Supplementary Information

Efficient Generation of Perfluoroalkyl Radicals from Sodium Perfluoroalkanesulfinates and a Hypervalent Iodine(III) Reagent: Mild, Metal-free Synthesis of Perfluoroalkylated Organic Molecules

Ryu Sakamoto, Hirotaka Kashiwagi, Selvakumar Sermadurai, Shin A. Moteki, and Keiji Maruoka*
Laboratory of Synthetic Organic Chemistry and Special Laboratory of Organocatalytic Chemistry, Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

General Information

${ }^{1} \mathrm{H}$ NMR spectra were measured on JEOL JNM-ECA500 $(500 \mathrm{MHz})$ spectrometer. Data were reported as follows: chemical shifts in ppm from tetramethylsilane as an internal standard in CDCl_{3}, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet-doublet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad $)$, coupling constants (Hz), and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were measured on JEOL JNM-ECA500 (125 MHz) spectrometer with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. ${ }^{19} \mathrm{~F}$ NMR spectra were measured on JEOL JNM-ECA500 (470 MHz) spectrometer. Infrared (IR) spectra were recorded on a Thermo Scientific Nicolet iS5 spectrometer. High-resolution mass spectra (HRMS) were performed on Brucker microTOF and Thermo Exactive plus. YMC syringe pump (model number: YSP-101) was used when slow addition of a solution was conducted. The products were purified by flash column chromatography (silica gel 60, Merck, 230400 mesh) or preparative thin layer chromatography silica gel (PLC 60 F254. 0.5 mm). Hypervalent iodine(III) reagents were prepared according to the literature procedure. ${ }^{[1-2]}$ Sodium sulfinates 1 were prepared according to the literature procedure. ${ }^{[3]} \mathrm{N}$ Arylacrylamides 2, ${ }^{[4]}$ isocyanobiphenyls $\mathbf{4},{ }^{[5]}$ 3,3-diarylacrylates $\mathbf{6 a}-\mathbf{e},{ }^{[6]}$ were prepared according to the literature procedure. 4-Phenylcoumarin 6X and 1-methyl-4-phenyl-2quinolinone $6 \mathbf{Y}$ were prepared according to the literature procedure. ${ }^{[7]}$ Commercially available reagents were purchased from Wako, Aldrich, TCI and Alfa-aesar chemicals and used as received.

Optimization of Reaction Condition of Perfluoroalkylation/Cyclization of N -Methyl- \boldsymbol{N}-acrylamide 2a with 1a.

The effect of solvents were summarized in Table S1. When the reaction of 2a (1.0 equiv.) with 1a (1.2 equiv.) in the presence of PIFA (1.2 equiv.) was carried out in acetonitrile, the desired product 3a was obtained in 72% yield (entry 1). Other solvents, such as hexafluoroisopropanol, dichloromethane, DMF, DMSO or methanol were found to be less satisfactory than acetonitrile in term of chemical yield (entries 2-6).

The reactions of $\mathbf{2 a}$ (1.0 equiv.) with $\mathbf{1 a}$ (1.2 equiv.) were carried out in the presence of PIFA (1.2 equiv) in a solvent (0.1 M). [b] Yield was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard.

General Procedure for Perfluoroalkylation/Cyclization of N -Arylacrylamide 2

 (Scheme 2)To a stirred solution of N-arylacrylamide $2(0.1 \mathrm{mmol})$ and $\mathrm{R}_{\mathrm{f}} \mathrm{SO}_{2} \mathrm{Na} 1(0.12 \mathrm{mmol})$ in acetonitrile (1.5 mL) was added a solution of PIFA ($51.6 \mathrm{mg}, 0.12 \mathrm{mmol}$) in acetonitrile $(0.5 \mathrm{~mL})$ slowly over the course of 20 min with syringe pump at room temperature under argon atmosphere. The reaction mixture was then stirred for 3 h at the same temperature. The crude product was directly purified by flash column chromatography on silica gel to afford a corresponding product.

1,3-Dimethyl-3-(nonafluoropentyl)indolin-2-one (3a)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.10(1 \mathrm{H}, \mathrm{t}, J$ $=7.7 \mathrm{~Hz}, \mathrm{Ar} H), 6.89(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{Ar} H), 3.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $2.88\left(1 \mathrm{H}, \mathrm{dd}, J=35.1 \mathrm{~Hz}, 15.3 \mathrm{~Hz}, \mathrm{CHHC}_{4} \mathrm{~F}_{9}\right), 2.60(1 \mathrm{H}, \mathrm{ddd}, J=$ $\left.31.2,15.6,7.9 \mathrm{~Hz}, \mathrm{CHHC}_{4} \mathrm{~F}_{9}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right)$. Other spectral data of $\mathbf{3 a}$ were consistent with previously reported data. ${ }^{[8]}$

1,3-Dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (3b)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.27(1 \mathrm{H}$, d, $J=7.1 \mathrm{~Hz}, \mathrm{Ar} H), 7.10(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar} H), 6.90(1 \mathrm{H}, \mathrm{d}, J=7.7$ $\mathrm{Hz}, \mathrm{Ar} H), 3.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.83(1 \mathrm{H}, \mathrm{dq}, J=15.3,10.5 \mathrm{~Hz}$, $\mathrm{C}_{\mathrm{H}}^{\mathrm{HCF}} 3$) , $2.66\left(1 \mathrm{H}, \mathrm{dq}, J=15.5,10.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CF}_{3}\right), 1.41(3 \mathrm{H}, \mathrm{s}$, CCH_{3}). Other spectral data of $\mathbf{3} \mathbf{b}$ were consistent with previously reported data. ${ }^{[8]}$

3-(2,2,3,3,4,4,4-Heptafluorobutyl)-1,3-dimethylindolin-2-one (3c)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.27(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.09(1 \mathrm{H}, \mathrm{t}, J$ $=7.5 \mathrm{~Hz}, \mathrm{Ar} H), 6.89(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar} H), 3.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $2.87\left(1 \mathrm{H}, \mathrm{dd}, J=35.0,15.4 \mathrm{~Hz}, \mathrm{CHHC}_{3} \mathrm{~F}_{7}\right.$), 2.59 (1 H , ddd, $J=31.4$, $15.8,8.0 \mathrm{~Hz}, \mathrm{CHHC}_{3} \mathrm{~F}_{7}$), $1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 178.6,142.8,131.3,128.5,123.6,122.6,120.0-114.5(\mathrm{~m})$, 108.5, 44.2, $36.8\left(\mathrm{t}, J_{C-F}=20.3 \mathrm{~Hz}\right), 26.5,25.8 ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.1--$ 80.2 (3F, m), -109.1--109.9 (1F, m), -115.0--115.8 (1F, m), -127.1--128.6 (2F, m); HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ONF}_{7} \mathrm{Na}: m / z 366.0699\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 366.0700$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) ;$IR (neat) $1714,1615,1530,1220,1118 \mathrm{~cm}^{-1}$.

