Supplementary Information

Identification of novel small-molecule inhibitors targeting

menin-MLL interaction, repurposing the antidiarrheals loperamide

Liyan Yue,^{‡a,b} Juanjuan Du,^{‡c} Fei Ye,^{‡d} Zhifeng Chen,^e Lianchun Li,^f Fulin Lian,^{a,b} Bidong Zhang,^{a,b} Yuanyuan Zhang,^{a,b,*} Hualiang Jiang,^{a,b} Kaixian Chen,^{a,e} Yuanchao Li,^c Bing Zhou,^c Yaxi Yang,^{c,*} and Cheng Luo^{a,e,*}

^{a.}State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

^{b.}University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China

^{c.} Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

^d Zhejiang Sci-Tech University, College of Life Sciences, Hangzhou, China.

^{e.}School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China.

^fGuangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China.

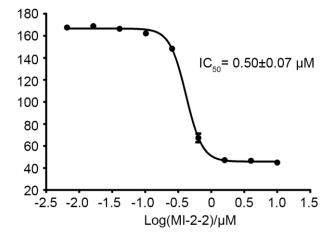
‡ These authors contributed equally to this work.

* Correspondence: Yaxi Yang (<u>yangyaxi@simm.ac.cn</u>), Yuanyuan Zhang

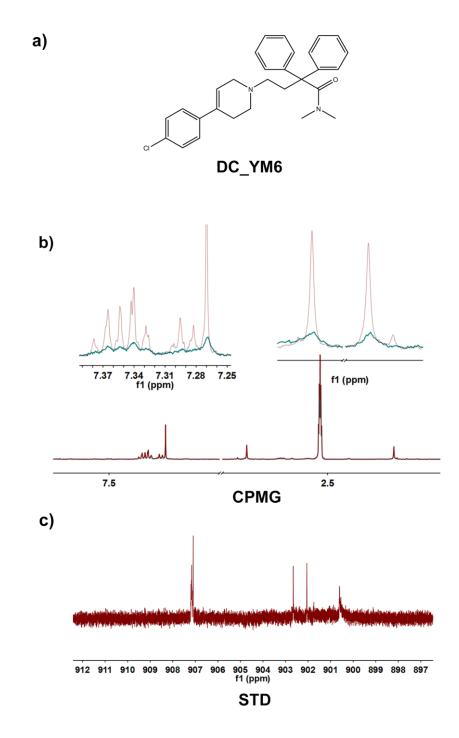
(10110700070@fudan.edu.cn) and Cheng Luo (cluo@simm.ac.cn)

Table of Contents

Supplementary Table 1	S3
Supplementary Table 2	S4
Supplementary Figure 1	S5
Supplementary Figure 2	S6
Supplementary Figure 3	S7
Procedures and Products	S8
Supplementary Table 3	S30
¹ H and ¹³ C NMR spectra	S31

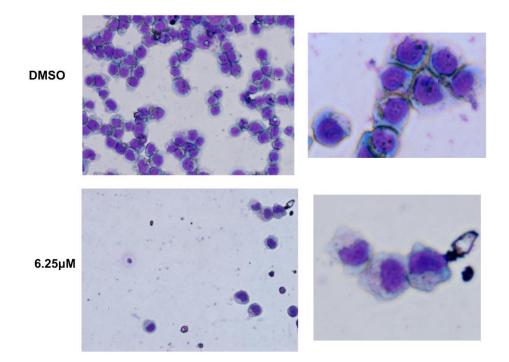

Supplementary Table 1. Protein thermal shift assay demonstrated the binding of loperamide-based analogues to menin. \triangle Tm values were calculated as a Tm difference between menin mixed with the 20 μ M compound and menin mixed with DMSO.

Compound	Δ Tm (°C)
DMSO	
DC_YM22	5.04 ± 0.65
DC_YM23	2.20 ± 0.31
DC_YM24	2.01 ± 0.40
DC_YM26	4.81 ± 0.51
DC_YM27	3.49±0.60
MBM1	4.28 ± 0.36


Compound	GI ₅₀ (μM)
DC_YM22	3.20 ± 0.20
DC_YM24	3.34 ± 1.06
DC_YM26	2.96 ± 0.91
MI-2-2	2.37 ± 0.81

Supplementary Table 2. AlamarBlue cell viability assay of human leukemia cells MV4;11 after 7 day's treatment with inhibitors.

Supplementary Figure 1.



Supplementary Figure 1. FP assays determine the IC_{50} value of MI-2-2.

Supplementary Figure 2. NMR CPMG (b) and STD (c) experiments demonstrate direct binding of DC_YM6 to menin.

Supplementary Figure 3.

Supplementary Figure 3. DC_YM21 treatment induces human MLL leukemia cells KOPN-8 (**MLL-ENL**) **differentiation.** Wright-Giemsa stained cytospins on KOPN-8 cells after 10 days of treatment with **DC_YM21** and DMSO.

Procedures and Products

All reagents were purchased from commercial sources and used without further purification, unless otherwise indicated.

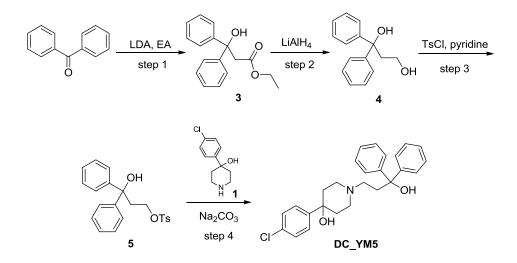
Loperamide and DC_YM1~DC_YM3 are commercially available:

Loperamide Hydrochloride: CAS Number: 34552-83-5, Bought from Tokyo Chemical Industry (TCI) Shanghai, Catalogue Number: L0154, Melting Point: 223-225 °C, Purity: > 98%.

DC_YM1: Loperamide *N*-Oxide, CAS Number: 106900-12-3 Bought from TLC PharmaChem, Source Lot Number: 1045-029A3; Melting Point: 169-173 °C, Purity: 97.9%.

DC_YM2: *N*-Desmethyl Loperamide, CAS Number: 66164-07-6, Bought from Toronto Research Chemicals (TRC), Catalogue Number: D291840; Melting Point: 214-216 °C, Purity: 98%.

DC_YM3: *N*-Didesmethyl Loperamide, CAS Number: 66164-06-5, Bought from Toronto Research Chemicals (TRC), Catalogue Number: D441135. Melting Point: 200-203 °C, Purity: 98%.


1. Synthesis of 4-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylbutane nitrile (**DC_YM4**)

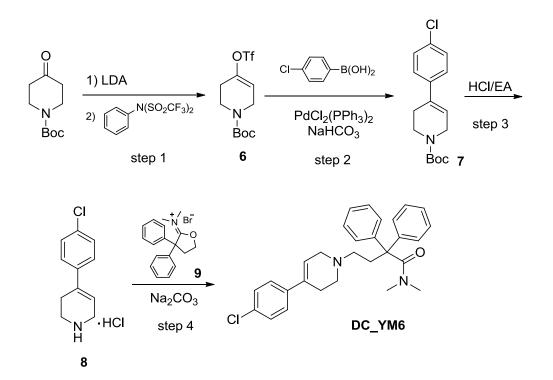
A solution of 4-bromo-2,2-diphenylbutanenitrile ($\mathbf{2}$, 299 mg, 1 mmol) in CH₃CN (5 mL) was added 4-(4-chlorophenyl)-4-hydroxypiperidine ($\mathbf{1}$, 211 mg, 1 mmol) and

Na₂CO₃ (318 mg, 3 mmol), and the mixture was stirred at 80 °C for 4 h. Then the solvent was removed in vacuo. The residue was diluted with EtOAc and washed with water. The organic layers were combined, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (dichloromethane/methanol = 20/1) to give compound **DC_YM4**. Yield, 83%; mp 216 – 218 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.30 (m, 14H), 2.83-2.75 (m, 2H), 2.71-2.64 (m, 2H), 2.59-2.52 (m, 2H), 2.51-2.43 (m, 2H), 2.11 (td, J = 13.3, 4.4 Hz, 2H), 1.76-1.68 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 146.8, 140.0, 132.8, 129.0, 128.4, 128.0, 126.8, 126.1, 122.1, 71.0, 54.8, 50.1, 49.6, 38.4, 36.6; HRMS (EI) calcd. for C₂₇H₂₇ClN₂O [M]⁺: 430.1812. Found: 430.1807.

