mmol) in acetonitrile (1.5 mL) was added a solution of PIFA (51.6 mg, 0.12 mmol) in acetonitrile (0.5 mL) slowly over the course of 20 min with syringe pump at room temperature under argon atmosphere. The reaction mixture was then stirred for 3 h at the same temperature. The crude product was directly purified by flash column chromatography on silica gel to afford a corresponding product.

1,3-Dimethyl-3-(nonafluoropentyl)indolin-2-one (3a)

¹H NMR (500 MHz, CDCl₃) δ 7.34-7.26 (2H, m, Ar*H*), 7.10 (1H, t, *J* = 7.7 Hz, Ar*H*), 6.89 (1H, d, *J* = 7.7 Hz, Ar*H*), 3.25 (3H, s, NCH₃), 2.88 (1H, dd, *J* = 35.1 Hz, 15.3 Hz , C*H*HC₄F₉), 2.60 (1H, ddd, *J* = 31.2, 15.6, 7.9 Hz, CH*H*C₄F₉), 1.44 (3H, s, CCH₃). Other spectral data of **3a** were consistent with previously reported data.^[8]

1,3-Dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (3b)

¹H NMR (500 MHz, CDCl₃) δ 7.32 (1H, t, J = 7.8 Hz, Ar*H*), 7.27 (1H, d, J = 7.1 Hz, Ar*H*), 7.10 (1H, t, J = 7.5 Hz, Ar*H*), 6.90 (1H, d, J = 7.7 Hz, Ar*H*), 3.25 (3H, s, NC*H*₃), 2.83 (1H, dq, J = 15.3, 10.5 Hz, C*H*HCF₃), 2.66 (1H, dq, J = 15.5, 10.5 Hz, CH*H*CF₃), 1.41 (3H, s, CC*H*₃). Other spectral data of **3b** were consistent with previously

reported data.^[8]

3-(2,2,3,3,4,4,4-Heptafluorobutyl)-1,3-dimethylindolin-2-one (3c)

¹H NMR (500 MHz, CDCl₃) δ 7.33-7.27 (2H, m, Ar*H*), 7.09 (1H, t, *J* = 7.5 Hz, Ar*H*), 6.89 (1H, d, *J* = 7.9 Hz, Ar*H*), 3.25 (3H, s, NC*H*₃), 2.87 (1H, dd, *J* = 35.0, 15.4 Hz , C*H*HC₃F₇), 2.59 (1H, ddd, *J* = 31.4, 15.8, 8.0 Hz, CH*H*C₃F₇), 1.44 (3H, s, CC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.6, 142.8, 131.3, 128.5, 123.6, 122.6, 120.0-114.5 (m),

108.5, 44.2, 36.8 (t, $J_{C-F} = 20.3 \text{ Hz}$), 26.5, 25.8; ¹⁹F NMR (470 MHz, CDCl₃) δ -80.1- - 80.2 (3F, m), -109.1- -109.9 (1F, m), -115.0- -115.8 (1F, m), -127.1- -128.6 (2F, m); HRMS calculated for C₁₄H₁₂ONF₇Na: *m/z* 366.0699 ([M + Na]⁺), found: *m/z* 366.0700 ([M + Na]⁺); IR (neat) 1714, 1615, 1530, 1220, 1118 cm⁻¹.

3-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Heptadecafluorononyl)-1,3-dimethylindolin-2-one

(3d); ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.25 (2H, m, Ar*H*), 7.10 (1H, t, *J* = 7.5 Hz, Ar*H*), 6.90 (1H, d, *J* = 7.7 Hz, Ar*H*), 3.26 (3H, s, NC*H*₃), 2.89 (1H, dd, *J* = 35.1, 15.3 Hz, C*H*HC₈F₁₇), 2.61 (1H, ddd, *J* = 31.1, 15.5, 8.0 Hz, CH*H*C₈F₁₇), 1.44 (3H, s, CC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.6, 142.8, 131.3, 128.5, 123.6, 122.6, 120.0-

110.0 (m), 108.5, 44.2, 37.0 (t, $J_{C-F} = 20.3 \text{ Hz}$), 26.5, 25.9; ¹⁹F NMR (470 MHz, CDCl₃) δ –80.6- –80.7 (3F, m), –108.2- –109.0 (1F, m), –113.8- –114.6 (1F, m), –121.3- –126.2 (12F, m); HRMS calculated for C₁₉H₁₃ONF₁₇: *m/z* 594.0720 ([M + H]⁺), found: *m/z* 594.0725 ([M + H]⁺); IR (neat) 1715, 1616, 1474, 1351, 1237, 1200, 1145, 1133, 740 cm⁻¹.

3-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-Henicosafluoroundecyl)-1,3-

 $\begin{array}{c} \begin{array}{c} & \text{G}_{10}\text{F}_{21} \\ & \text{Me} \end{array} \\ & \text{Me} \end{array} \\ \begin{array}{c} & \text{G}_{10}\text{F}_{21} \\ & \text{Me} \end{array} \\ & \text{Me} \end{array} \\ \begin{array}{c} & \text{G}_{10}\text{F}_{21} \\ & \text{Me} \end{array} \\ \begin{array}{c} & \text{G}_{10}\text{F}_{21} \\ & \text{Me} \end{array} \\ \begin{array}{c} & \text{G}_{10}\text{F}_{21} \\ & \text{G}_{10}\text{F}_{21} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ & \text{G}_{10}\text{F}_{21} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ \begin{array}{c} & \text{G}_{10}\text{F}_{21} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ \begin{array}{c} & \text{G}_{10}\text{F}_{21} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ \begin{array}{c} & \text{G}_{10}\text{F}_{21} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ \begin{array}{c} & \text{G}_{10}\text{F}_{21} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ & \text{G}_{10}\text{F}_{11} \end{array} \\ \begin{array}{c} & \text{G}_{10}\text{F}_{21} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ \begin{array}{c} & \text{G}_{10}\text{F}_{21} \end{array} \\ \\ \begin{array}{c} & \text{G}_{10}\text{F}_{11} \end{array} \\ & \text{G}_{10}\text{F}_{21} \end{array} \\ \\ & \text{G}_{10}\text{F}_{11} \end{array} \\ \\ \begin{array}{c} & \text{G}_{10}\text{F}_{11} \end{array} \\ \\ \begin{array}{c} & \text{G}_{10}\text{F}_{11} \end{array} \\ \\ & \text{G}_{10}\text{F}_{10}\text{F}_{11} \end{array} \\ \\ & \text{G}_{10}\text{F}_{11} \end{array} \\ \\ \begin{array}{c} & \text{G}_{10}\text{F}_{11} \end{array} \\ \\ & \text{G}_{10}\text{F}_{11} \end{array} \\ \\ \begin{array}{c} & \text{G}_{10}\text{F}_{11} \end{array} \\ \\ \begin{array}{c} & \text{G}_{10}\text{F}_{10}\text{F}_{10}\text{F}_{11} \end{array} \\ \\ \begin{array}{c} & \text{G}_{10}\text{F}_{11} \end{array} \\ \\ \begin{array}{c} & \text{G}_{10}\text{F}_{10}\text{F}_{11} \end{array} \\ \\ \begin{array}{c} & \text{G}_{10}\text{F}_{10}\text{F}_{10}\text{F}_{10}\text{F}_{10} \end{array} \\ \\ \begin{array}{c} & \text{G}_{10}\text{F}_{10}\text{F}_{10} \end{array} \\ \\ \begin{array}{c}$

*The reaction was conducted in AcOEt as a solvent instead of MeCN.