3-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Heptadecafluorononyl)-1,3-dimethylindolin-2-one (3d); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.25(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.10$
 $(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{Ar} H), 6.90(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{Ar} H), 3.26(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 2.89\left(1 \mathrm{H}, \mathrm{dd}, J=35.1,15.3 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{HC}_{8} \mathrm{~F}_{17}\right), 2.61(1 \mathrm{H}$, ddd, $\left.J=31.1,15.5,8.0 \mathrm{~Hz}, \mathrm{CHHC} \mathrm{F}_{17}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.6,142.8,131.3,128.5,123.6,122.6,120.0-$ $110.0(\mathrm{~m}), 108.5,44.2,37.0\left(\mathrm{t}, J_{C-F}=20.3 \mathrm{~Hz}\right), 26.5,25.9 ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-80.6-80.7$ (3F, m), $-108.2-109.0$ (1F, m), $-113.8-114.6$ (1F, m), $-121.3-126.2$ (12F, m); HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ONF}_{17}: m / z 594.0720\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: m / z $594.0725\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; IR (neat) $1715,1616,1474,1351,1237,1200,1145,1133,740$ cm^{-1}.

3-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-Henicosafluoroundecyl)-1,3-
dimethylindolin-2-one *(3e); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-$ $7.27(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.11-7.07(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.89(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}$, $\mathrm{Ar} H), 3.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.88(1 \mathrm{H}, \mathrm{dd}, J=35.1,15.3 \mathrm{~Hz}$, $\mathrm{C}_{\mathrm{H}} \mathrm{HC}_{10} \mathrm{~F}_{21}$), $2.60\left(1 \mathrm{H}\right.$, ddd, $J=31.5,15.5,8.0 \mathrm{~Hz}, \mathrm{CH} H \mathrm{C}_{10} \mathrm{~F}_{21}$), $1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,142.8$, $131.3,128.5,123.6,122.7,120.0-110.0(\mathrm{~m}), 108.5,44.3,37.1\left(\mathrm{t}, J_{C-F}=20.9 \mathrm{~Hz}\right), 26.5$, 25.9; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.6--80.8(3 \mathrm{~F}, \mathrm{~m}),-113.8--114.1(1 \mathrm{~F}, \mathrm{~m})$, -114.4- $-114.6(1 \mathrm{~F}, \mathrm{~m}),-121.3-122.9(10 \mathrm{~F}, \mathrm{~m}),-122.5--122.8(2 \mathrm{~F}, \mathrm{~m}),-123.4--123.7$ $(2 \mathrm{~F}, \mathrm{~m}),-126.0-126.2(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{ONF}_{21} \mathrm{Na}$: $m / z 716.0476$ ([M + Na] ${ }^{+}$), found: $m / z 716.0475\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) 1715, 1615, 1495, 1473, 1375, 1350, 1148, cm^{-1}.
*The reaction was conducted in AcOEt as a solvent instead of MeCN .

5-Methoxy-1,3-dimethyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one (3f)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{Ar} H)$, $6.84(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, \mathrm{Ar} H), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, $\mathrm{Ar} H$), $3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.87(1 \mathrm{H}, \mathrm{dd}, J$ $=35.3,15.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{H}}^{\mathrm{H}} \mathrm{H}_{4} \mathrm{~F}_{9}$), $2.58(1 \mathrm{H}$, ddd, $J=31.5,15.5,8.0$ $\mathrm{Hz}, \mathrm{CHHC}_{4} \mathrm{~F}_{9}$), $1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.2,156.1,136.4$, 132.7, 120.0-108.0 (m), 112.6, 111.4, 108.8, 55.9, 44.6, $36.9\left(\mathrm{t}, J_{C-F}=20.3 \mathrm{~Hz}\right), 26.6$, 25.9; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.9--81.0(3 \mathrm{~F}, \mathrm{~m}),-108.3-109.1$ ($1 \mathrm{~F}, \mathrm{~m}$), -114.1- $-114.9(1 \mathrm{~F}, \mathrm{~m}),-124.4--124.5(2 \mathrm{~F}, \mathrm{~m}),-125.0--126.5(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{NF}_{9} \mathrm{Na}: m / z 446.0773\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 446.0785([\mathrm{M}+$ $\mathrm{Na}]^{+}$) ; IR (neat) $1709,1501,1287,1219,1130,1037 \mathrm{~cm}^{-1}$.

1,3-Dimethyl-5-nitro-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one (3g)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}$, $\mathrm{Ar} H), 8.19(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.99(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar} H), 3.33$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.98\left(1 \mathrm{H}, \mathrm{dd}, J=35.1,15.3 \mathrm{~Hz}, \mathrm{C} H \mathrm{HC}_{4} \mathrm{~F}_{9}\right)$, $2.69\left(1 \mathrm{H}, \mathrm{ddd}, J=30.8,15.0,8.0 \mathrm{~Hz}, \mathrm{CHHC} 4 \mathrm{~F}_{9}\right), 1.50(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,148.4,143.6$, 132.0, 125.9, 119.6, 119.8-115.0 (m), 108.2, 44.1, $37.1\left(\mathrm{t}, J_{C-F}=20.3 \mathrm{~Hz}\right), 27.0,25.8 ;$ ${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.9--81.0(3 \mathrm{~F}, \mathrm{~m}),-107.7--108.6(1 \mathrm{~F}, \mathrm{~m}),-113.9--$ $114.7(1 \mathrm{~F}, \mathrm{~m}),-124.3-124.4(2 \mathrm{~F}, \mathrm{~m}),-125.0-126.5(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}_{9} \mathrm{Na}: m / z 461.0518\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 461.0520\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1731,1616,1523,1337,1221,1132 \mathrm{~cm}^{-1}$.

5-Iodo-1,3-dimethyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one (3h)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.62(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.56(1 \mathrm{H}$, brs, ArH$), 6.68(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar} H), 3.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.88$ $\left(1 \mathrm{H}, \mathrm{dd}, J=35.1,15.3 \mathrm{~Hz}, \mathrm{CHHC}_{4} \mathrm{~F}_{9}\right), 2.56(1 \mathrm{H}, \mathrm{ddd}, J=31.3$, $15.5,8.0 \mathrm{~Hz}, \mathrm{CHHC}_{4} \mathrm{~F}_{9}$), $1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 177.8,142.6,137.4,133.7,132.4,120.0-115.0(\mathrm{~m})$, 110.6, 85.0, 44.2, $37.0\left(\mathrm{t}, J_{C-F}=20.3 \mathrm{~Hz}\right), 26.5,25.9 ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 80.9- $-81.0(3 \mathrm{~F}, \mathrm{~m}),-108.0-108.9$ ($1 \mathrm{~F}, \mathrm{~m}$), $-114.2-115.0$ ($1 \mathrm{~F}, \mathrm{~m}$), $-124.3-124.5$ $(2 \mathrm{~F}, \mathrm{~m}),-125.0-126.5(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ONF}_{9} \mathrm{INa}: m / z 541.9634$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 541.9646\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1717,1220,1131 \mathrm{~cm}^{-1}$.

3-Benzyl-1-methyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one (3i)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{Ar} H), 7.11-7.02$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), $6.75(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{Ar} H), 6.59(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, $\mathrm{Ar} H), 3.09(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 3.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\mathrm{H}} \mathrm{HC}_{4} \mathrm{~F}_{9}\right), 3.03$ $(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{CH} H \mathrm{Ph}), 2.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.73(1 \mathrm{H}, \mathrm{ddd}, J=$ $30.6,15.5,8.5 \mathrm{~Hz}, \mathrm{CHHC}_{4} \mathrm{~F}_{9}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1$, $143.5,133.8,130.0,128.6,128.3,127.6,127.0,124.6,122.1,120.0-108.5$ (m), 108.1, 49.8, 45.4, 35.9 (t, $J_{C-F}=19.7 \mathrm{~Hz}$), 26.0; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.9-81.0$ (3F, m), -107.1- $-108.0(1 \mathrm{~F}, \mathrm{~m}),-113.2--114.1(1 \mathrm{~F}, \mathrm{~m}),-124.3--124.5(2 \mathrm{~F}, \mathrm{~m})$, -124.9- - 126.6 ($2 \mathrm{~F}, \mathrm{~m}$); HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ONF}_{9} \mathrm{Na}: ~ m / z 492.0980\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 492.0989\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1713,1614,1221,1133,752 \mathrm{~cm}^{-1}$.