2. Synthesis of 4-(4-chlorophenyl)-1-(3-hydroxy-3,3-diphenylpropyl)piperidin-4-ol
(DC_YM5)

Step 1: To a solution of diisopropylamine (0.5 mL) in THF (10 mL) was added *n*-butyllithium solution in hexane (2.2 mL, 1.6 M in hexane) at -78 °C. The mixture was stirred at -78 °C for 15 min to get a LDA solution, then EtOAc (0.34 mL) was slowly added to the reaction mixture at -78 °C. After 20 min, a solution of benzophenone (637 mg, 3.5 mmol) in THF (10 mL) was slowly added to the mixture. The reaction mixture was stirred at -78 °C for 2 h. The reaction was quenched with saturated NH₄Cl solution and extracted with EtOAc. The combined organic layers

were washed with brine, and dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography with petroleum ether/ethyl acetate (100/1, v/v) to obtain the title compound **3** (95% yield); LRMS (EI) m/z 270 [M]⁺; ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.45 (m, 4H), 7.15-7.35 (m, 6H), 5.10 (s, 1H), 4.02 (q, *J* = 7.20, 2H), 3.25 (s, 2H), 1.13 (t, *J* = 7.20, 3H).


Step 2: To a solution of ester 3 (200 mg, 0.74 mmol) in THF (5 mL) was slowly added the suspension of LiAlH₄ in dry THF (1 mL, 1M) at 0 °C, and the mixture was stirred at 0 °C for 1h . After complete consumption of the starting material, the mixture was quenched with water and exacted with ethyl acetate. The combined organic layers was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under vacuum to afford the crude product, which was purified by flash column chromatography with petroleum ether/ethyl acetate (3/1, v/v) to give compound **4** (90% yield); LRMS (EI) m/z 228 [M]⁺; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 4H), 7.37 – 7.31 (m, 4H), 7.28 – 7.23 (m, 2H), 4.23 (s, 1H), 3.74 (dd, *J* = 9.8, 4.9 Hz, 2H), 2.66 (t, *J* = 4.3 Hz, 1H), 2.59 – 2.53 (m, 2H).

Step 3: The *p*-toluenesulfonyl chloride (125 mg, 0.66 mmol) was added to the solution of the diol **4** (100 mg, 0.44 mmol) in dry pyridine (3 mL) at 0 °C under atomosphere of argon, and the mixture was stirred at 0 °C for 4 h. The mixture was diluted with EtOAc and washed with hydrochloric acid (2 M), the combined organic layers were washed with brine, and dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography with petroleum ether/ethyl acetate (6/1, v/v) to obtain the compound **5** (72%); LRMS (EI) m/z 382 [M]⁺; ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, *J* = 8.1 Hz, 2H), 7.33 – 7.21 (m, 12H), 4.09 (t, *J* = 7.3 Hz, 2H), 2.71 (t, *J* = 7.3 Hz, 2H), 2.44 (s, 3H).

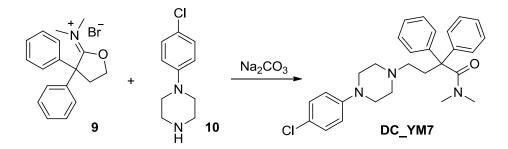
Step 4: A solution of tosylate **5** (382 mg, 1 mmol) in CH₃CN (5 mL) was added 4-(4-chlorophenyl)-4-hydroxypiperidine (211 mg, 1 mmol) and Na₂CO₃ (318 mg, 3 mmol), and the mixture was stirred at 80 \degree for 4 h. Then the solvent was removed in

vacuo. The residue was diluted with EtOAc and washed with water. The organic layers were combined, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (dichloromethane/methanol = 20/1) to give compound **DC_YM5.** Yield, 80%; mp 230 – 232 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (brs, 1H), 7.50-7.45 (m, 4H), 7.45-7.40 (m, 2H), 7.35-7.28 (m, 6H), 7.20 (t, *J* = 7.3 Hz, 2H), 2.83 (d, *J* = 11.4 Hz, 2H), 2.58-2.40 (m, 6H), 2.13 (td, *J* = 13.4, 4.0 Hz, 2H), 1.74 (d, *J* = 12.6 Hz, 2H), 1.57 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 146.4, 133.0, 128.5, 128.1, 126.5, 126.1, 125.8, 79.1, 70.9, 55.0, 49.3, 38.5, 35.3; HRMS (EI) calcd. for C₂₆H₂₈CINO₂ [M]⁺: 421.1809. Found: 421.1811.

3. Synthesis of 4-(4-(4-chlorophenyl)-3,6-dihydropyridin-1(2H)-yl)-*N*,*N*-dimethyl-2,2-diphenylbutanamide (**DC_YM6**)

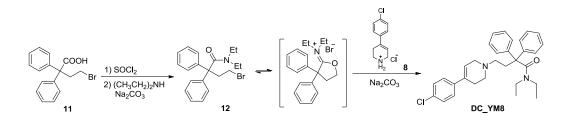
Step 1: To a solution of diisopropylamine (0.7 mL) in THF (10 mL) was added n-butyllithium solution in hexane (3.1 mL, 1.6 M in hexane) at -78 $^{\circ}$ C. The mixture was stirred at -78 $^{\circ}$ C for 15 min to get a LDA solution, then 1-Boc-4-piperidone (1.0 g, 11)

5.02 mmol) in THF (10 mL) was slowly added to the reaction mixture at -78 °C. After 20 min, a solution of 1,1,1-trifluoro-*N*-phenyl-*N*-(trifluoromethylsulfonyl)methane sulfonamide (1.8 g, 5.02 mmol) in THF (10 mL) was slowly added to the mixture. The reaction mixture was stirred at 0 °C for 3 h. The reaction was quenched with saturated NH₄Cl solution and extracted with EtOAc. The combined organic layers were washed with brine, and dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography with petroleum ether/ethyl acetate (10/1, v/v) to obtain the compound **6** (92% yield); LRMS (EI) m/z 331 [M]⁺; ¹H NMR (300 MHz, CDCl₃) δ 5.80-5.72 (m, 1H), 4.06-4.02 (m, 2H), 3.63 (t, *J* = 5.6 Hz, 2H), 2.48-2.40 (m, 2H), 1.47 (s, 9H).