5-Methoxy-1,3-dimethyl-3-(2,2,3,3,4,4,5,5,5nonafluoropentyl)indolin-2-one (3f)

¹H NMR (500 MHz, CDCl₃) δ 6.90 (1H, d, J= 2.3 Hz, ArH), 6.84 (1H, dd, J= 8.5, 2.6 Hz, ArH), 6.79 (1H, d, J = 8.5 Hz, ArH), 3.81 (3H, s, OCH₃), 3.22 (3H, s, NCH₃), 2.87 (1H, dd, J= 35.3, 15.2 Hz, CHHC₄F₉), 2.58 (1H, ddd, J= 31.5, 15.5, 8.0

Hz, CH*H*C₄F₉), 1.43 (3H, s, CC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.1, 136.4, 132.7, 120.0-108.0 (m), 112.6, 111.4, 108.8, 55.9, 44.6, 36.9 (t, *J*_{C-F} = 20.3 Hz), 26.6, 25.9; ¹⁹F NMR (470 MHz, CDCl₃) δ –80.9- –81.0 (3F, m), –108.3- –109.1 (1F, m), – 114.1- –114.9 (1F, m), –124.4- –124.5 (2F, m), –125.0- –126.5 (2F, m); HRMS calculated for C₁₆H₁₄O₂NF₉Na: *m/z* 446.0773 ([M + Na]⁺), found: *m/z* 446.0785 ([M + Na]⁺); IR (neat) 1709, 1501, 1287, 1219, 1130, 1037 cm⁻¹.

1,3-Dimethyl-5-nitro-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one (3g)

O₂N N N Me

¹H NMR (500 MHz, CDCl₃) δ 8.32 (1H, dd, J= 8.8, 2.3 Hz, Ar*H*), 8.19 (1H, m, Ar*H*), 6.99 (1H, d, J = 8.8 Hz, Ar*H*), 3.33 (3H, s, NC*H*₃), 2.98 (1H, dd, J = 35.1, 15.3 Hz, C*H*HC₄F₉), 2.69 (1H, ddd, J= 30.8, 15.0, 8.0 Hz, CH*H*C₄F₉), 1.50 (3H, s, CC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.6, 148.4, 143.6,

132.0, 125.9, 119.6, 119.8-115.0 (m), 108.2, 44.1, 37.1 (t, $J_{C-F} = 20.3$ Hz), 27.0, 25.8; ¹⁹F NMR (470 MHz, CDCl₃) δ -80.9- -81.0 (3F, m), -107.7- -108.6 (1F, m), -113.9- -114.7 (1F, m), -124.3- -124.4 (2F, m), -125.0- -126.5 (2F, m); HRMS calculated for C₁₅H₁₁O₃N₂F₉Na: *m/z* 461.0518 ([M + Na]⁺), found: *m/z* 461.0520 ([M + Na]⁺); IR (neat) 1731, 1616, 1523, 1337, 1221, 1132 cm⁻¹.

5-Iodo-1,3-dimethyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one (3h)

¹H NMR (500 MHz, CDCl₃) δ 7.66-7.62 (1H, m, Ar*H*), 7.56 (1H, brs, Ar*H*), 6.68 (1H, d, *J* = 8.2 Hz, Ar*H*), 3.22 (3H, s, NC*H*₃), 2.88 (1H, dd, *J* = 35.1, 15.3 Hz, C*H*HC₄F₉), 2.56 (1H, ddd, *J* = 31.3, 15.5, 8.0 Hz, CH*H*C₄F₉), 1.43 (3H, s, CC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 177.8, 142.6, 137.4, 133.7, 132.4, 120.0-115.0 (m),

110.6, 85.0, 44.2, 37.0 (t, $J_{C-F} = 20.3$ Hz), 26.5, 25.9; ¹⁹F NMR (470 MHz, CDCl₃) $\delta = 80.9$ - -81.0 (3F, m), -108.0- -108.9 (1F, m), -114.2- -115.0 (1F, m), -124.3- -124.5 (2F, m), -125.0- -126.5 (2F, m); HRMS calculated for C₁₅H₁₁ONF₉INa: m/z 541.9634 ([M + Na]⁺), found: m/z 541.9646 ([M + Na]⁺); IR (neat) 1717, 1220, 1131 cm⁻¹.

3-Benzyl-1-methyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one (3i)

¹H NMR (500 MHz, CDCl₃) δ 7.22 (2H, t, *J* = 7.9 Hz, Ar*H*), 7.11-7.02 (4H, m, Ar*H*), 6.75 (2H, d, *J* = 7.1 Hz, Ar*H*), 6.59 (1H, d, *J* = 7.9 Hz, Ar*H*), 3.09 (1H, d, *J* = 12.8 Hz, C*H*HPh), 3.06 (1H, m, C*H*HC₄F₉), 3.03 (1H, d, *J* = 12.8 Hz, CH*H*Ph), 2.94 (3H, s, NC*H*₃), 2.73 (1H, ddd, *J* = 30.6, 15.5, 8.5 Hz, C*H*HC₄F₉); ¹³C NMR (125 MHz, CDCl₃) δ 177.1,

143.5, 133.8, 130.0, 128.6, 128.3, 127.6, 127.0, 124.6, 122.1, 120.0-108.5 (m), 108.1, 49.8, 45.4, 35.9 (t, $J_{C-F} = 19.7$ Hz), 26.0; ¹⁹F NMR (470 MHz, CDCl₃) δ -80.9- -81.0 (3F, m), -107.1- -108.0 (1F, m), -113.2- -114.1 (1F, m), -124.3- -124.5 (2F, m), - 124.9- -126.6 (2F, m); HRMS calculated for C₂₁H₁₆ONF₉Na: *m/z* 492.0980 ([M + Na]⁺), found: *m/z* 492.0989 ([M + Na]⁺); IR (neat) 1713, 1614, 1221, 1133, 752 cm⁻¹.

3-(Hydroxymethyl)-1-methyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one

(3j); ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.35 (1H, m, Ar*H*), 7.30 (1H, d, *J* = 7.4 Hz, Ar*H*), 7.14-7.10 (1H, m, Ar*H*), 6.93 (1H, d, *J* = 7.7 Hz, Ar*H*), 3.75 (1H, d, *J* = 11.3 Hz, C*H*HOH), 3.67 (1H, d, *J* = 11.1 Hz, CHHOH), 3.81 (3H, s, OCH₃), 3.26 (3H, s, NCH₃), 3.14 (1H, dd, *J* = 35.0, 16.0 Hz, C*H*HC₄F₉), 2.78 (1H, ddd, *J* = 31.3, 15.8, 7.5 Hz,

Me 35.0, 16.0 Hz, $CHHC_4F_9$), 2.78 (1H, ddd, J = 31.3, 15.8, 7.5 Hz, CHHC₄F₉), 2.37 (1H, br, OH); ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 143.6, 129.2, 127.3, 124.1, 122.9, 120.5-109.5 (m), 108.8, 67.9, 49.5, 32.9 (t, $J_{C-F} = 20.3$ Hz), 26.5; ¹⁹F NMR (470 MHz, CDCl₃) δ -80.9- -81.0 (3F, m), -107.7- -108.6 (1F, m), -113.3- -114.1 (1F, m), -124.4- -124.5 (2F, m), -125.0- -126.5 (2F, m); HRMS calculated for C₁₅H₁₂O₂NF₉Na: m/z 432.0617 ([M + Na]⁺), found: m/z 432.0614 ([M + Na]⁺); IR (neat) 3300 (br), 1698, 1615, 1219, 1132 cm⁻¹.