3-(Hydroxymethyl)-1-methyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one

(3j); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.35(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30(1 \mathrm{H}$, d, $J=7.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.14-7.10(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.93(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}$, $\mathrm{Ar} H), 3.75(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{C} H \mathrm{HOH}), 3.67(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}$, $\mathrm{CHHOH}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.14(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.35.0,16.0 \mathrm{~Hz}, \mathrm{C}_{1} H \mathrm{HC}_{4} \mathrm{~F}_{9}\right), 2.78(1 \mathrm{H}$, ddd, $J=31.3,15.8,7.5 \mathrm{~Hz}$, $\left.\mathrm{CH} H \mathrm{C}_{4} \mathrm{~F}_{9}\right), 2.37(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.2,143.6,129.2$, 127.3, 124.1, 122.9, 120.5-109.5 (m), 108.8, 67.9, 49.5, $32.9\left(\mathrm{t}, J_{C-F}=20.3 \mathrm{~Hz}\right), 26.5$; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.9--81.0(3 \mathrm{~F}, \mathrm{~m}),-107.7-108.6(1 \mathrm{~F}, \mathrm{~m}),-113.3-114.1$ (1 F , $\mathrm{m}),-124.4-124.5(2 \mathrm{~F}, \mathrm{~m}),-125.0-126.5(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{NF}_{9} \mathrm{Na}: m / z 432.0617$ ([M + Na] ${ }^{+}$), found: $m / z 432.0614$ ([M + Na] ${ }^{+}$); IR (neat) 3300 (br), 1698, 1615, 1219, $1132 \mathrm{~cm}^{-1}$.

[^0]$\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 2.96\left(1 \mathrm{H}, \mathrm{dd}, J=35.1,15.3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{H}} \mathrm{HC}_{4} \mathrm{~F}_{9}\right)$, $2.65(1 \mathrm{H}, \mathrm{ddd}, J=31.5,15.5,8.0$ $\mathrm{Hz}, \mathrm{CH}_{\mathrm{HC}}^{4}$ F 9), $1.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,141.9$, 135.7, 131.3, 128.8, 128.4, 127,6, 127.3, 123.5, 122.6, 120.0-115.0 (m), 109.6, 44.2, 44.0 (t, J $=6.6 \mathrm{~Hz}), 36.8\left(\mathrm{t}, J_{C-F}=20.3 \mathrm{~Hz}\right) 26.5 ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.9-\quad-81.0$ (3F, m), -108.3- $-109.1(1 \mathrm{~F}, \mathrm{~m}),-113.3-114.1(1 \mathrm{~F}, \mathrm{~m}),-124.3--124.6(2 \mathrm{~F}, \mathrm{~m}),-$ 125.0- $-126.5(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ONF}_{9} \mathrm{Na}: m / z 492.0980\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 492.0991\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) 1715, 1614, 1489, 1353, 1220, 1132, 754 cm^{-1}.

1-Isopropyl-3-methyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one (3I)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.08-7.04$

($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$) , $4.64\left(1 \mathrm{H}, \mathrm{m}, J=7.0 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.89(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=35.0,15.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{H}} \mathrm{HC}_{4} \mathrm{~F}_{9}\right), 2.56(1 \mathrm{H}, \mathrm{ddd}, J=31.4,15.8,8.5 \mathrm{~Hz}$, $\left.\mathrm{CHHC}_{4} \mathrm{~F}_{9}\right), 1.48\left(6 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41(3 \mathrm{H}, \mathrm{s}$, CCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.2,141.6,131.8,128.2$, $123.8,122.0,120.0-107.5(\mathrm{~m}), 110.2,44.0,37.1\left(\mathrm{t}, J_{C-F}=20.3 \mathrm{~Hz}\right)$, 26.2, 19.2, 19.0; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.9--81.1$ (3F, m), -108.3- -109.2 ($1 \mathrm{~F}, \mathrm{~m}$), $-114.1--114.9$ ($1 \mathrm{~F}, \mathrm{~m}$), $-124.4--124.6(2 \mathrm{~F}, \mathrm{~m}),-125.0--126.6$ ($2 \mathrm{~F}, \mathrm{~m}$); HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ONF}_{9} \mathrm{Na}: m / z 444.0980\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 444.0987$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) ;$IR (neat) $1709,1354,1216,1129,733 \mathrm{~cm}^{-1}$.

1,3-Dimethyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-1,3-dihydro-2H-pyrrolo[2,3-

blpyridin-2-one (3m); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(1 \mathrm{H}, \mathrm{dd}$, $J=5.4,1.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.53(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.00(1 \mathrm{H}, \mathrm{dd}, J$ $=7.2,5.2 \mathrm{~Hz}, \mathrm{Ar} H), 3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.88(1 \mathrm{H}, \mathrm{dd}, J=35.3,15.4$ $\mathrm{Hz}, \mathrm{C}_{3} \mathrm{HC}_{4} \mathrm{~F}_{9}$), $2.62\left(1 \mathrm{H}\right.$, ddd, $J=31.6,16.0,8.0 \mathrm{~Hz}, \mathrm{CHHC}_{4} \mathrm{~F}_{9}$), $1.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.2,156.3$, 147.6, 131.3, 125.7, 118.3, 120.0-108.0 (m), 44.0, $36.6\left(\mathrm{t}, J_{C-F}=20.9 \mathrm{~Hz}\right), 25.7,25.1$; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.9--81.1$ ($3 \mathrm{~F}, \mathrm{~m}$), $-108.0--108.8(1 \mathrm{~F}, \mathrm{~m}),-113.7-$ $-114.5(1 \mathrm{~F}, \mathrm{~m}),-124.4-124.5(2 \mathrm{~F}, \mathrm{~m}),-125.0-126.5(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ON}_{2} \mathrm{~F}_{9} \mathrm{Na}: m / z 417.0620\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 417.0627\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1724,1597,1471,1220,1134 \mathrm{~cm}^{-1}$.

1-Methyl-1-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-5,6-dihydro-4H-pyrrolo[3,2,1-ij]-quinolin-2(1H)-one (3n); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(1 \mathrm{H}, \mathrm{d}$, $J=7.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.06(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{Ar} H), 6.98(1 \mathrm{H}, \mathrm{t}, J=7.7$ $\mathrm{Hz}, \mathrm{ArH}), 3.74\left(2 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.90-2.75(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CHHC}_{4} \mathrm{~F}_{9}, \mathrm{ArCH}_{2}$), $2.60\left(1 \mathrm{H}\right.$, ddd, $J=31.8,15.8,8.0 \mathrm{~Hz}, \mathrm{CHHC}_{4} \mathrm{~F}_{9}$), $2.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 177.5,138.6,130.0,127.3,122.1,121.5,120.6,120.0-108.0$ (m), 45.6, 39.1, $36.8\left(\mathrm{t}, J_{C-F}=20.3 \mathrm{~Hz}\right), 25.5,24.7,21.2 ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-80.9--81.0$ (3F, m), $-108.4-109.2$ ($1 \mathrm{~F}, \mathrm{~m}$), $-114.1--114.9$ ($1 \mathrm{~F}, \mathrm{~m}$), $-124.4-124.5$ $(2 \mathrm{~F}, \mathrm{~m}),-125.0-126.5(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ONF}_{9} \mathrm{Na}: m / z 442.0824$
$\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 442.0809\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) 1715, 1483, 1355, 1221, 1133 cm^{-1}.