Step 2: To a solution of enol triflate **6** (331 mg, 1 mmol) in THF (4 mL) were added 4-chlorobenzeneboronic acid (187 mg, 1.2 mmol), saturated NaHCO₃ solution (1 mL) and PdCl₂(PPh₃)₂ (14 mg, 0.02 mmol), and the mixture was stirred at reflux for 2 h. The mixture was diluted with EtOAc and the aqueous layer was separated and extracted with EtOAc. The organic layers were combined, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 2/1) to give compound **7** (95%); LRMS (EI) m/z 293 [M]⁺; ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.27 (m, 4H), 6.01 (brs, 1H), 4.06 (brs, 2H), 3.63 (brs, 2H), 2.47 (brs, 2H), 1.48 (s, 9H).

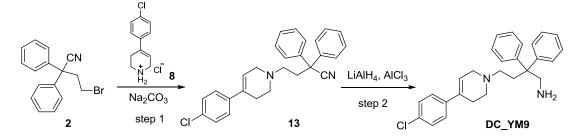
Step 3: A round-bottom flask was placed a solution of compound **7** (293 mg, 1 mmol) in ethyl acetate (5 mL), hydrogen chloride (gas) was bubbled through the solution and the resulting mixture was stirred for 1 h at room temperature. The formed precipitate was collected by filtration and dried to yield 206 mg (90%) of a white solid **8**; LRMS (EI) m/z 229 $[M]^+$.

Step 4: A solution of compound **8** (55 mg, 0.24 mmol) in CH₃CN (5 mL) was added dihydro-N,N-dimethyl-3,3-diphenyl-2(3H)-furaniminium bromide (**9**, 65 mg, 0.19 mmol) and Na₂CO₃ (60 mg, 0.57 mmol), and the mixture was stirred at 80 °C for 4h.


Then the solvent was removed in vacuo. The residue was diluted with EtOAc and washed with water. The organic layers were combined, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (dichloromethane/methanol = 20/1) to give compound **DC_YM6**. Yield, 80%; mp 130 – 132 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.33 (m, 8H), 7.31-7.22 (m, 6H), 5.96-5.91 (m, 1H), 3.18-3.11 (m, 2H), 2.98 (brs, 3H), 2.69 (t, J = 5.6 Hz, 2H), 2.60-2.46 (m, 4H), 2.33 (brs, 3H), 2.32-2.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 140.7, 139.3, 133.7, 132.4, 128.3, 128.2, 128.0, 126.7, 126.1, 122.7, 59.7, 55.4, 53.1, 50.2, 42.6, 39.1, 37.2, 28.0; HRMS (EI) calcd. for C₂₉H₃₁ClN₂O [M]⁺: 458.2125. Found: 458.2122.

4. Synthesis of 4-(4-(4-chlorophenyl)piperazin-1-yl)-*N*,*N*-dimethyl-2,2-diphenylbutan amide (**DC_YM7**)

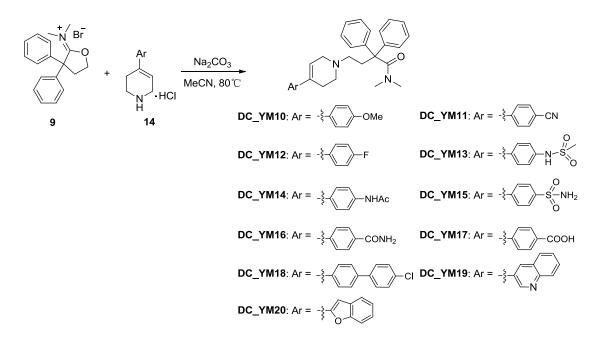
A solution of compound **9** (50 mg, 0.14 mmol) in CH₃CN (5 mL) was added 1-(4-chlorophenyl)piperazine (**10**) (43 mg, 0.22 mmol) and Na₂CO₃ (46 mg, 0.43 mmol), and the mixture was stirred at 80 °C for 4 h. Then the solvent was removed in vacuo. The residue was diluted with EtOAc and washed with water. The organic layers were combined, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (dichloromethane/methanol = 20/1) to give compound **DC_YM7**. Yield, 82%; mp 172 – 174 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.36 (m, 8H), 7.33-7.28 (m, 2H), 7.20-7.15 (m, 2H), 6.82-6.77 (m, 2H), 3.12-3.06 (m, 4H), 3.01 (brs, 3H), 2.57-2.45 (m, 6H), 2.35 (brs, 3H), 2.17-2.10 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 173.5, 150.0, 140.7, 128.8, 128.4, 128.1, 126.8, 124.1, 117.0, 59.7, 55.8, 53.0, 49.0, 42.5, 39.2, 37.2; HRMS (EI) calcd. for C₂₈H₃₂ClN₃O [M] ⁺ : 461.2234. Found: 461.2231.


5. Synthesis of 4-(4-(4-chlorophenyl)-3,6-dihydropyridin-1(2H)-yl)-*N*,*N*-diethyl-2,2-diphenylbutanamide (**DC_YM8**)

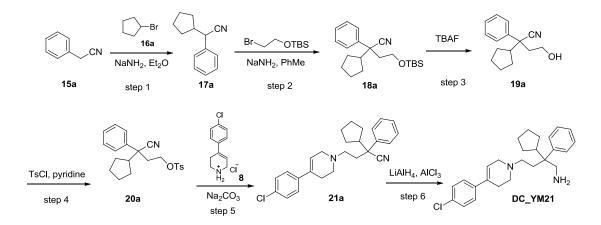
Step 1: To a solution of 4-bromo-2,2-diphenylbutyric acid (**11**, 2 g, 6.3 mmol) in $CHCl_3$ (15 mL) was added $SOCl_2$ (2 mL) dropwise. The mixture was refluxed for 4 h and allowed to cool, and the solvent was removed in vacuo. The crude acid chloride was used without purification. To a solution of diethylamine (0.77 mL) and Na₂CO₃ (1.6 g, 15 mmol) in H₂O (10 mL) was added dropwise a solution of 4-bromo-2,2-diphenylbutyroyl chloride in PhMe (7 mL), while the temperature was kept between 0 and 5 °C. The mixture was stirred for an additional 2 h and extracted with CHCl₃. The organic layer was dried over Na₂SO₄ and the solvent removed in vacuo. The crude compound **12** was used in the next step without purification.

Step 2: A solution of compound 12 (373 mg, 1 mmol) in CH₃CN (5 mL) was added compound 8 (229 mg, 1 mmol) and Na₂CO₃ (318 mg, 3 mmol), and the mixture was stirred at 80 °C for 4 h. Then the solvent was removed in vacuo. The residue was diluted with EtOAc and washed with water. The organic layers were combined, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (dichloromethane/methanol = 20/1) to give compound **DC_YM8**. Yield, 70%; mp 165 – 167 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.43-7.33 (m, 8H), 7.31-7.22 (m, 6H), 5.91 (s, 1H), 3.42-3.24 (m, 4H), 2.90-2.78 (m, 4H), 2.65-2.51 (m, 4H), 2.44-2.33 (m, 2H), 1.18 (t, *J* = 7.0 Hz, 3H), -0.01 (t, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 140.4, 138.5, 134.2, 133.1, 128.6, 128.4, 128.2, 127.0, 126.3, 59.6, 55.0, 53.5, 52.1, 49.7, 43.6, 40.7, 12.3, 11.2; HRMS (EI) calcd. for C₃₁H₃₅ClN₂O [M] ⁺ : 486.2438. Found: 486.2433.