1-Benzyl-3-methyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one (3k)

¹H NMR (500 MHz, CDCl₃) δ 7.34-7.24 (6H, m, Ar*H*), 7.19-7.16 (1H, m, Ar*H*), 7.05 (1H, t, *J* = 7.5 Hz, Ar*H*), 6.76 (1H, d, *J* = 7.9 Hz, Ar*H*), 4.97 (1H, d, *J* = 15.6 Hz, NC*H*₂Ph), 4.92 (1H, d, *J* = 15.6 Hz,

NC*H*₂Ph), 2.96 (1H, dd, *J* = 35.1, 15.3 Hz, C*H*HC₄F₉), 2.65 (1H, ddd, *J* = 31.5, 15.5, 8.0 Hz, CH*H*C₄F₉), 1.49 (3H, s, CC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.6, 141.9, 135.7, 131.3, 128.8, 128.4, 127,6, 127.3, 123.5, 122.6, 120.0-115.0 (m), 109.6, 44.2, 44.0 (t, *J* = 6.6 Hz), 36.8 (t, *J*_{C-F} = 20.3 Hz) 26.5; ¹⁹F NMR (470 MHz, CDCl₃) δ -80.9- -81.0 (3F, m), -108.3- -109.1 (1F, m), -113.3- -114.1 (1F, m), -124.3- -124.6 (2F, m), - 125.0- -126.5 (2F, m); HRMS calculated for C₂₁H₁₆ONF₉Na: *m/z* 492.0980 ([M + Na]⁺); found: *m/z* 492.0991 ([M + Na]⁺); IR (neat) 1715, 1614, 1489, 1353, 1220, 1132, 754 cm⁻¹.

1-Isopropyl-3-methyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one (31)

¹H NMR (500 MHz, CDCl₃) δ 7.30-7.26 (2H, m, Ar*H*), 7.08-7.04 (2H, m, Ar*H*), 4.64 (1H, m, *J* = 7.0 Hz, NC*H*(CH₃)₂), 2.89 (1H, dd, *J* = 35.0, 15.2 Hz, C*H*HC₄F₉), 2.56 (1H, ddd, *J* = 31.4, 15.8, 8.5 Hz, CH*H*C₄F₉), 1.48 (6H, t, *J* = 6.7 Hz, NCH (C*H*₃)₂), 1.41 (3H, s, CC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 141.6, 131.8, 128.2, 123.8, 122.0, 120.0-107.5 (m), 110.2, 44.0, 37.1 (t, *J*_{C-F} = 20.3 Hz),

 $\begin{array}{l} \text{Me} & \text{123.8, 122.0, 120.0-107.5 (III), 110.2, 44.0, 57.1 (I, J_{C-F} = 20.5 \text{ Hz}),} \\ \text{26.2, 19.2, 19.0; }^{19}\text{F NMR} (470 \text{ MHz, CDCl}_3) \ \delta - 80.9 \text{-} - 81.1 (3\text{F, m}), -108.3 \text{-} -109.2 \\ (1\text{F, m}), -114.1 \text{-} -114.9 (1\text{F, m}), -124.4 \text{-} -124.6 (2\text{F, m}), -125.0 \text{-} -126.6 (2\text{F, m}); \\ \text{HRMS calculated for } \text{C}_{17}\text{H}_{16}\text{ONF}_9\text{Na: } m/z \ 444.0980 ([M + \text{Na}]^+), \text{ found: } m/z \ 444.0987 \\ ([M + \text{Na}]^+) \ ; \text{IR (neat) } 1709, 1354, 1216, 1129, 733 \text{ cm}^{-1}. \end{array}$

1,3-Dimethyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-1,3-dihydro-2H-pyrrolo[2,3-

b]pyridin-2-one (3m); ¹H NMR (500 MHz, CDCl₃) δ 8.24 (1H, dd, J = 5.4, 1.4 Hz, Ar*H*), 7.53 (1H, d, J = 7.4 Hz, Ar*H*), 7.00 (1H, dd, J = 7.2, 5.2 Hz, Ar*H*), 3.34 (3H, s, NC*H*₃), 2.88 (1H, dd, J = 35.3, 15.4 Hz, C*H*HC₄F₉), 2.62 (1H, ddd, J = 31.6, 16.0, 8.0 Hz, CH*H*C₄F₉), 1.47 (3H, s, CC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 178.2, 156.3, 5.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃); ¹³C NMZ (125 MH

147.6, 131.3, 125.7, 118.3, 120.0-108.0 (m), 44.0, 36.6 (t, $J_{C-F} = 20.9$ Hz), 25.7, 25.1; ¹⁹F NMR (470 MHz, CDCl₃) δ –80.9- –81.1 (3F, m), –108.0- –108.8 (1F, m), –113.7-–114.5 (1F, m), –124.4- –124.5 (2F, m), –125.0- –126.5 (2F, m); HRMS calculated for C₁₄H₁₁ON₂F₉Na: *m/z* 417.0620 ([M + Na]⁺), found: *m/z* 417.0627 ([M + Na]⁺); IR (neat) 1724, 1597, 1471, 1220, 1134 cm⁻¹.

1-Methyl-1-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-5,6-dihydro-4H-pyrrolo[3,2,1-ij]-

quinolin-2(1H)-one (3n); ¹H NMR (500 MHz, CDCl₃) δ 7.12 (1H, d, J = 7.4 Hz, Ar*H*), 7.06 (1H, d, J = 7.7 Hz, Ar*H*), 6.98 (1H, t, J = 7.7 Hz, Ar*H*), 3.74 (2H, t, J = 5.8 Hz, NC*H*₂), 2.90-2.75 (3H, m, C*H*HC₄F₉, ArC*H*₂), 2.60 (1H, ddd, J = 31.8, 15.8, 8.0 Hz, CH*H*C₄F₉), 2.02 (2H, m, CH₂CH₂CH₂), 1.45 (3H, s, CC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 138.6, 130.0, 127.3, 122.1, 121.5, 120.6, 120.0-108.0

(m), 45.6, 39.1, 36.8 (t, $J_{C-F} = 20.3$ Hz), 25.5, 24.7, 21.2; ¹⁹F NMR (470 MHz, CDCl₃) δ -80.9- -81.0 (3F, m), -108.4- -109.2 (1F, m), -114.1- -114.9 (1F, m), -124.4- -124.5 (2F, m), -125.0- -126.5 (2F, m); HRMS calculated for C₁₇H₁₄ONF₉Na: m/z 442.0824

 $([M + Na]^{+})$, found: m/z 442.0809 $([M + Na]^{+})$; IR (neat) 1715, 1483, 1355, 1221, 1133 cm⁻¹.

General Procedure for Perfluoroalkylation of 2-Isocyanobiphenyl 4 (Scheme 3)

To a stirred solution of 2-isocyanobiphenyl 4 (0.1 mmol), R_fSO_2Na 1 (0.2 mmol), AcONa (0.1 mmol, 8.2 mg) in ethyl acetate (1.5 mL) was added a solution of PIFA (51.6 mg, 0.12 mmol) in ethyl acetate (0.5 mL) slowly over the course of 50 minutes with syringe pump at room temperature under argon atmosphere. The reaction mixture was then stirred for 40 minutes at the same temperature. After the reaction completed, the reaction was quenched with saturated NaHCO₃ aq. and extracted with ethyl acetate. The combined organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel to provide the product.

6-(Trifluoromethyl)phenanthridine (5a)

¹H NMR (500 MHz, CDCl₃) δ 8.74 (1H, d, *J* = 8.5 Hz, Ar*H*), 8.66-8.62 (1H, m, Ar*H*), 8.42-8.38 (1H, m, Ar*H*), 8.32-8.29 (1H, m, Ar*H*), 7.97-7.93 (1H, m, Ar*H*), 7.85-7.77 (3H, m, Ar*H*). Other spectral data of this compound were consistent with previously reported data.^[9]

6-(Heptafluoropropyl)phenanthridine (5b)

¹H NMR (500 MHz, CDCl₃) δ 8.71 (1H, d, *J* = 8.3 Hz, Ar*H*), 8.62-8.59 (1H, m, Ar*H*), 8.46 (1H, d, *J* = 8.5 Hz, Ar*H*), 8.29-8.26 (1H, m, Ar*H*), 7.91 (1H, t, *J* = 7.7 Hz, Ar*H*), 7.82-7.73 (3H, m, Ar*H*); ¹³C NMR (125 MHz, CDCl₃) δ 146.5 (t, *J*_{C-F} = 24.4 Hz), 141.8, 134.0, 131.3, 131.2, 129.4, 129.3, 128.0, 126.3-126.1 (m), 124.8, 123.0,

122.6, 122.0, 120-106 (m); ¹⁹F NMR (470 MHz, CDCl₃) δ –78.9 (3F, t, J = 9.6 Hz), – 105.6–105.7 (2F, m), –123.5–123.6 (2F, m); HRMS calculated for C₁₆H₈NF₇Na: m/z370.0437 ([M + Na]⁺), found: m/z 370.0436 ([M + Na]⁺); IR (neat) 1219, 1192, 1162, 1086, 997, 887, 759, 745, 723 cm⁻¹.