General Procedure for Perfluoroalkylation of 2-Isocyanobiphenyl 4 (Scheme 3)

To a stirred solution of 2-isocyanobiphenyl $4(0.1 \mathrm{mmol}), \mathrm{R}_{\mathrm{f}} \mathrm{SO}_{2} \mathrm{Na} 1(0.2 \mathrm{mmol})$, $\mathrm{AcONa}(0.1 \mathrm{mmol}, 8.2 \mathrm{mg})$ in ethyl acetate $(1.5 \mathrm{~mL})$ was added a solution of PIFA $(51.6 \mathrm{mg}, 0.12 \mathrm{mmol})$ in ethyl acetate $(0.5 \mathrm{~mL})$ slowly over the course of 50 minutes with syringe pump at room temperature under argon atmosphere. The reaction mixture was then stirred for 40 minutes at the same temperature. After the reaction completed, the reaction was quenched with saturated NaHCO_{3} aq. and extracted with ethyl acetate. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash column chromatography on silica gel to provide the product.

6-(Trifluoromethyl)phenanthridine (5a)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} H), 8.66-$ $8.62(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 8.42-8.38(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 8.32-8.29(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.97-7.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.85-7.77 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$). Other spectral data of this compound were consistent with previously reported data. ${ }^{[9]}$

6-(Heptafluoropropyl)phenanthridine (5b)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 8.62-$ $8.59(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 8.46(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} H), 8.29-8.26(1 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 7.91(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.82-7.73(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.5\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=24.4 \mathrm{~Hz}\right), 141.8,134.0$, 131.3, 131.2, 129.4, 129.3, 128.0, 126.3-126.1 (m), 124.8, 123.0, 122.6, 122.0, 120-106 (m); ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.9$ ($3 \mathrm{~F}, \mathrm{t}, J=9.6 \mathrm{~Hz}$), 105.6-105.7 (2F, m), -123.5-123.6 (2F, m); HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{NF}_{7} \mathrm{Na}: m / z$ $370.0437\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 370.0436\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) 1219, 1192, 1162, 1086, 997, 887, 759, 745, $723 \mathrm{~cm}^{-1}$.

6-(Nonafluorobutyl)phenanthridine (5c)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{Ar} H), 8.65-$ $8.61(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 8.47(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} H), 8.30-8.26(1 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H)$, 7.95-7.91 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 7.84-7.75 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.7\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=25.0 \mathrm{~Hz}\right), 141.8,134.0,131.3$, $131.2,129.4,129.3,128.0,126.3-126.1$ (m), 124.8, 123.0, 122.6, 122.0, 120-105 (m); ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.8$ - $-80.9(3 \mathrm{~F}, \mathrm{~m}),-104.7-$
104.9 (2F, m), $-119.6-119.7$ (2F, m), $-123.5-123.6$ ($2 \mathrm{~F}, \mathrm{~m}$); HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{NF}_{9}: m / z 398.0586\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: $m / z 398.0593\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; IR (neat) 1349, 1229, 1206, 1133, 864, 761, $726 \mathrm{~cm}^{-1}$.

6-(Perfluorooctyl)phenanthridine (5d)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} H)$, 8.64-8.62 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), $8.47(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar} H), 8.30-8.27$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.92(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.84-7.74(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.7\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=24.4 \mathrm{~Hz}\right)$, $141.8,134.1,131.3,131.2,129.4,129.3,128.0,126.3-126.1$ (m), 124.9, 123.1, 122.7, 122.0, 120-105 (m); ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.6-80.7$ (3F, m), -104.7- -104.9 (2F, m), $-118.8-119.0(2 \mathrm{~F}, \mathrm{~m}),-119.5--119.7$ (2F, m), 121.4- $-121.7(4 \mathrm{~F}, \mathrm{~m}),-122.5--122.7(2 \mathrm{~F}, \mathrm{~m}),-125.9-126.0(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{9} \mathrm{NF}_{17}: m / z 598.0458\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: $m / z 598.0461\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; IR (neat) $1240,1205,1149,761,725 \mathrm{~cm}^{-1}$.

6-(1,1,2,2,3,3,4,4,5,6,6,6-Dodecafluoro-5-(trifluoromethyl)hexyl)phenanthridine

(5e); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, $\mathrm{Ar} H), 8.63-8.60(1 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 8.46(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} H)$, 8.28-8.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.91(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.82-$ $7.74(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.8(\mathrm{t}$, $J_{\text {C-F }}=24.4 \mathrm{~Hz}$), 141.8, 134.0, 131.23, 131.18, 129.4, 129.3, 128.0, 126.3-126.1 (m), 124.8, 123.1, 122.6, 122.0, 120-105 (m); ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-71.6--71.8(6 \mathrm{~F}, \mathrm{~m}),-$ 104.6- -104.8 ($2 \mathrm{~F}, \mathrm{~m}$), $-114.6-114.9$ ($2 \mathrm{~F}, \mathrm{~m}$), -118.3 - 118.7 (4F, m), -185.6- -185.7 ($1 \mathrm{~F}, \mathrm{~m}$); HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{NF}_{15} \mathrm{Na}: m / z$ $570.0309\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 570.0316\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) 1251, 1198, 1153, $984 \mathrm{~cm}^{-1}$.

8-Methoxy-6-(nonafluorobutyl)phenanthridine (5f)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{Ar} H)$, 8.51-8.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.24-8.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), $7.78-7.70$ (3 H , $\mathrm{m}, \mathrm{Ar} H), 7.52(1 \mathrm{H}, \mathrm{dd}, J=9.1,2.6 \mathrm{~Hz}, \mathrm{Ar} H), 3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,145.7\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=25.0 \mathrm{~Hz}\right)$, $141.0,134.0,131.1,129.5,128.5,128.3,125.0,124.3,124.2$, 122.3, 121.5, 119-108 (m), 106.0-105.8 (m), 55.5; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ $80.9(3 \mathrm{~F}, \mathrm{t}, J=10.5 \mathrm{~Hz}),-105.4(2 \mathrm{~F}, \mathrm{t}, J=12.3 \mathrm{~Hz}),-119.5--119.6(2 \mathrm{~F}, \mathrm{~m}),-123.4--$ $123.5(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{ONF}_{9} \mathrm{Na}: m / z 450.0511\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 450.0517\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1622,1466,1222,1104,829,744 \mathrm{~cm}^{-1}$.