6. Synthesis of 4-(4-(4-chlorophenyl)-3,6-dihydropyridin-1(2H)-yl)-2,2-diphenyl butan-1-amine (**DC_YM9**)



Step 1: A solution of 4-bromo-2,2-diphenylbutanenitrile (**2**, 299 mg, 1 mmol) in CH₃CN (5 mL) was added compound **8** (229 mg, 1 mmol) and Na₂CO₃ (318 mg, 3 mmol), and the mixture was stirred at 80 °C for 4 h. Then the solvent was removed in vacuo. The residue was diluted with EtOAc and washed with water. The organic layers were combined, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 2/1) to give compound **13** (80%); LRMS (EI) m/z 412 [M]⁺; ¹H NMR (300 MHz, CDCl₃) δ 7.51-7.23 (m, 14H), 6.03 (s, 1H), 3.16 (d, J = 3.1 Hz, 2H), 2.76-2.66 (m, 4H), 2.64-2.48 (s, 1H).


Step 2: LAH (0.15 mL, 2.4 M in THF) was slurried in anhydrous THF (5 mL), and the solution was cooled in an ice bath to 0 $^{\circ}$ under nitrogen. AlCl₃ (49 mg, 0.37 mmol) was dissolved in anhydrous THF (5mL). The AlCl₃ solution was added to the LAH slurry via an addition funnel over 15 min. Compound **12** (52 mg, 0.13 mmol) was dissolved in anhydrous THF (5 mL). This solution was added to the LAH/AlCl₃ mixture slowly. The resulting mixture was stirred at ambient temperature for 1 h and then heated to reflux for 7 h. When cooled to 0 $^{\circ}$ the reaction was quenched with water and extracted with Et₂O. The combined organic layers were washed with brine,

and dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography with dichloromethane/methanol (30/1, v/v) to obtain the compound **DC_YM9**. Yield, 60%; mp 147 – 149 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.17 (m, 14H), 6.00 (s, 1H), 3.35 (s, 2H), 3.10-3.03 (m, 2H), 2.61 (t, *J* = 5.4 Hz, 2H), 2.53-2.39 (m, 4H), 2.23-2.14 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 146.3, 139.2, 134.0, 132.7, 128.4, 128.2, 128.1, 126.2, 122.3, 53.9, 53.4, 51.0, 50.6, 49.1, 33.5, 28.1; HRMS (EI) calcd. for C₂₇H₂₉ClN₂ [M]⁺ : 416.2019. Found: 416.2011.

7. DC_YM10 to DC_YM20 were synthesized according to the procedure for synthesis of DC_YM6 using various of 4-aryl substituted-1,2,3,6-tetrahydropyridine (14)

8. General procedure for the synthesis of **DC_YM21 to DC_YM27** (taking **DC_YM21** as an example):

Step 1: A solution of 2-phenylacetonitrile (**15a**, 3 g, 25 mmol) in Et₂O (50 mL) was added bromocyclopentane (**16a** 2.7 mL) and NaNH₂ (1 g, 25 mmol), the mixture was refluxed for 3 h then quenched with water and extracted with EtOAc. The combined organic layers were washed with brine, and dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography with petroleum ether/ethyl acetate (30/1, v/v) to obtain the compound **17a** (90% yield).

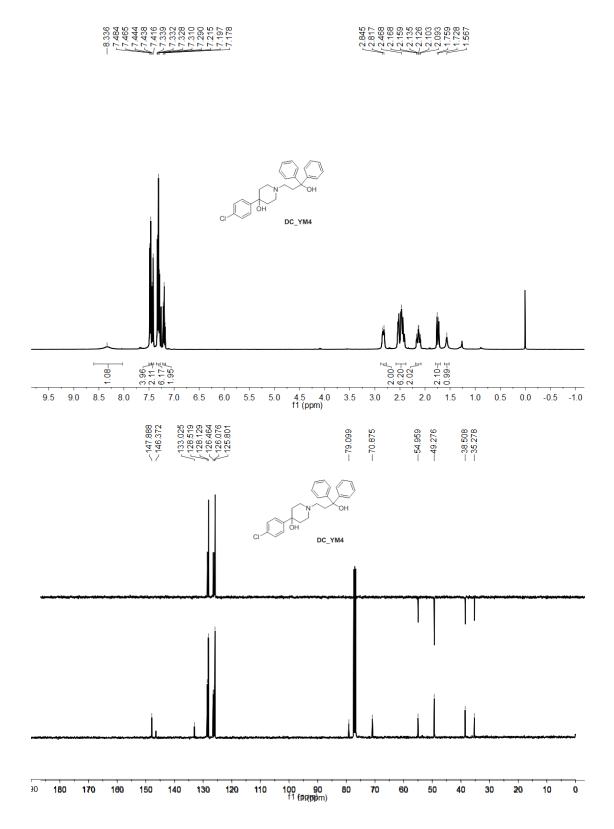
Step 2: To a solution of compound **17a** (253 mg, 1.4 mmol) in PhMe (10 mL) was added 2-(tert-butyldimethylsilyloxy)ethyl bromide (327 g, 1.4 mmol) and NaNH₂(164 mg, 4.2 mmol), the mixture was stirred at 120 °C for 3 h then quenched with water and extracted with EtOAc. The combined organic layers were washed with brine, and dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography with petroleum ether/ethyl acetate (30/1, v/v) to obtain the compound **18a** (85% yield)

Step 3: To a stirred solution of compound **18a** (343 mg, 1 mmol) in THF (5 mL) was added tetrabutylammonium fluoride (1 mL, 1M in THF), the reaction was stirred at room temperature for 2 h. The mixture was diluted with EtOAc and washed with water. The organic layers were combined, washed with brine, dried over Na_2SO_4 and

concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether /acetone = 2/1) to give compound **19a** (90%).

Step 4: The *p*-toluenesulfonyl chloride (191 mg, 1mmol) was added to the solution of the compound **19a** (206 mg, 0.9mmol) in dry pyridine (5mL) at $0 \,^{\circ}$ under atomosphere of argon, and the mixture was stirred at $0 \,^{\circ}$ for 4 h. The mixture was diluted with EtOAc and washed with hydrochloric acid (2 M), the combined organic layers were washed with brine, and dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography with petroleum ether/ethyl acetate (6/1, v/v) to obtain the compound **20a** (85% yield).

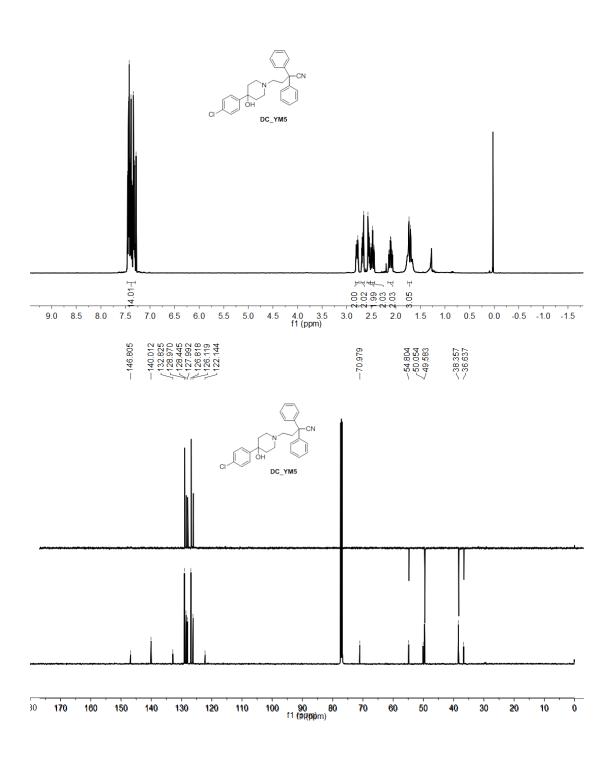
Step 5: A solution of compound **20a** (383 mg, 1mmol) in CH₃CN (5mL) was added compound **8** (229 mg, 1mmol) and Na₂CO₃ (318 mg, 3mmol), and the mixture was stirred at 80 °C for 4 h. Then the solvent was removed in vacuo. The residue was diluted with EtOAc and washed with water. The organic layers were combined, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether /acetone = 3/1) to give compound **21a** (70%).