6-(Nonafluorobutyl)phenanthridine (5c)

¹H NMR (500 MHz, CDCl₃) δ 8.74 (1H, d, J = 8.3 Hz, Ar*H*), 8.65-8.61 (1H, m, Ar*H*), 8.47 (1H, d, J = 8.5 Hz, Ar*H*), 8.30-8.26 (1H, m, Ar*H*), 7.95-7.91 (1H, m, Ar*H*), 7.84-7.75 (3H, m, Ar*H*); ¹³C NMR (125 MHz, CDCl₃) δ 146.7 (t, J_{C-F} = 25.0 Hz), 141.8, 134.0, 131.3, 131.2, 129.4, 129.3, 128.0, 126.3-126.1 (m), 124.8, 123.0, 122.6,

122.0, 120-105 (m); ¹⁹F NMR (470 MHz, CDCl₃) δ -80.8- -80.9 (3F, m), -104.7- -

104.9 (2F, m), -119.6- -119.7 (2F, m), -123.5- -123.6 (2F, m); HRMS calculated for $C_{17}H_9NF_9$: m/z 398.0586 ([M + H]⁺), found: m/z 398.0593 ([M + H]⁺); IR (neat) 1349, 1229, 1206, 1133, 864, 761, 726 cm⁻¹.

6-(Perfluorooctyl)phenanthridine (5d)

¹H NMR (500 MHz, CDCl₃) δ 8.74 (1H, d, J = 8.5 Hz, ArH), 8.64-8.62 (1H, m, ArH), 8.47 (1H, d, J = 8.2 Hz, ArH), 8.30-8.27 (1H, m, ArH), 7.92 (1H, t, J = 7.8 Hz, ArH), 7.84-7.74 (3H, m, ArH); ¹³C NMR (125 MHz, CDCl₃) δ 146.7 (t, J_{C-F} = 24.4 Hz), 141.8, 134.1, 131.3, 131.2, 129.4, 129.3, 128.0, 126.3-126.1 (m),

124.9, 123.1, 122.7, 122.0, 120-105 (m); ¹⁹F NMR (470 MHz, CDCl₃) δ –80.6- –80.7 (3F, m), –104.7- –104.9 (2F, m), –118.8- –119.0 (2F, m), –119.5- –119.7 (2F, m), – 121.4- –121.7 (4F, m), –122.5- –122.7 (2F, m), –125.9- –126.0 (2F, m); HRMS calculated for C₂₁H₉NF₁₇: *m/z* 598.0458 ([M + H]⁺), found: *m/z* 598.0461 ([M + H]⁺); IR (neat) 1240, 1205, 1149, 761, 725 cm⁻¹.

(5e); ¹H NMR (500 MHz, CDCl₃) δ 8.72 (1H, d, J = 8.2 Hz, ArH), 8.63-8.60 (1H, m, ArH), 8.46 (1H, d, J = 8.5 Hz, ArH), 8.28-8.26 (1H, m, ArH), 7.91 (1H, t, J = 7.7 Hz, ArH), 7.82-7.74 (3H, m, ArH); ¹³C NMR (125 MHz, CDCl₃) δ 146.8 (t, $J_{C-F} = 24.4$ Hz), 141.8, 134.0, 131.23, 131.18, 129.4, 129.3, 128.0, 126.3-126.1 (m), 124.8, 123.1, 122.6, 122.0, 120-105 (m); ¹⁹F NMR (470 MHz, CDCl₃) δ -71.6- -71.8 (6F, m), -104.6- -104.8 (2F, m), -114.6- -114.9 (2F, m), -118.3- -

118.7 (4F, m), -185.6- -185.7 (1F, m); HRMS calculated for $C_{20}H_8NF_{15}Na$: m/z 570.0309 ([M + Na]⁺), found: m/z 570.0316 ([M + Na]⁺); IR (neat) 1251, 1198, 1153, 984 cm⁻¹.

OMe N C₄F₉

8-Methoxy-6-(nonafluorobutyl)phenanthridine (5f)

¹H NMR (500 MHz, CDCl₃) δ 8.59 (1H, d, J = 9.1 Hz, ArH), 8.51-8.48 (1H, m, ArH), 8.24-8.21 (1H, m, ArH), 7.78-7.70 (3H, m, ArH), 7.52 (1H, dd, J = 9.1, 2.6 Hz, ArH), 3.98 (3H, s, OC H_3); ¹³C NMR (125 MHz, CDCl₃) δ 158.9, 145.7 (t, $J_{C-F} = 25.0$ Hz), 141.0, 134.0, 131.1, 129.5, 128.5, 128.3, 125.0, 124.3, 124.2,

122.3, 121.5, 119-108 (m), 106.0-105.8 (m), 55.5; ¹⁹F NMR (470 MHz, CDCl₃) δ – 80.9 (3F, t, J = 10.5 Hz), -105.4 (2F, t, J = 12.3 Hz), -119.5- -119.6 (2F, m), -123.4- - 123.5 (2F, m); HRMS calculated for C₁₈H₁₀ONF₉Na: m/z 450.0511 ([M + Na]⁺), found: m/z 450.0517 ([M + Na]⁺); IR (neat) 1622, 1466, 1222, 1104, 829, 744 cm⁻¹.

6-(Nonafluorobutyl)-8-(trifluoromethyl)phenanthridine (5g)

¹H NMR (500 MHz, CDCl₃) δ 8.83 (1H, d, J = 8.8 Hz, Ar*H*), 8.73 (1H, s, Ar*H*), 8.64-8.61 (1H, m, Ar*H*), 8.32-8.29 (1H, m, Ar*H*), 8.12-8.09 (1H, m, Ar*H*), 7.91-7.84 (2H, m, Ar*H*); ¹³C NMR (125 MHz, CDCl₃) δ 146.6 (t, J_{C-F} = 25.0 Hz), 142.4, 136.1, 131.5, 130.6, 130.1, 130.0 (q, J_{C-F} = 33.0 Hz), 127.1 (q, J_{C-F} = 3.2

Hz), 123.9, 123.9, 123.8-123.6 (m), 123.7 (q, $J_{C-F} = 272.6$ Hz), 122.4, 122.2, 119-108 (m); ¹⁹F NMR (470 MHz, CDCl₃) δ –62.6, (3F, s), –80.9 (3F, t, J = 10.2 Hz), –104.5 (2F, t, J = 12.5 Hz), –119.7 – 119.8 (2F, m), –123.5 – –123.6 (2F, m); HRMS calculated for C₁₈H₈NF₁₂: m/z 466.0460 ([M + H]⁺), found: m/z 466.0461 ([M + H]⁺); IR (neat) 1320, 1235, 1133, 1087, 735 cm⁻¹.