6-(Nonafluorobutyl)-8-(trifluoromethyl)phenanthridine (5g)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.83(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Ar} H)$, $8.73(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 8.64-8.61(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 8.32-8.29(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 8.12-8.09(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.91-7.84(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.6\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=25.0 \mathrm{~Hz}\right), 142.4,136.1$, $131.5,130.6,130.1,130.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.0 \mathrm{~Hz}\right), 127.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.2\right.$ $\mathrm{Hz}), 123.9,123.9,123.8-123.6(\mathrm{~m}), 123.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}\right), 122.4,122.2,119-108$ (m); ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.6$, ($3 \mathrm{~F}, \mathrm{~s}$), -80.9 ($3 \mathrm{~F}, \mathrm{t}, J=10.2 \mathrm{~Hz}$), -104.5 ($2 \mathrm{~F}, \mathrm{t}, J=12.5 \mathrm{~Hz}$), $-119.7-119.8$ ($2 \mathrm{~F}, \mathrm{~m}$), $-123.5-123.6$ ($2 \mathrm{~F}, \mathrm{~m}$); HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{NF}_{12}: m / z 466.0460\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: $m / z 466.0461\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; IR (neat) 1320, 1235, 1133, 1087, $735 \mathrm{~cm}^{-1}$.

6-(Nonafluorobutyl)benzo $[c][1,8]$ naphthyridine (5h)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.18(1 \mathrm{H}, \mathrm{dd}, J=4.4,1.8 \mathrm{~Hz}, \mathrm{Ar} H)$, $8.98(1 \mathrm{H}, \mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, \mathrm{Ar} H), 8.71(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar} H)$, $8.54(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar} H), 8.01-7.97(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.86-7.82$ $(1 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 7.74(1 \mathrm{H}, \mathrm{dd}, J=8.2,4.3 \mathrm{~Hz}, \operatorname{Ar} H) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.6,151.1,150.3$ (t, $\left.J_{\mathrm{C}-\mathrm{F}}=24.4 \mathrm{~Hz}\right), 134.5,131.9$, 131.5, 128.9, 126.8-126.5 (m), 124.3, 123.2, 122.7, 120.1, 119-108 (m); ${ }^{19}$ F NMR (470 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.7--80.8$ (3F, m), $-105.2--105.3$ ($2 \mathrm{~F}, \mathrm{~m}$), $-119.8-119.9$ ($2 \mathrm{~F}, \mathrm{~m}$), $-124.4-124.6(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~F} 9 \mathrm{Na}: m / z 421.0358\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 421.0368\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1567,1348,1213,1133 \mathrm{~cm}^{-1}$.

4-(Nonafluorobutyl)pyrrolo[1,2-a]quinoxaline (5i)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.10-8.04 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H\right), 7.90(1 \mathrm{H}$, dd, $J=8.2,1.1 \mathrm{~Hz}, \mathrm{Ar} H$), $7.66-7.61$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), $7.53-7.49$ (1 H , $\mathrm{m}, \mathrm{Ar} H), 7.16-7.13(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.98(1 \mathrm{H}, \mathrm{dd}, J=4.1,2.7 \mathrm{~Hz}$, $\mathrm{Ar} H$) ; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7$ (t, $J_{\mathrm{C}-\mathrm{F}}=25.6 \mathrm{~Hz}$), 134.2, 131.3, 130.1, 127.7, 125.8, 122.8, 122-110 (m), 115.4, 115.0, $113.8,108.8\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=4.8 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.7-80.8(3 \mathrm{~F}, \mathrm{~m}),-$ 113.2- $-113.3(2 \mathrm{~F}, \mathrm{~m}),-121.7-121.9(2 \mathrm{~F}, \mathrm{~m}),-125.2--125.4$ ($2 \mathrm{~F}, \mathrm{~m}$); HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~F}_{9}: m / z 387.0538\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found: $m / z 387.0538\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; IR (neat) 1481, 1376, 1220, 1135, $756 \mathrm{~cm}^{-1}$.

Optimization of Direct Perfluoroalkylation of sp2-Hybridized C-H Bond

The effect of hypervalent iodine reagent and oxidants were summarized in Table S2. When the reaction of ethyl 3,3-diphenylacrylate $\mathbf{6 a}$ with sodium trifluoromethansulinate 1b was conducted in the presence of PIFA, the desired product $\mathbf{7 a}$ was obtained in 17% yield (entry 1). Use of F_{5}-PIFA improved the yield of $7 \mathbf{a}$ (entry 2). Although addition of
ammonium hexanitratocerate (CAN) as an oxidant slightly decreased yield, use of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) gave 7a in 76\% yield. After the survey of equivalent of F_{5}-PIFA and DDQ , the combination of 2.0 equivalent F_{5}-PIFA and 0.6 equivalent of DDQ gave the best result in terms of yield (entries 3-6).

Table S2

Entry	X eq.	Iodine(III) (Y eq.)	Additive (Z eq.)	Yield (\%) $^{\text {b }}$
1	1.5	PIFA (1.5)	-	17
2	1.5	F $_{5}$-PIFA (1.5)		43
3	1.5	F $_{5}$-PIFA (1.5)	CAN (1.0)	36
4^{c}	1.5	$\mathrm{~F}_{5}$-PIFA (1.5)	DDQ (1.0)	33
5	1.5	$\mathrm{~F}_{5}$-PIFA (1.5)	DDQ (1.0)	76
6	1.5	$\mathrm{~F}_{5}$-PIFA (1.5)	DDQ (0.6)	71
7	2.0	$\mathrm{~F}_{5}$-PIFA (2.0)	DDQ (0.6)	80

The reactions of $\mathbf{6 a}$ (1.0 equiv.) with $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{Na}$ (X equiv.) were carried out in the presence of iodine(III) reagent (Y equiv) and additive (Z equiv.) in a dichloromethane (0.1 M). [b] Yield was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard. [c] The reaction was carried out at $60^{\circ} \mathrm{C}$.

Typical Procedure for Direct Perfluoroalkylation of sp2-Hybridized C-H Bond

 (Scheme 4, 7a-h).Ethyl 3,3-diarylacrylate 6a (0.2 mmol), $\mathrm{R}_{\mathrm{f}} \mathrm{SO}_{2} \mathrm{Na} 1(0.4 \mathrm{mmol})$, $\mathrm{DDQ}(27.2 \mathrm{mg}, 0.12$ mmol) and F_{5}-PIFA ($208 \mathrm{mg}, 0.4 \mathrm{mmol}$) were added subsequently in a test tube under argon atmosphere. Then DCM (1 mL) was added and the reaction mixture was stirred at room temperature for $8 \sim 15$ hours. Upon completion of the reaction, the resulting mixture was directly purified by flash column chromatography on silica gel to afford the corresponding product.

Ethyl 3,3-Diphenyl-2-(trifluoromethyl)acrylate (7a)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.22(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.03$ $\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.97(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.2,154.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=3.6 \mathrm{~Hz}$), 139.7, 138.0, 129.0, 128.7, 128.3, 128.1, 128.1, 121.7 $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.0 \mathrm{~Hz}\right), 61.8,13.5 ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -55.4 (3F, s); HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{Na}: m / z$ $343.0916\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 343.0928\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) 1730, 1327, 1244, 1148, 1126, $1045 \mathrm{~cm}^{-1}$.