Step 6: LAH (0.15 mL, 2.4 M in THF) was slurried in anhydrous THF (5 mL), and the solution was cooled in an ice bath to 0 $^{\circ}$ under nitrogen. AlCl₃ (49 mg, 0.37 mmol) was dissolved in anhydrous THF (5 mL). The AlCl₃ solution was added to the LAH slurry via an addition funnel over 15 min. Compound **21a** (50 mg, 0.12 mmol) was dissolved in anhydrous THF (5mL). This solution was added to the LAH/AlCl₃ mixture slowly. The resulting mixture was stirred at ambient temperature for 1 h and then heated to reflux for 7 h. When cooled to 0 $^{\circ}$ the reaction was quenched with water and extracted with Et₂O. The combined organic layers were washed with brine, and dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography with dichloromethane/methanol (15/1, v/v) to obtain the compound **DC_YM21** (53%).

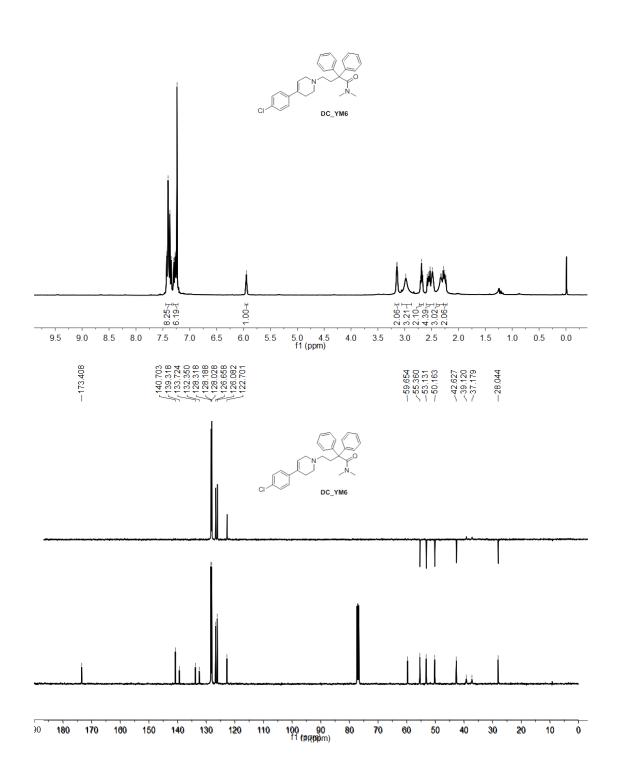
Compound	Retention Time (min, t_R)	Relative Purity (%)
DC_YM4	11.892	96.12
DC_YM5	9.786	97.39
DC_YM6	11.370	95.54
DC_YM7	10.669	97.10
DC_YM8	11.731	95.34
DC_YM9	11.412	95.13
DC_YM10	10.677	95.08
DC_YM11	9.263	95.21
DC_YM12	10.333	96.42
DC_YM13	8.532	95.55
DC_YM14	9.711	95.91
DC_YM15	8.372	97.14
DC_YM16	8.018	95.17
DC_YM17	6.322	96.59
DC_YM18	13.347	97.23
DC_YM19	10.091	96.02
DC_YM20	11.827	95.31
DC_YM21	12.213	96.43
DC_YM22	11.907	95.32
DC_YM23	11.814	95.07
DC_YM24	11.942	96.06
DC_YM25	11.461	95.08
DC_YM26	9.361	96.11
DC_YM27	9.725	95.04

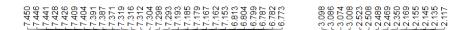
Supplementary Table 3. HPLC analysis data of synthesized compounds

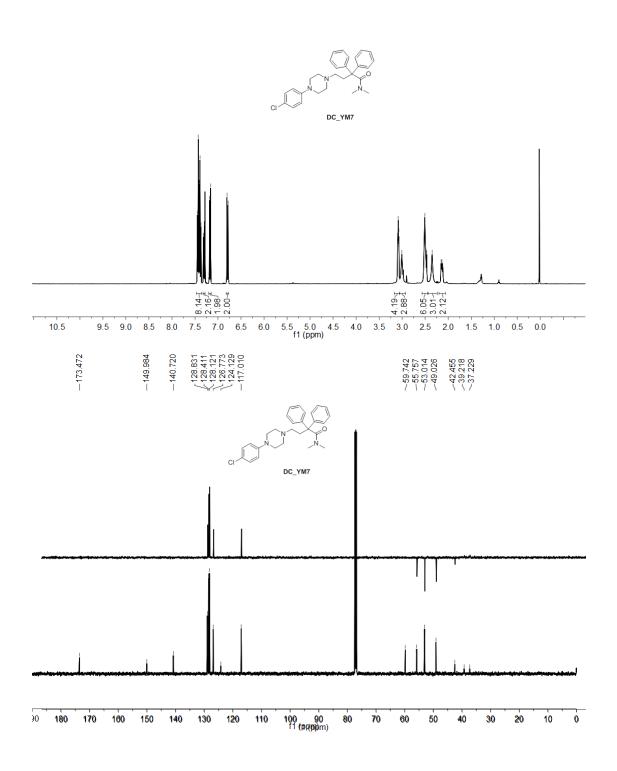
Mobile phase: MeOH (NH₃.H₂O 0.5‰)/H₂O (NH₃.H₂O 0.5‰) with gradient elution (0 ~ 5 min: 50% MeOH (NH₃.H₂O 0.5‰) ~ 95% MeOH (NH₃.H₂O 0.5‰); 5 ~ 15 min: 95% MeOH (NH₃.H₂O 0.5‰)) at 20 $^{\circ}$ C.