6-(Nonafluorobutyl)benzo[c][1,8]naphthyridine (5h)

¹H NMR (500 MHz, CDCl₃) δ 9.18 (1H, dd, J= 4.4, 1.8 Hz, Ar*H*), 8.98 (1H, dd, J= 8.5, 1.7 Hz, Ar*H*), 8.71 (1H, d, J = 8.5 Hz, Ar*H*), 8.54 (1H, d, J = 8.2 Hz, Ar*H*), 8.01-7.97 (1H, m, Ar*H*), 7.86-7.82 (1H, m, Ar*H*), 7.74 (1H, dd, J= 8.2, 4.3 Hz, Ar*H*); ¹³C NMR (125 MHz, CDCl₃) δ 152.6, 151.1, 150.3 (t, J_{C-F} = 24.4 Hz), 134.5, 131.9,

131.5, 128.9, 126.8-126.5 (m), 124.3, 123.2, 122.7, 120.1, 119-108 (m); ¹⁹F NMR (470 MHz, CDCl₃) δ -80.7- -80.8 (3F, m), -105.2- -105.3 (2F, m), -119.8- -119.9 (2F, m), -124.4- -124.6 (2F, m); HRMS calculated for C₁₆H₇N₂F₉Na: *m/z* 421.0358 ([M + Na]⁺), found: *m/z* 421.0368 ([M + Na]⁺); IR (neat) 1567, 1348, 1213, 1133 cm⁻¹.

4-(Nonafluorobutyl)pyrrolo[1,2-a]quinoxaline (5i)

¹H NMR (500 MHz, CDCl₃) δ 8.10-8.04 (2H, m, Ar*H*), 7.90 (1H, dd, *J*= 8.2, 1.1 Hz, Ar*H*), 7.66-7.61 (1H, m, Ar*H*), 7.53-7.49 (1H, m, Ar*H*), 7.16-7.13 (1H, m, Ar*H*), 6.98 (1H, dd, *J*= 4.1, 2.7 Hz, Ar*H*); ¹³C NMR (125 MHz, CDCl₃) δ 142.7 (t, *J*_{C-F} = 25.6 Hz), 134.2, 131.3, 130.1, 127.7, 125.8, 122.8, 122-110 (m), 115.4, 115.0,

113.8, 108.8 (t, $J_{C-F} = 4.8 \text{ Hz}$); ¹⁹F NMR (470 MHz, CDCl₃) δ -80.7- -80.8 (3F, m), -113.2- -113.3 (2F, m), -121.7- -121.9 (2F, m), -125.2- -125.4 (2F, m); HRMS calculated for C₁₅H₈N₂F₉: *m/z* 387.0538 ([M + H]⁺), found: *m/z* 387.0538 ([M + H]⁺); IR (neat) 1481, 1376, 1220, 1135, 756 cm⁻¹.

Optimization of Direct Perfluoroalkylation of sp2–Hybridized C–H Bond

The effect of hypervalent iodine reagent and oxidants were summarized in Table S2. When the reaction of ethyl 3,3-diphenylacrylate **6a** with sodium trifluoromethansulinate **1b** was conducted in the presence of PIFA, the desired product **7a** was obtained in 17% yield (entry 1). Use of F_5 -PIFA improved the yield of **7a** (entry 2). Although addition of

ammonium hexanitratocerate (CAN) as an oxidant slightly decreased yield, use of 2,3dichloro-5,6-dicyano-*p*-benzoquinone (DDQ) gave **7a** in 76% yield. After the survey of equivalent of F_5 -PIFA and DDQ, the combination of 2.0 equivalent F_5 -PIFA and 0.6 equivalent of DDQ gave the best result in terms of yield (entries 3-6).

Table S2

	P L Ph	CF ₃ SO ₂ Iodine(II Additive CO ₂ Et	Na (X eq.) I) (Y eq.) Pl e (Z eq.) Ph M, rt	h CO ₂ Et CF ₃		
6a 7a						
Entry	X eq.	Iodine(III) (Y eq.)	Additive (Z eq.)	Yield (%) ^b		
1	1.5	PIFA (1.5)	-	17		
2	1.5	F ₅ -PIFA (1.5)		43		
3	1.5	F ₅ -PIFA (1.5)	CAN (1.0)	36		
4 ^c	1.5	F ₅ -PIFA (1.5)	DDQ (1.0)	33		
5	1.5	F ₅ -PIFA (1.5)	DDQ (1.0)	76		
6	1.5	F ₅ -PIFA (1.5)	DDQ (0.6)	71		
7	2.0	F ₅ -PIFA (2.0)	DDQ (0.6)	80		

The reactions of **6a** (1.0 equiv.) with CF_3SO_2Na (X equiv.) were carried out in the presence of iodine(III) reagent (Y equiv) and additive (Z equiv.) in a dichloromethane (0.1 M). [b] Yield was determined by ¹H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard. [c] The reaction was carried out at 60 °C.

Typical Procedure for Direct Perfluoroalkylation of sp2–Hybridized C–H Bond (Scheme 4, 7a-h).

Ethyl 3,3-diarylacrylate **6a** (0.2 mmol), R_fSO_2Na **1** (0.4 mmol), DDQ (27.2 mg, 0.12 mmol) and F_5 -PIFA (208 mg, 0.4 mmol) were added subsequently in a test tube under argon atmosphere. Then DCM (1 mL) was added and the reaction mixture was stirred at room temperature for 8~15 hours. Upon completion of the reaction, the resulting mixture was directly purified by flash column chromatography on silica gel to afford the corresponding product.

Ethyl 3,3-Diphenyl-2-(trifluoromethyl)acrylate (7a)

¹H NMR (500 MHz, CDCl₃) δ 7.36-7.22 (10H, m, Ar*H*), 4.03 (2H, q, J = 7.1 Hz, OCH₂CH₃), 0.97 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 164.2, 154.3 (q, J_{C-F} = 3.6 Hz), 139.7, 138.0, 129.0, 128.7, 128.3, 128.1, 128.1, 121.7 (q, $J_{C-F} = 275.0$ Hz), 61.8, 13.5; ¹⁹F NMR (470 MHz, CDCl₃) δ -55.4 (3F, s); HRMS calculated for C₁₈H₁₅O₂F₃Na: m/z

343.0916 ($[M + Na]^+$), found: m/z 343.0928 ($[M + Na]^+$); IR (neat) 1730, 1327, 1244, 1148, 1126, 1045 cm⁻¹.

Ethyl 3,3-Diphenyl-2-(pentafluoroethyl)acrylate (7b)

¹H NMR (500 MHz, CDCl₃) δ 7.34-7.18 (10H, m, Ar*H*), 3.96 (2H, q, J = 7.2 Hz, OCH₂CH₃), 0.90 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 164.4 (t, $J_{C-F} = 4.2$ Hz), 156.8 (t, $J_{C-F} = 4.2$ Hz), 140.8, 138.1, 129.1, 128.4, 128.3, 128.1, 128.1, 128.0, 127.8, 123-109 (m), 61.8, 13.4; ¹⁹F NMR (470 MHz, CDCl₃) δ -82.5 (3F, t, J = 2.9 Hz), -105.0- -105.1

(2F, m); HRMS calculated for $C_{19}H_{15}O_2F_5Na$: m/z 393.0884 ([M + Na]⁺), found: m/z 343.0874 ([M + Na]⁺); IR (neat) 1732, 1303, 1202, 1127, 1072, 1018 cm⁻¹.

Ethyl 3,3-Diphenyl-2-(heptafluoropropyl)acrylate (7c)

¹H NMR (500 MHz, CDCl₃) δ 7.34-7.18 (10H, m, Ar*H*), 3.95 (2H, q, J = 7.1 Hz, OCH₂CH₃), 0.90 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 164.4 (t, $J_{C-F} = 4.2$ Hz), 157.2 (t, $J_{C-F} = 4.8$ Hz), 140.9, 138.1, 129.1, 128.4, 128.4, 128.1, 128.0, 127.7, 125-106 (m), 61.8, 13.4; ¹⁹F NMR (470 MHz, CDCl₃) δ -80.3 (3F, t, J = 10.2 Hz), -101.7- -101.9 (2F,

m), -123.4--123.5 (2F, m); HRMS calculated for C₂₀H₁₅O₂F₇Na: *m/z* 443.0852 ([M + Na]⁺), found: *m/z* 443.0836 ([M + Na]⁺); IR (neat) 1732, 1344, 1226, 1187, 1113, 1054 cm⁻¹.