Ethyl 3,3-Diphenyl-2-(pentafluoroethyl)acrylate (7b)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.18$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 3.96 $\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.90(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=4.2\right.$ Hz), 156.8 ($\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}$), 140.8, 138.1, 129.1, 128.4, 128.3, 128.1, 128.1, 128.0, 127.8, 123-109 (m), 61.8, 13.4; ${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-82.5(3 \mathrm{~F}, \mathrm{t}, J=2.9 \mathrm{~Hz}),-105.0-105.1$ (2F, m); HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~F}_{5} \mathrm{Na}: m / z 393.0884$ ([M + Na] ${ }^{+}$), found: m / z $343.0874\left([\mathrm{M}+\mathrm{Na}]^{+}\right) ;$IR (neat) $1732,1303,1202,1127,1072,1018 \mathrm{~cm}^{-1}$.

Ethyl 3,3-Diphenyl-2-(heptafluoropropyl)acrylate (7c)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.18(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 3.95$ $\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.90(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=4.2\right.$ $\mathrm{Hz}), 157.2\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=4.8 \mathrm{~Hz}\right), 140.9,138.1,129.1,128.4,128.4$, 128.1, 128.0, 127.7, 125-106 (m), 61.8, 13.4; ${ }^{19} \mathrm{~F}$ NMR (470 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.3(3 \mathrm{~F}, \mathrm{t}, J=10.2 \mathrm{~Hz}),-101.7--101.9(2 \mathrm{~F}$, m), -123.4- -123.5 (2F, m); HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~F}_{7} \mathrm{Na}: \mathrm{m} / \mathrm{z} 443.0852$ ($[\mathrm{M}+$ $\mathrm{Na}]^{+}$), found: $m / z 443.0836\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1732,1344,1226,1187,1113,1054$ cm^{-1}.

Ethyl 2-(Diphenylmethylene)-3,3,4,4,5,5,6,6,6-nonafluorohexanoate (7d)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.28(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.23-7.19$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 3.95\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.89(3 \mathrm{H}, \mathrm{t}, J=$ $\left.7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $3.6 \mathrm{~Hz}), 157.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right), 140.9,138.1,129.0,128.4,128.4$, 128.0, 128.0, 127.7, 125-110 (m), 61.8, 13.4; ${ }^{19} \mathrm{~F}$ NMR (470 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-80.8--80.9(3 \mathrm{~F}, \mathrm{~m}),-101.4(2 \mathrm{~F}, \mathrm{t}, J=14.0 \mathrm{~Hz}),-119.7-$ $-119.9(2 \mathrm{~F}, \mathrm{~m}),-125.9-126.0(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~F} 9 \mathrm{Na}: m / z$
$493.0821\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 493.0827\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1733,1234,1135$ cm^{-1}.

Ethyl 3,3-Diphenyl-2-(tridecafluorohexyl)acrylate (7e)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.34-7.19 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 3.95 $\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.89(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=4.2\right.$ $\mathrm{Hz}), 157.2\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=4.8 \mathrm{~Hz}\right), 140.9,138.2,129.1,128.4,128.4$, 128.0, 128.0, 127.7, 124-108 (m), 61.8, 13.3; ${ }^{19}$ F NMR (470 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.6--80.8(3 \mathrm{~F}, \mathrm{~m}),-101.2--101.3(2 \mathrm{~F}, \mathrm{~m})$, -118.8- -119.0 ($2 \mathrm{~F}, \mathrm{~m}$), $-121.7--121.9$ ($2 \mathrm{~F}, \mathrm{~m}$), $-122.5--122.7$ ($2 \mathrm{~F}, \mathrm{~m}$), $-125.9-126.1$ (2F, m); HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~F}_{13} \mathrm{Na}: m / z 593.0757$ ($[\mathrm{M}+\mathrm{Na}]^{+}$), found: m / z $593.0762\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1733,1234,1196,1144,1075,1038 \mathrm{~cm}^{-1}$.

Ethyl 3,3-Bis(4-chlorophenyl)-2-(trifluoromethyl)acrylate (7f)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.36-7.28 (4H, m, ArH), 7.19$7.15(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.08\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.05$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.8\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 151.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 137.6,136.0$, 135.6, 135.3, 129.7, 129.7, 129.7, 128.7, 128.6, 121.4 (q, $J_{\mathrm{C}-\mathrm{F}}$ $=275.4 \mathrm{~Hz}), 62.2,13.6 ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-55.4$ (3F, s); HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{Na}: m / z 411.0137$ ([M + Na] $]^{+}$), found: $m / z 411.0142\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) 1729 , 1490, 1324, 1246, 1130, 1090, 1043, $826 \mathrm{~cm}^{-1}$.

Ethyl 3,3-Bis(4-fluorophenyl)-2-(trifluoromethyl)acrylate (7g)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.20(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.08-$ $6.98(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.07\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.04$ ($3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $164.2,164.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=11.9 \mathrm{~Hz}\right), 162.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=17.9 \mathrm{~Hz}\right)$, $152.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 135.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=3.6 \mathrm{~Hz}), 130.5,130.4,130.3,124.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=31.8 \mathrm{~Hz}\right), 121.5$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.4 \mathrm{~Hz}\right), 115.6,115.5,115.4,115.3,62.1,13.6$;
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-55.4(3 \mathrm{~F}, \mathrm{~s}),-111.0--111.2$ (1F, m), -111.7- -111.8 (1F, m); HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~F}_{5} \mathrm{Na}: \mathrm{m} / \mathrm{z} 379.0728$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 379.0733\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1730,1603,1507,1328,1233$, 1149, 1044, $838 \mathrm{~cm}^{-1}$.

Ethyl 3-(4-(tert-Butyl)phenyl)-3-phenyl-2-(trifluoromethyl)acrylate (7h)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (data given for E and Z mixture) $\delta 7.37-7.13$ ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$, E,Z-mixture), 4.03, 4.01 $\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.30,1.28\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$,
0.95, $0.91\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.5-164.4$ $(\mathrm{m}), 164.4-164.3(\mathrm{~m}), 154.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 154.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 152.4,151.8$, 140.1, 138.2, 136.8, 135.0, 128.9, 128.6, 128.2, 128.2, 128.2, 128.0, 127.9, 125.2, 125.0, $121.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.4 \mathrm{~Hz}\right), 121.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.4 \mathrm{~Hz}\right), 61.7,61.7,34.7,31.2,31.2,13.5$, 13.4; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-55.29,-55.30(3 \mathrm{~F}, \mathrm{~s})$; HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{Na}: m / z 399.1542\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 399.1538\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $2965,1730,1367,1329,1243,1151,1129,1045,831,699 \mathrm{~cm}^{-1}$.

Typical Procedure for Direct Perfluoroalkylation of Heterocycles (Scheme 4, 7i-p).

4-Phenylcoumarin ($44.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), DDQ ($27.2 \mathrm{mg}, 0.12 \mathrm{mmol}$), $\mathrm{R}_{\mathrm{f}} \mathrm{SO}_{2} \mathrm{Na}(0.4$ mmol) and F_{5}-PIFA ($208 \mathrm{mg}, 0.4 \mathrm{mmol}$) were added subsequently in a test tube under argon atmosphere. Then 2,6 -lutidine $(23.0 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ and DCM $(1 \mathrm{~mL})$ was added and the reaction mixture was stirred at room temperature overnight. Upon completion of the reaction, the resulting mixture was directly purified by flash column chromatography on silica gel to afford the corresponding product.

4-Phenyl-3-(trifluoromethyl)-2H-chromen-2-one (7i)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.65-7.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), $7.55-7.51$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.42-7.39(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.27-7.24(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$, 7.22-7.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 7.03-7.00 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$).