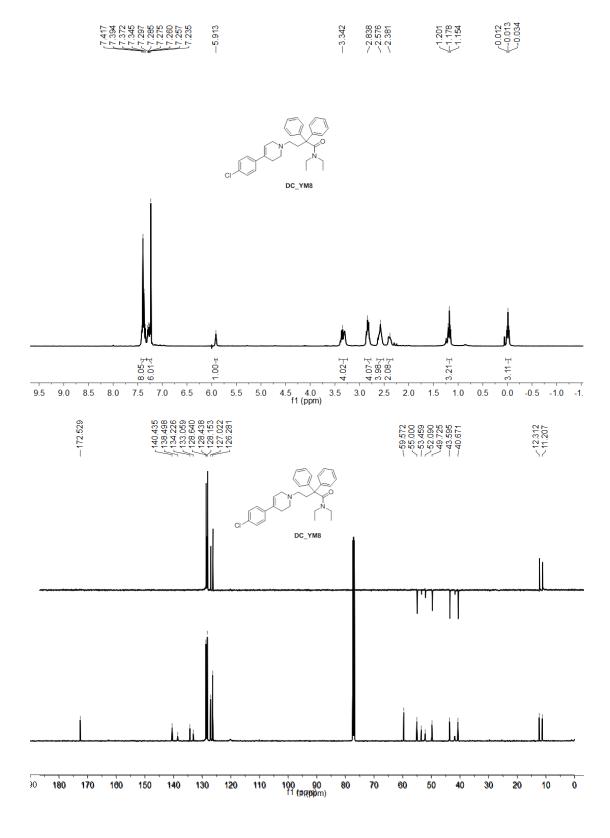

¹H and ¹³C NMR spectra

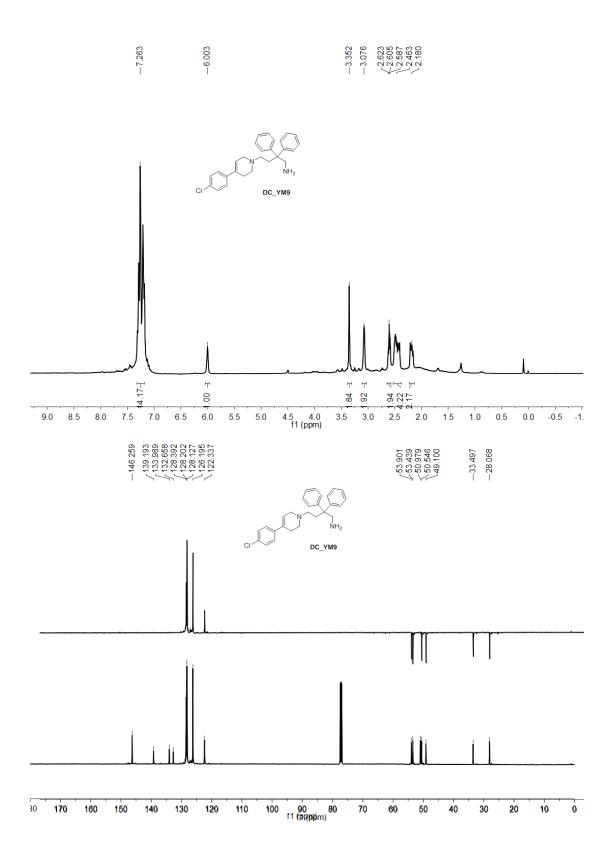
20

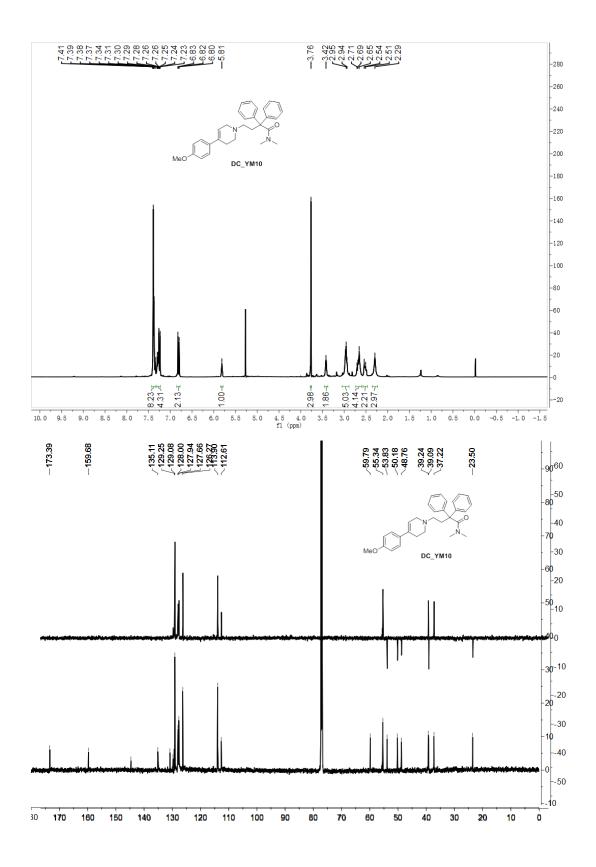


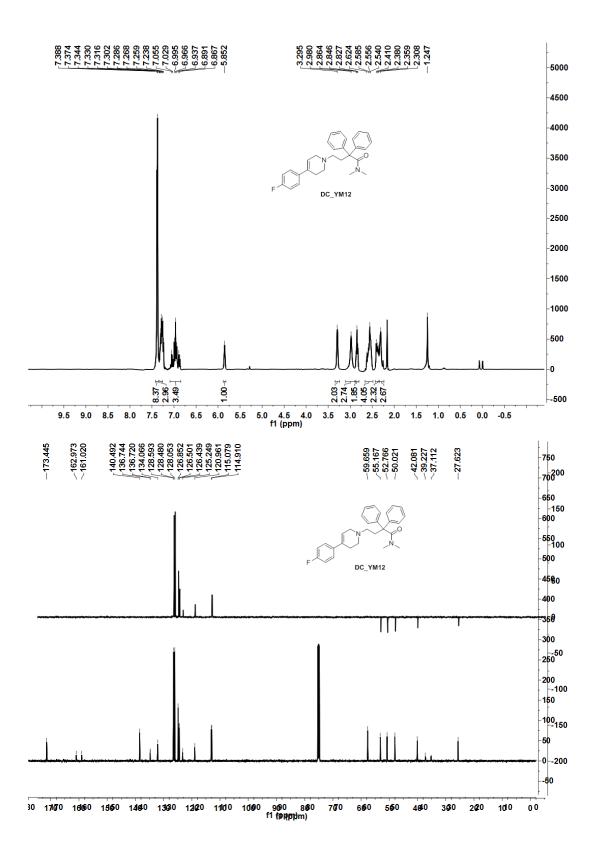

$\begin{array}{c} 2.802\\ 2.6655\\ 2.6655\\ 2.6655\\ 2.6655\\ 2.6655\\ 2.6655\\ 2.6655\\ 2.6556\\ 2.2530\\ 2.530\\ 2.2530\\ 2$