Ethyl 2-(Diphenylmethylene)-3,3,4,4,5,5,6,6,6-nonafluorohexanoate (7d)

¹H NMR (500 MHz, CDCl₃) δ 7.33-7.28 (6H, m, Ar*H*), 7.23-7.19 (4H, m, Ar*H*), 3.95 (2H, q, *J* = 7.2 Hz, OC*H*₂CH₃), 0.89 (3H, t, *J* = 7.2 Hz, OCH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 164.4 (t, *J*_{C-F} = 3.6 Hz), 157.2 (q, *J*_{C-F} = 4.2 Hz), 140.9, 138.1, 129.0, 128.4, 128.4, 128.0, 128.0, 127.7, 125-110 (m), 61.8, 13.4; ¹⁹F NMR (470 MHz, CDCl₃) δ –80.8- –80.9 (3F, m), –101.4 (2F, t, *J* =14.0 Hz), –119.7-

-119.9 (2F, m), -125.9- -126.0 (2F, m); HRMS calculated for C₂₁H₁₅O₂F₉Na: m/z

493.0821 ($[M + Na]^+$), found: m/z 493.0827 ($[M + Na]^+$); IR (neat) 1733, 1234, 1135 cm⁻¹.

Ethyl 3,3-Diphenyl-2-(tridecafluorohexyl)acrylate (7e)

¹H NMR (500 MHz, CDCl₃) δ 7.34-7.19 (10H, m, Ar*H*), 3.95 (2H, q, J = 7.1 Hz, OCH₂CH₃), 0.89 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 164.4 (t, J_{C-F} = 4.2 Hz), 157.2 (t, J_{C-F} = 4.8 Hz), 140.9, 138.2, 129.1, 128.4, 128.4, 128.0, 128.0, 127.7, 124-108 (m), 61.8, 13.3; ¹⁹F NMR (470 MHz, CDCl₃) δ –80.6- –80.8 (3F, m), –101.2- –101.3 (2F, m), –

118.8- –119.0 (2F, m), –121.7- –121.9 (2F, m), –122.5- –122.7 (2F, m), –125.9- –126.1 (2F, m); HRMS calculated for $C_{23}H_{15}O_2F_{13}Na: m/z$ 593.0757 ([M + Na]⁺), found: m/z 593.0762 ([M + Na]⁺); IR (neat) 1733, 1234, 1196, 1144, 1075, 1038 cm⁻¹.

Ethyl 3,3-Bis(4-chlorophenyl)-2-(trifluoromethyl)acrylate (7f)

¹H NMR (500 MHz, CDCl₃) δ 7.36-7.28 (4H, m, Ar*H*), 7.19-7.15 (4H, m, Ar*H*), 4.08 (2H, q, *J* = 7.1 Hz, OC*H*₂CH₃), 1.05 (3H, t, *J* = 7.1 Hz, OCH₂C*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 163.8 (t, *J*_{C-F} = 3.0 Hz), 151.7 (q, *J*_{C-F} = 3.6 Hz), 137.6, 136.0, 135.6, 135.3, 129.7, 129.7, 129.7, 128.7, 128.6, 121.4 (q, *J*_{C-F} = 275.4 Hz), 62.2, 13.6; ¹⁹F NMR (470 MHz, CDCl₃) δ –55.4 (3F, s); HRMS calculated for C₁₈H₁₃O₂Cl₂F₃Na: *m/z* 411.0137 ([M + Na]⁺), found: *m/z* 411.0142 ([M + Na]⁺); IR (neat) 1729,

1490, 1324, 1246, 1130, 1090, 1043, 826 cm⁻¹.

Ethyl 3,3-Bis(4-fluorophenyl)-2-(trifluoromethyl)acrylate (7g)

¹H NMR (500 MHz, CDCl₃) δ 7.24-7.20 (4H, m, Ar*H*), 7.08-6.98 (4H, m, Ar*H*), 4.07 (2H, q, *J* = 7.1 Hz, OCH₂CH₃), 1.04 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 164.2, 164.0 (d, *J*_{C-F} = 11.9 Hz), 162.1 (d, *J*_{C-F} = 17.9 Hz), 152.1 (q, *J*_{C-F} = 3.6 Hz), 135.5 (d, *J*_{C-F} = 3.6 Hz), 133.8 (d, *J*_{C-F} = 3.6 Hz), 130.5, 130.4, 130.3, 124.3 (q, *J*_{C-F} = 31.8 Hz), 121.5 (q, *J*_{C-F} = 275.4 Hz), 115.6, 115.5, 115.4, 115.3, 62.1, 13.6; ¹⁹F NMR (470 MHz, CDCl₃) δ -55.4 (3F, s), -111.0- -111.2

(1F, m), -111.7--111.8 (1F, m); HRMS calculated for C₁₈H₁₃O₂F₅Na: *m/z* 379.0728 ([M + Na]⁺), found: *m/z* 379.0733 ([M + Na]⁺); IR (neat) 1730, 1603, 1507, 1328, 1233, 1149, 1044, 838 cm⁻¹.

Ethyl 3-(4-(tert-Butyl)phenyl)-3-phenyl-2-(trifluoromethyl)acrylate (7h)

¹H NMR (500 MHz, CDCl₃) (data given for E and Z mixture) δ 7.37-7.13 (9H, m, Ar*H*, E,Z-mixture), 4.03, 4.01 (2H, q, *J* = 7.1 Hz, OC*H*₂CH₃), 1.30, 1.28 (9H, s, C(C*H*₃)₃),

0.95, 0.91 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 164.5-164.4 (m), 164.4-164.3 (m), 154.7 (q, $J_{C-F} = 3.6$ Hz), 154.4 (q, $J_{C-F} = 3.6$ Hz), 152.4, 151.8, 140.1, 138.2, 136.8, 135.0, 128.9, 128.6, 128.2, 128.2, 128.2, 128.0, 127.9, 125.2, 125.0, 121.7 (q, $J_{C-F} = 275.4$ Hz), 121.7 (q, $J_{C-F} = 275.4$ Hz), 61.7, 61.7, 34.7, 31.2, 31.2, 13.5, 13.4; ¹⁹F NMR (470 MHz, CDCl₃) δ –55.29, –55.30 (3F, s); HRMS calculated for C₂₂H₂₃O₂F₃Na: *m/z* 399.1542 ([M + Na]⁺), found: *m/z* 399.1538 ([M + Na]⁺); IR (neat) 2965, 1730, 1367, 1329, 1243, 1151, 1129, 1045, 831, 699 cm⁻¹.

Typical Procedure for Direct Perfluoroalkylation of Heterocycles (Scheme 4, 7i-p).

4-Phenylcoumarin (44.4 mg, 0.2 mmol), DDQ (27.2 mg, 0.12 mmol), R_fSO_2Na (0.4 mmol) and F_5 -PIFA (208 mg, 0.4 mmol) were added subsequently in a test tube under argon atmosphere. Then 2,6-lutidine (23.0 μ L , 0.2 mmol) and DCM (1 mL) was added and the reaction mixture was stirred at room temperature overnight. Upon completion of the reaction, the resulting mixture was directly purified by flash column chromatography on silica gel to afford the corresponding product.