Other spectral data of this compound were consistent with previous reported data. ${ }^{[10]}$

3-(Nonafluorobutyl)-4-phenyl-2H-chromen-2-one (7j)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.60(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.53-7.47$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.40(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar} H), 7.24-7.20(2 \mathrm{H}, \mathrm{m}$, $\operatorname{Ar} H), 7.19-7.14(1 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 6.85(1 \mathrm{H}, \mathrm{q}, J=8.2 \mathrm{~Hz}, \mathrm{Ar} H) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0(\mathrm{~m}), 156.1,153.5,134.3,133.0$, 129.4, 128.9, 128.0, 127.3, 124.7, 120.2, 119-108 (m), 116.7; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.7--80.8(3 \mathrm{~F}, \mathrm{~m}),-102.3(2 \mathrm{~F}, \mathrm{t}, J=14.7 \mathrm{~Hz}),-118.8--$ 119.0 ($2 \mathrm{~F}, \mathrm{~m}$), $-126.0-126.1$ ($2 \mathrm{~F}, \mathrm{~m}$); HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~F}_{9} \mathrm{Na}: \mathrm{m} / \mathrm{z}$ $463.0351\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 463.0343\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1742,1605,1560$, 1354, 1230, 1200, 1134, $756 \mathrm{~cm}^{-1}$.

7-Methoxy-3-(perfluorobutyl)-4-phenyl-2 $\mathbf{H - c h r o m e n - 2 - o n e ~ (7 k) ~}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.46(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.21-$ $7.18(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.86-6.84(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.73-6.70(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $164.8,159.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right), 156.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right), 155.7$,
133.4, 130.6, 128.8, 127.9, 127.3, 120-105 (m), 113.8, 113.3, 100.1, 56.1; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.7--80.8(3 \mathrm{~F}, \mathrm{~m}),-102.1(2 \mathrm{~F}, \mathrm{t}, J=14.7 \mathrm{~Hz}),-119.0-119.2$ (2F, m), -126.0- -126.1 (2F, m); HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~F}_{9} \mathrm{Na}: m / z 493.0457$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 493.0461\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1738,1616,1591,1546,1372$, $1205,1133 \mathrm{~cm}^{-1}$.

1-Methyl-3-(perfluorobutyl)-4-phenylquinolin-2(1H)-one (71)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.62(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.48-7.45$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{Ar} H), 7.22-7.19(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 7.12-7.08(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.96(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, \mathrm{Ar} H)$, $3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 2.4 Hz), 154.8-154.7 (m), 140.4, 135.0, 133.0, 130.2, 128.2, 128.0, 127.8, 122.4, 121.1, 119-108 (m), 114.0, 29.9; ${ }^{19}$ F NMR (470 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-80.6-80.7(3 \mathrm{~F}, \mathrm{~m}),-101.0-101.2(2 \mathrm{~F}, \mathrm{~m}),-117.8--118.0(2 \mathrm{~F}, \mathrm{~m}),-$ 126.0- -126.2 (2F, m); HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{ONF}_{9} \mathrm{Na}: m / z 476.0667$ ($[\mathrm{M}+\mathrm{Na}]^{+}$), found: $m / z 476.0675\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1655,1603,1367,1231,1199,1132 \mathrm{~cm}^{-1}$.

2-(3,4-Dimethoxyphenyl)-3-(trifluoromethyl)-4H-chromen-4-one (7m)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}$, $\mathrm{Ar} H), 7.76-7.71(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.50-7.46(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.24$ $(1 \mathrm{H}, \mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.12(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, $\mathrm{Ar} H), 6.99(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar} H), 3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ $3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.6$, 166.8-166.9 (m), 155.4, 151.8, 148.7, 134.6, 126.2, 126.1, $124.6,123.4,122.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275.3 \mathrm{~Hz}\right), 122.5,121.8,117.9,111.7,110.6,56.13,56.08$; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-56.0$ (3F, s); HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{Na}: m / z$ $373.0658\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 373.0664\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1654,1516,1467$, $1385,1267,1125,1069,1022,762 \mathrm{~cm}^{-1}$.

6-Chloro-1,3-dimethyl-5-(perfluorobutyl)pyrimidine-2,4(1H,3H)-dione (7n)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.37(3 \mathrm{H}, \mathrm{s}$, NCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.1,150.8,149.7,119-106$ $(\mathrm{m}), 101.6\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=23.2 \mathrm{~Hz}\right), 34.8,29.0 ;{ }^{19} \mathrm{~F}$ NMR (470 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-80.7-80.8(3 \mathrm{~F}, \mathrm{~m}),-104.7-104.9(2 \mathrm{~F}, \mathrm{~m}),-121.2--$ $121.4(2 \mathrm{~F}, \mathrm{~m}),-126.0-126.2(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{ClF}_{9} \mathrm{Na}: m / z 414.9866\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 414.9878$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) ;$IR (neat) $1720,1662,1582,1429,1350,1231,1198,1128 \mathrm{~cm}^{-1}$.

1,3-Dimethyl-5-(perfluorobutyl)pyrimidine-2,4(1H,3H)-dione (7o)

	${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(1 \mathrm{H}, \mathrm{s}, \mathrm{NCH}=\mathrm{C}), 3.52(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 3.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5(\mathrm{t}$, $\left.J_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right), 150.9,145.7\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=10.1 \mathrm{~Hz}\right), 120-106(\mathrm{~m}), 102.3(\mathrm{t}$

$\left.J_{\mathrm{C}-\mathrm{F}}=24.4 \mathrm{~Hz}\right), 37.9,28.2 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-80.8--80.9(3 \mathrm{~F}, \mathrm{~m}),-$ 109.8- $-109.9(2 \mathrm{~F}, \mathrm{~m}),-121.7-121.9(2 \mathrm{~F}, \mathrm{~m}),-125.8-126.0(2 \mathrm{~F}, \mathrm{~m}) ; \mathrm{HRMS}$ calculated for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~F}_{9} \mathrm{Na}: m / z 381.0256\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 381.0267([\mathrm{M}+$ $\mathrm{Na}]^{+}$); IR (neat) $1721,1668,1454,1372,1350,1231,1204,1131 \mathrm{~cm}^{-1}$.

1,3,7-Trimethyl-8-(perfluorobutyl)-3,7-dihydro-1H-purine-2,6-dione (7p)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.20-4.19\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{3}\right), 3.60$
 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 155.5,151.3,147.1,137.8\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=29.2 \mathrm{~Hz}\right), 119-$ 108 (m), 110.2, 33.8, 29.9, 28.2; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.7--80.8$ (3F, m), -108.9--109.1 (2F, m), -121.7--121.9 ($2 \mathrm{~F}, \mathrm{~m}$), $-125.3-125.5(2 \mathrm{~F}, \mathrm{~m})$; HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{~F}_{9} \mathrm{Na}: m / z 435.0474\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, found: $m / z 435.0474\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; IR (neat) $1706,1671,1231,1199,1136 \mathrm{~cm}^{-1}$.