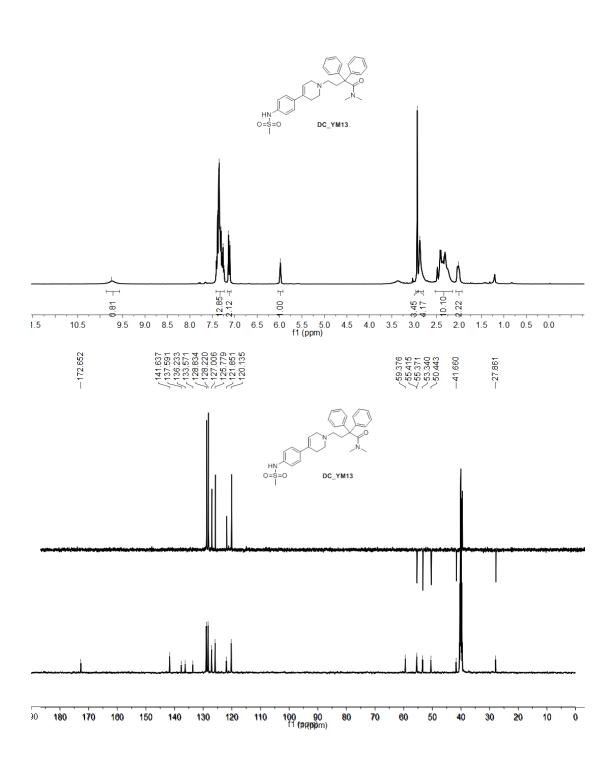


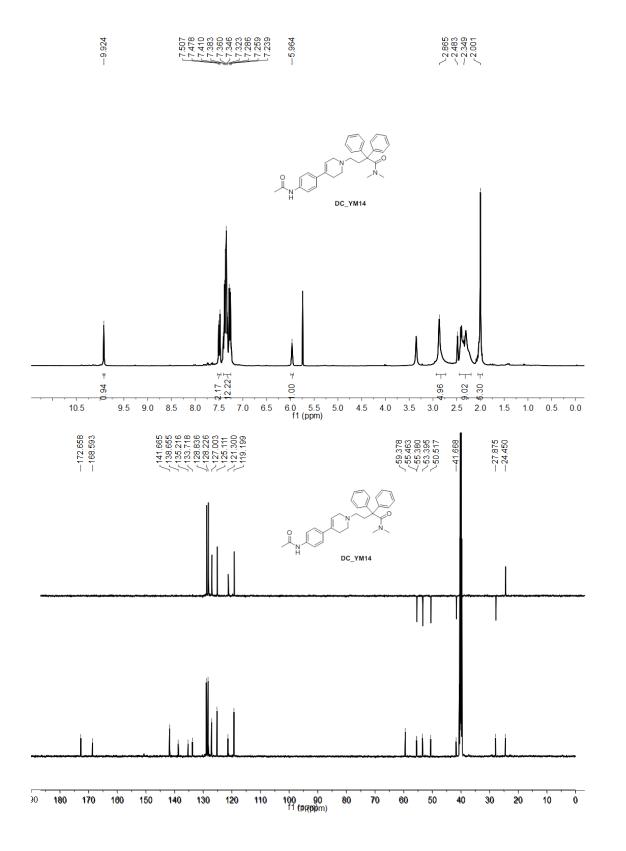

3.144 2.141

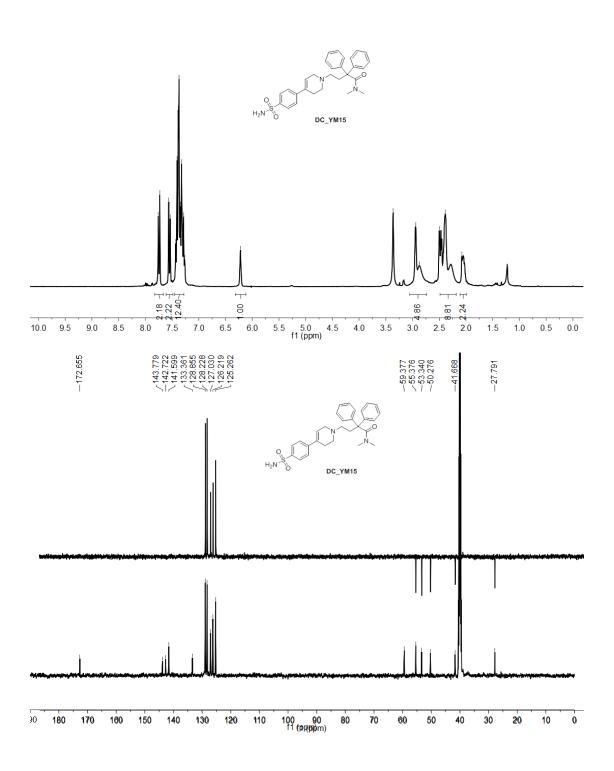

$\left(\begin{array}{c} 7,432\\ 7,7329\\ 7,73392\\ 7,73$

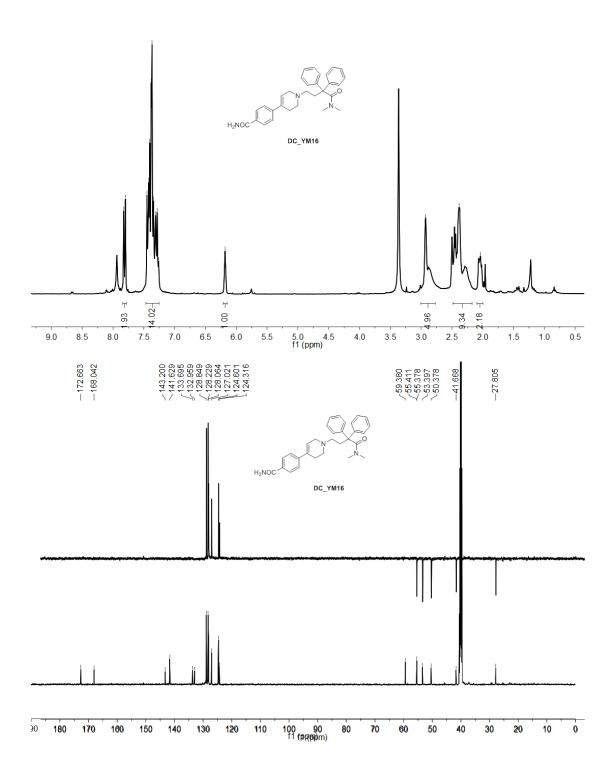


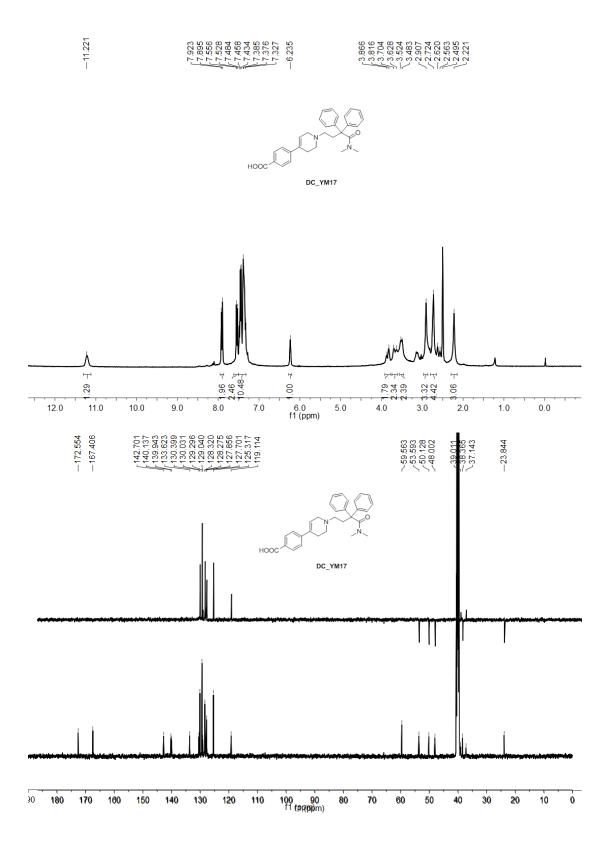


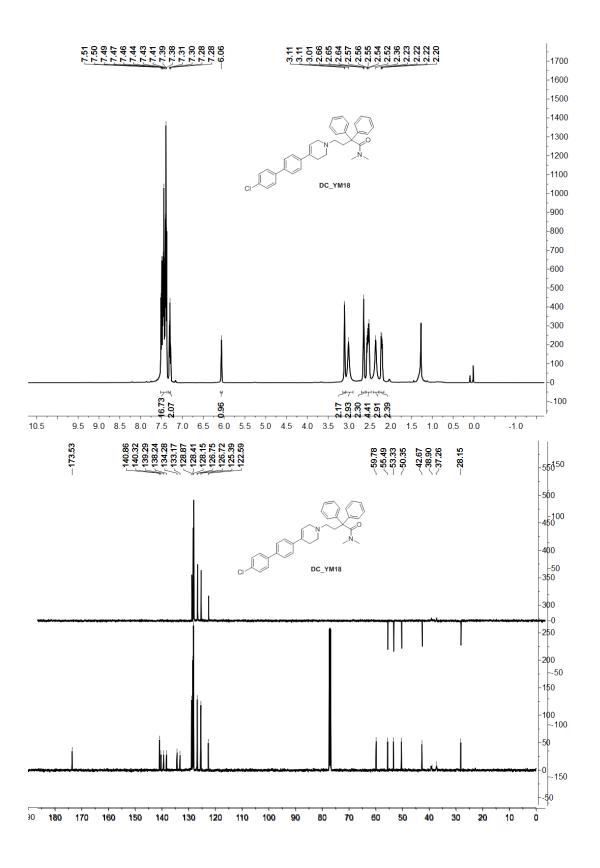