4-Phenyl-3-(trifluoromethyl)-2H-chromen-2-one (7i)

¹H NMR (500 MHz, CDCl₃) δ 7.65-7.60 (1H, m, Ar*H*), 7.55-7.51 (3H, m, Ar*H*), 7.42-7.39 (1H, m, Ar*H*), 7.27-7.24 (2H, m, Ar*H*), 7.22-7.18 (1H, m, Ar*H*), 7.03-7.00 (1H, m, Ar*H*).

Other spectral data of this compound were consistent with previous reported data.^[10]

3-(Nonafluorobutyl)-4-phenyl-2*H*-chromen-2-one (7j)

¹H NMR (500 MHz, CDCl₃) δ 7.64-7.60 (1H, m, Ar*H*), 7.53-7.47 (3H, m, Ar*H*), 7.40 (1H, d, J = 8.2 Hz, Ar*H*), 7.24-7.20 (2H, m, Ar*H*), 7.19-7.14 (1H, m, Ar*H*), 6.85 (1H, q, J = 8.2 Hz, Ar*H*); ¹³C NMR (125 MHz, CDCl₃) δ 160.0 (m), 156.1, 153.5, 134.3, 133.0, 129.4, 128.9, 128.0, 127.3, 124.7, 120.2, 119-108 (m), 116.7; ¹⁹F

NMR (470 MHz, CDCl₃) δ –80.7- –80.8 (3F, m), –102.3 (2F, t, *J* =14.7 Hz), –118.8- – 119.0 (2F, m), –126.0- –126.1 (2F, m); HRMS calculated for C₁₉H₉O₂F₉Na: *m/z* 463.0351 ([M + Na]⁺), found: *m/z* 463.0343 ([M + Na]⁺); IR (neat) 1742, 1605, 1560, 1354, 1230, 1200, 1134, 756 cm⁻¹.

7-Methoxy-3-(perfluorobutyl)-4-phenyl-2*H*-chromen-2-one (7k)

133.4, 130.6, 128.8, 127.9, 127.3, 120-105 (m), 113.8, 113.3, 100.1, 56.1; ¹⁹F NMR (470 MHz, CDCl₃) δ –80.7- –80.8 (3F, m), –102.1 (2F, t, *J* =14.7 Hz), –119.0- –119.2 (2F, m), –126.0- –126.1 (2F, m); HRMS calculated for C₂₀H₁₁O₃F₉Na: *m/z* 493.0457 ([M + Na]⁺), found: *m/z* 493.0461 ([M + Na]⁺); IR (neat) 1738, 1616, 1591, 1546, 1372, 1205, 1133 cm⁻¹.

1-Methyl-3-(perfluorobutyl)-4-phenylquinolin-2(1H)-one (7l)

¹H NMR (500 MHz, CDCl₃) δ 7.66-7.62 (1H, m, Ar*H*), 7.48-7.45 (3H, m, Ar*H*), 7.42 (1H, d, J = 8.2 Hz, Ar*H*), 7.22-7.19 (2H, m, Ar*H*), 7.12-7.08 (1H, m, Ar*H*), 6.96 (1H, dd, J = 8.2, 1.4 Hz, Ar*H*), 3.81 (3H, s, NC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 158.5 (t, $J_{C-F} = 2.4$ Hz), 154.8-154.7 (m), 140.4, 135.0, 133.0, 130.2, 128.2, 128.0, 127.8, 122.4, 121.1, 119-108 (m), 114.0, 29.9; ¹⁹F NMR (470 MHz,

CDCl₃) δ -80.6- -80.7 (3F, m), -101.0- -101.2 (2F, m), -117.8- -118.0 (2F, m), -126.0- -126.2 (2F, m); HRMS calculated for C₂₀H₁₂ONF₉Na: *m/z* 476.0667 ([M + Na]⁺), found: *m/z* 476.0675 ([M + Na]⁺); IR (neat) 1655, 1603, 1367, 1231, 1199, 1132 cm⁻¹.

2-(3,4-Dimethoxyphenyl)-3-(trifluoromethyl)-4H-chromen-4-one (7m)

¹H NMR (500 MHz, CDCl₃) δ 8.27 (1H, dd, J = 7.9, 1.7 Hz, Ar*H*), 7.76-7.71 (1H, m, Ar*H*), 7.50-7.46 (2H, m, Ar*H*), 7.24 (1H, dd, J = 8.4 Hz, 1.8 Hz, Ar*H*), 7.12 (1H, d, J = 2.0 Hz, Ar*H*), 6.99 (1H, d, J = 8.0 Hz, Ar*H*), 3.98 (3H, s, OC*H*₃) 3.95 (3H, s, OC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 166.8-166.9 (m), 155.4, 151.8, 148.7, 134.6, 126.2, 126.1,

124.6, 123.4, 122.9 (q, $J_{C-F} = 275.3 \text{ Hz}$), 122.5, 121.8, 117.9, 111.7, 110.6, 56.13, 56.08; ¹⁹F NMR (470 MHz, CDCl₃) δ –56.0 (3F, s); HRMS calculated for C₁₈H₁₃O₄F₃Na: m/z373.0658 ([M + Na]⁺), found: m/z 373.0664 ([M + Na]⁺); IR (neat) 1654, 1516, 1467, 1385, 1267, 1125, 1069, 1022, 762 cm⁻¹.

6-Chloro-1,3-dimethyl-5-(perfluorobutyl)pyrimidine-2,4(1*H*,3*H*)-dione (7n)

¹H NMR (500 MHz, CDCl₃) δ 3.71 (3H, s, NCH₃), 3.37 (3H, s, NCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 150.8, 149.7, 119-106 (m), 101.6 (t, $J_{C-F} = 23.2$ Hz), 34.8, 29.0; ¹⁹F NMR (470 MHz, CDCl₃) δ -80.7- -80.8 (3F, m), -104.7- -104.9 (2F, m), -121.2- - 121.4 (2F, m), -126.0- -126.2 (2F, m); HRMS calculated for C₁₀H₆O₂N₂ClF₉Na: *m/z* 414.9866 ([M + Na]⁺), found: *m/z* 414.9878

 $([M + Na]^{+});$ IR (neat) 1720, 1662, 1582, 1429, 1350, 1231, 1198, 1128 cm⁻¹.

1,3-Dimethyl-5-(perfluorobutyl)pyrimidine-2,4(1*H*,3*H*)-dione (70)

C₄F₉, Me NCH₃), 3.37 (3H, s, NCH₃); ¹³C NMR (125 MHz, CDCl₃)
$$\delta$$
 158.5 (t, $J_{C-F} = 2.4$ Hz), 150.9, 145.7 (t, $J_{C-F} = 10.1$ Hz), 120-106 (m), 102.3 (t, Me

 $J_{\text{C-F}} = 24.4 \text{ Hz}$), 37.9, 28.2; ¹⁹F NMR (470 MHz, CDCl₃) δ -80.8- -80.9 (3F, m), -109.8- -109.9 (2F, m), -121.7- -121.9 (2F, m), -125.8- -126.0 (2F, m); HRMS calculated for C₁₀H₇O₂N₂F₉Na: *m/z* 381.0256 ([M + Na]⁺), found: *m/z* 381.0267 ([M + Na]⁺); IR (neat) 1721, 1668, 1454, 1372, 1350, 1231, 1204, 1131 cm⁻¹.