References

[1] J. D. White, G. Caravatti, T. B. Kline, E. Edstrom, K. C. Rice, A. Brossi, Tetrahedron 1983, 39, 2393.
[2] A. A. Zagulyaeva, M. S. Yusubov, and V. V. Zhdankin J. Org. Chem. 2010, 75, 445.
[3] L.-Q. Hu, D. D. DesMarteau, Inorg. Chem. 1993, 32, 5007.
[4] For N-arylacrylamide synthesis,
(a) Y. Yuan, T. Shen, K. Wang and N. Jiao Chem. Asian. J. 2013, 8, 2932.
(b) J. Jia, M. Sarker, M. G. Steinmetz, R. Shukla and R. Rathore J. Org. Chem. 2008, 73, 8867.
[5] For 2-isocyanobiphenyl synthesis,
(a) Q. Wang, X. Dong, T. Xiao, and L. Zhou Org. Lett. 2013, 15, 4846.
(b) Z. He, M. Bae, J. Wu ,and T. F. Jamison Angew. Chem. Int. Ed. 2014, 53, 14451.
[6] For 3,3-diaryl acrylate synthesis,
(a) R. Wu, M. G. Beauchamps, J. M. Laquidara, and J. R. Sowa Jr. Angew. Chem. Int. Ed. 2012, 51, 2106.
(b) K. Itoh, A. Tsuruta, J. Ito, Y. Yamamoto, and H. Nishiyama J. Org. Chem. 2012, 77, 10914.
[7] For 4-phenylcoumarin and 1-methyl-4-phenyl-2-quinolinone synthesis,
(a) Y. Luo, and J. Wu Tetrahedron Letters 2009, 50, 2103.
[8] X.-J. Tang, C. S. Thomoson, and W. R. Dolbier, Jr. Org. Lett. 2014, 16, 4594.
[9] S. Lu, Y. Gong, and D. Zhou J. Org. Chem. 2015, 80, 9336.
[10] Y. Li, Y. Lu, G. Qiu, and Q. Ding Org. Lett. 2014, 16, 4240.
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}$

${ }^{19}$ F NMR of spectrum of $\mathbf{3 a}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3 b}$

${ }^{19}$ F NMR of spectrum of $\mathbf{3 b}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 c}$

${ }^{19}$ F NMR of spectrum of $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{3 d}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3 d}$

${ }^{19}$ F NMR of spectrum of $\mathbf{3 d}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{3 e}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3 e}$

${ }^{19}$ F NMR of spectrum of $\mathbf{3 e}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3 f}$

${ }^{19}$ F NMR of spectrum of $\mathbf{3 f}$

${ }^{1}$ H NMR of spectrum of $\mathbf{3 g}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3 g}$

${ }^{19}$ F NMR of spectrum of $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{3 h}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3 h}$

${ }^{19}$ F NMR of spectrum of $\mathbf{3 h}$

${ }^{1}$ H NMR of spectrum of $\mathbf{3 i}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3 i}$

${ }^{19}$ F NMR of spectrum of $\mathbf{3 i}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{3 j}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3} \mathbf{j}$

${ }^{19} \mathrm{~F}$ NMR of spectrum of $\mathbf{3} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{3 k}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3 k}$

${ }^{19} \mathrm{~F}$ NMR of spectrum of $\mathbf{3 k}$

${ }^{1}$ H NMR of spectrum of $\mathbf{3 1}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3 1}$

${ }^{19}$ F NMR of spectrum of $\mathbf{3 1}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{3 m}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3 m}$

${ }^{19} \mathrm{~F}$ NMR of spectrum of $\mathbf{3 m}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{3 n}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{3 n}$

${ }^{19}$ F NMR of spectrum of $\mathbf{3 n}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{5 a}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{5 a}$

${ }^{19}$ F NMR of spectrum of $\mathbf{5 a}$

${ }^{1}$ H NMR of spectrum of $\mathbf{5 b}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{5 b}$

${ }^{19}$ F NMR of spectrum of $\mathbf{5 b}$

${ }^{1}$ H NMR of spectrum of $\mathbf{5 c}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{5 c}$

${ }^{19}$ F NMR of spectrum of $\mathbf{5 c}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{5 d}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{5 d}$

${ }^{19}$ F NMR of spectrum of $\mathbf{5 d}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{5 e}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{5 e}$

${ }^{19}$ F NMR of spectrum of $\mathbf{5 e}$

${ }^{1}$ H NMR of spectrum of $\mathbf{5 f}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{5 f}$

${ }^{19}$ F NMR of spectrum of $\mathbf{5 f}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{5 g}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{5 g}$

${ }^{19}$ F NMR of spectrum of $\mathbf{5 g}$

${ }^{1}$ H NMR of spectrum of $\mathbf{5 h}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{5 h}$

${ }^{19}$ F NMR of spectrum of $\mathbf{5 h}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{5 i}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{5 i}$

${ }^{19}$ F NMR of spectrum of $\mathbf{5 i}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $7 \mathbf{a}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $7 \mathbf{a}$

${ }^{19}$ F NMR of spectrum of $7 \mathbf{a}$

${ }^{1} \mathrm{H}$ NMR of spectrum of 7b

${ }^{13} \mathrm{C}$ NMR of spectrum of $7 \mathbf{b}$

${ }^{19}$ F NMR of spectrum of 7b

${ }^{1} \mathrm{H}$ NMR of spectrum of $7 \mathbf{c}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{7 c}$

${ }^{19}$ F NMR of spectrum of 7c

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{7 d}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $7 \mathbf{d}$

${ }^{19}$ F NMR of spectrum of $7 \mathbf{d}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $7 \mathbf{e}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{7 e}$

${ }^{19}$ F NMR of spectrum of $7 \mathbf{e}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{7 f}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $7 \mathbf{f}$

${ }^{19}$ F NMR of spectrum of $7 \mathbf{f}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{7 g}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{7 g}$

${ }^{19}$ F NMR of spectrum of $7 \mathbf{g}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{7 h}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{7 h}$

${ }^{19}$ F NMR of spectrum of $\mathbf{7 h}$

${ }^{1}$ H NMR of spectrum of $\mathbf{7 i}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{7 i}$

${ }^{19}$ F NMR of spectrum of $7 \mathbf{i}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{7 j}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{7 j}$

${ }^{19}$ F NMR of spectrum of $\mathbf{7 j}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{7 k}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{7 k}$

${ }^{19}$ F NMR of spectrum of $7 \mathbf{k}$

${ }^{1} \mathrm{H}$ NMR of spectrum of 71

${ }^{13} \mathrm{C}$ NMR of spectrum of $7 \mathbf{l}$

${ }^{19} \mathrm{~F}$ NMR of spectrum of $7 \mathbf{1}$

${ }^{1}$ H NMR of spectrum of $7 \mathbf{m}$

${ }^{13} \mathrm{C}$ NMR of spectrum of 7 m

${ }^{19} \mathrm{~F}$ NMR of spectrum of $\mathbf{7 m}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{7 n}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{7 n}$

${ }^{19}$ F NMR of spectrum of $7 \mathbf{n}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{7 o}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $7 \mathbf{0}$

${ }^{19}$ F NMR of spectrum of $7 \mathbf{o}$

${ }^{1} \mathrm{H}$ NMR of spectrum of $\mathbf{7 p}$

${ }^{13} \mathrm{C}$ NMR of spectrum of $\mathbf{7 p}$

${ }^{19}$ F NMR of spectrum of $\mathbf{7 p}$

[^0]: 1-Benzyl-3-methyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)indolin-2-one (3k)

 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.34-7.24 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 7.19-7.16 $(1 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 7.05(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \operatorname{Ar} H), 6.76(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, $\mathrm{Ar} H), 4.97\left(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.92(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}$,