1,3,7-Trimethyl-8-(perfluorobutyl)-3,7-dihydro-1*H*-purine-2,6-dione (7p)

¹H NMR (500 MHz, CDCl₃) δ 4.20-4.19 (3H, m, NC*H*₃), 3.60 (3H, s, NC*H*₃), 3.43 (3H, s, NC*H*₃); ¹³C NMR (125 MHz, CDCl₃) δ 155.5, 151.3, 147.1, 137.8 (t, *J*_{C-F} = 29.2 Hz), 119-108 (m), 110.2, 33.8, 29.9, 28.2; ¹⁹F NMR (470 MHz, CDCl₃) δ -80.7- -80.8 (3F, m), -108.9- -109.1 (2F, m), -121.7- -121.9 (2F, m), -125.3- -125.5 (2F, m); HRMS calculated for

 $C_{12}H_9O_2N_4F_9Na: m/z \ 435.0474 \ ([M + Na]^+), \text{ found: } m/z \ 435.0474 \ ([M + Na]^+); \text{ IR} (neat) \ 1706, \ 1671, \ 1231, \ 1199, \ 1136 \ cm^{-1}.$

References

- [1] J. D. White, G. Caravatti, T. B. Kline, E. Edstrom, K. C. Rice, A. Brossi, *Tetrahedron* **1983**, *39*, 2393.
- [2] A. A. Zagulyaeva, M. S. Yusubov, and V. V. Zhdankin J. Org. Chem. 2010, 75, 445.
- [3] L.-Q. Hu, D. D. DesMarteau, Inorg. Chem. 1993, 32, 5007.
- [4] For *N*-arylacrylamide synthesis,
 - (a) Y. Yuan, T. Shen, K. Wang and N. Jiao Chem. Asian. J. 2013, 8, 2932.
 - (b) J. Jia, M. Sarker, M. G. Steinmetz, R. Shukla and R. Rathore *J. Org. Chem.* **2008**, *73*, 8867.
- [5] For 2-isocyanobiphenyl synthesis,
 - (a) Q. Wang, X. Dong, T. Xiao, and L. Zhou Org. Lett. 2013, 15, 4846.
 - (b) Z. He, M. Bae, J. Wu ,and T. F. Jamison Angew. Chem. Int. Ed. 2014, 53, 14451.
- [6] For 3,3-diaryl acrylate synthesis,
 - (a) R. Wu, M. G. Beauchamps, J. M. Laquidara, and J. R. Sowa Jr. *Angew. Chem. Int. Ed.* **2012**, *51*, 2106.
 - (b) K. Itoh, A. Tsuruta, J. Ito, Y. Yamamoto, and H. Nishiyama *J. Org. Chem.* **2012**, 77, 10914.
- [7] For 4-phenylcoumarin and 1-methyl-4-phenyl-2-quinolinone synthesis,
 - (a) Y. Luo, and J. Wu Tetrahedron Letters 2009, 50, 2103.
- [8] X.-J. Tang, C. S. Thomoson, and W. R. Dolbier, Jr. Org. Lett. 2014, 16, 4594.
- [9] S. Lu, Y. Gong, and D. Zhou J. Org. Chem. 2015, 80, 9336.

[10] Y. Li, Y. Lu, G. Qiu, and Q. Ding *Org. Lett.* 2014, *16*, 4240.
¹H NMR spectrum of 3a

¹³C NMR spectrum of **3a**

¹⁹F NMR of spectrum of **3a**

¹H NMR spectrum of **3b**

¹³C NMR of spectrum of **3b**

¹⁹F NMR of spectrum of **3b**

¹H NMR spectrum of **3c**

¹³C NMR spectrum of **3c**

¹⁹F NMR of spectrum of **3c**

¹H NMR of spectrum of **3d**

¹³C NMR of spectrum of **3d**

¹⁹F NMR of spectrum of **3d**

¹H NMR of spectrum of **3e**

¹³C NMR of spectrum of **3e**

¹⁹F NMR of spectrum of **3e**

¹H NMR of spectrum of **3**f

¹³C NMR of spectrum of **3f**

¹⁹F NMR of spectrum of **3f**

¹H NMR of spectrum of **3g**

¹³C NMR of spectrum of **3g**

¹⁹F NMR of spectrum of **3g**

¹H NMR of spectrum of **3h**

¹³C NMR of spectrum of **3h**

¹⁹F NMR of spectrum of **3h**

¹H NMR of spectrum of **3i**

¹³C NMR of spectrum of **3i**

¹H NMR of spectrum of **3**j

¹³C NMR of spectrum of **3**j

¹⁹F NMR of spectrum of **3**j

¹H NMR of spectrum of **3**k

¹³C NMR of spectrum of **3**k

¹⁹F NMR of spectrum of **3**k

¹H NMR of spectrum of **3**l

¹³C NMR of spectrum of **3**l

¹⁹F NMR of spectrum of **3**l

¹H NMR of spectrum of **3m**

¹³C NMR of spectrum of **3m**

¹⁹F NMR of spectrum of **3m**

¹H NMR of spectrum of **3n**

¹³C NMR of spectrum of **3n**

¹⁹F NMR of spectrum of **3n**

¹H NMR of spectrum of **5a**

¹³C NMR of spectrum of **5a**

¹⁹F NMR of spectrum of **5a**

¹H NMR of spectrum of **5b**

¹³C NMR of spectrum of **5b**

¹⁹F NMR of spectrum of **5b**

¹H NMR of spectrum of **5c**

¹³C NMR of spectrum of **5c**

¹⁹F NMR of spectrum of **5c**

¹H NMR of spectrum of **5d**

¹³C NMR of spectrum of **5d**

¹⁹F NMR of spectrum of **5d**

¹H NMR of spectrum of **5**e

¹³C NMR of spectrum of **5e**

¹⁹F NMR of spectrum of **5e**

¹H NMR of spectrum of **5**f

¹³C NMR of spectrum of **5**f

¹⁹F NMR of spectrum of **5f**

¹H NMR of spectrum of **5g**

¹³C NMR of spectrum of **5g**

¹⁹F NMR of spectrum of **5g**

¹H NMR of spectrum of **5h**

¹³C NMR of spectrum of **5h**

¹⁹F NMR of spectrum of **5h**

¹H NMR of spectrum of **5**i

¹³C NMR of spectrum of **5**i

¹⁹F NMR of spectrum of **5**i

¹H NMR of spectrum of **7a**

¹³C NMR of spectrum of **7a**

¹⁹F NMR of spectrum of **7a**

¹H NMR of spectrum of **7b**

¹³C NMR of spectrum of **7b**

¹⁹F NMR of spectrum of **7b**

¹H NMR of spectrum of **7c**

¹³C NMR of spectrum of **7c**

¹⁹F NMR of spectrum of **7c**

¹H NMR of spectrum of **7d**

¹³C NMR of spectrum of **7d**

¹⁹F NMR of spectrum of **7d**

¹H NMR of spectrum of **7e**

¹³C NMR of spectrum of 7e

¹⁹F NMR of spectrum of **7e**

¹H NMR of spectrum of **7**f

¹³C NMR of spectrum of **7f**

¹⁹F NMR of spectrum of **7f**

¹H NMR of spectrum of 7g

¹³C NMR of spectrum of **7g**

¹⁹F NMR of spectrum of **7g**

¹H NMR of spectrum of **7h**

 13 C NMR of spectrum of **7h**

¹⁹F NMR of spectrum of **7h**

¹H NMR of spectrum of **7i**

¹³C NMR of spectrum of 7i

¹⁹F NMR of spectrum of **7i**

¹H NMR of spectrum of **7**j

¹³C NMR of spectrum of **7**j

¹⁹F NMR of spectrum of **7**j

¹H NMR of spectrum of 7k

¹³C NMR of spectrum of **7k**

¹⁹F NMR of spectrum of **7k**

¹H NMR of spectrum of **7**l

¹³C NMR of spectrum of **7**I

¹⁹F NMR of spectrum of **7**l

¹H NMR of spectrum of **7m**

¹³C NMR of spectrum of **7m**

¹⁹F NMR of spectrum of **7m**

¹H NMR of spectrum of **7n**

¹³C NMR of spectrum of **7n**

¹⁹F NMR of spectrum of **7n**

¹H NMR of spectrum of **70**

¹³C NMR of spectrum of **70**

¹⁹F NMR of spectrum of **70**

¹H NMR of spectrum of **7p**

¹³C NMR of spectrum of **7p**

¹⁹F NMR of spectrum of **7p**