2.101 2.101 2.538 2.5619 2.238 2.191 2.152 2.152 2.152 2.152 2.152 2.152

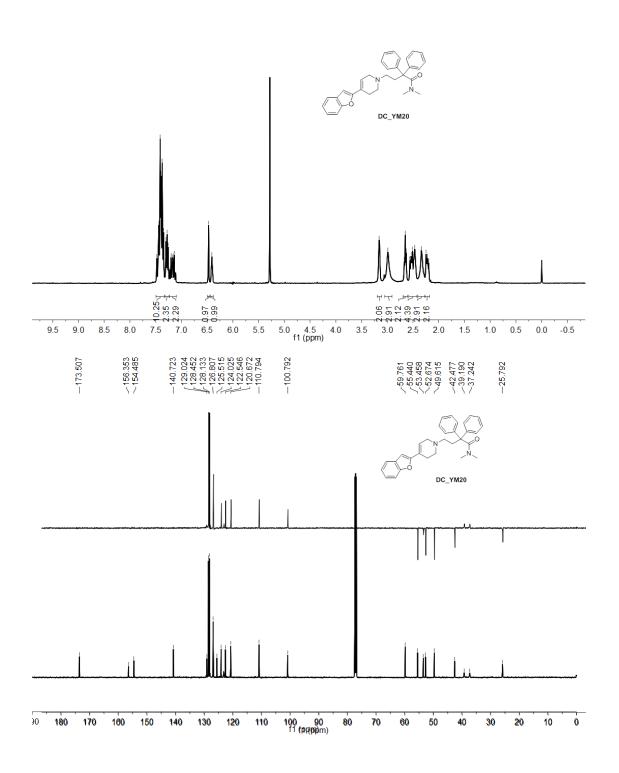


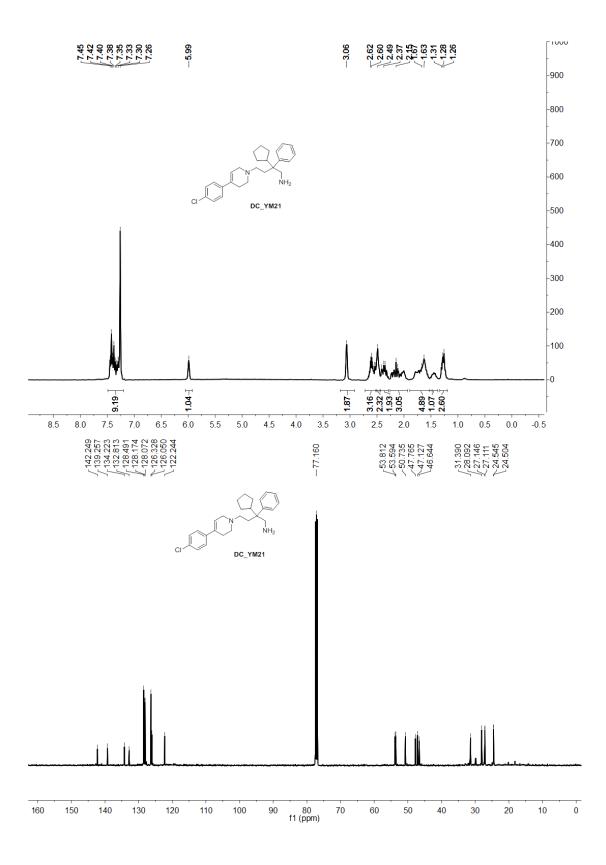


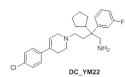


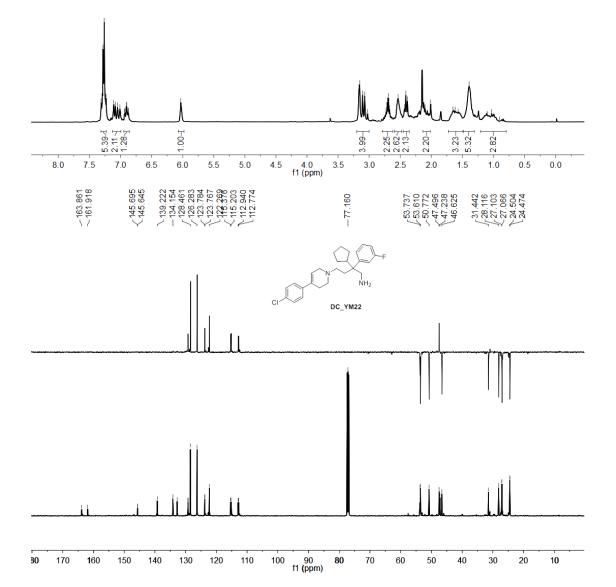


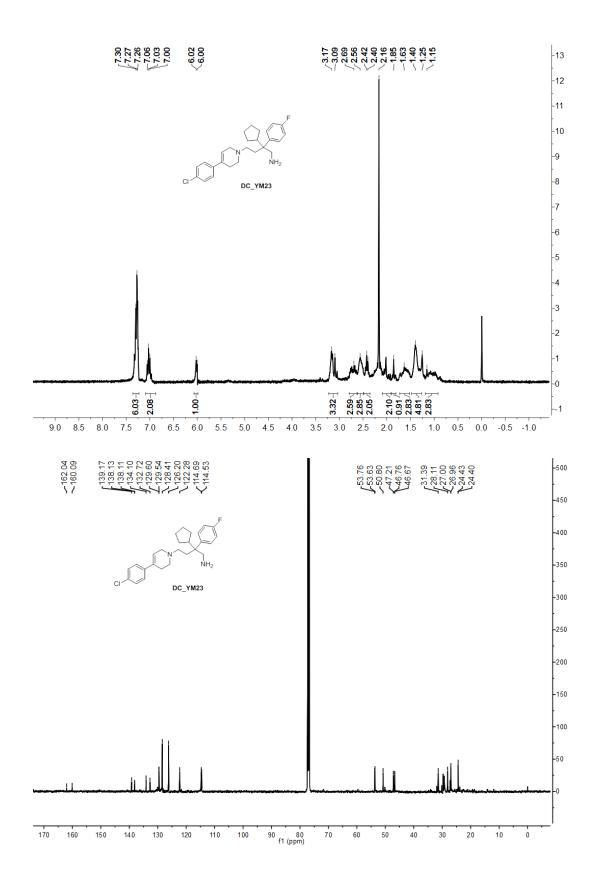


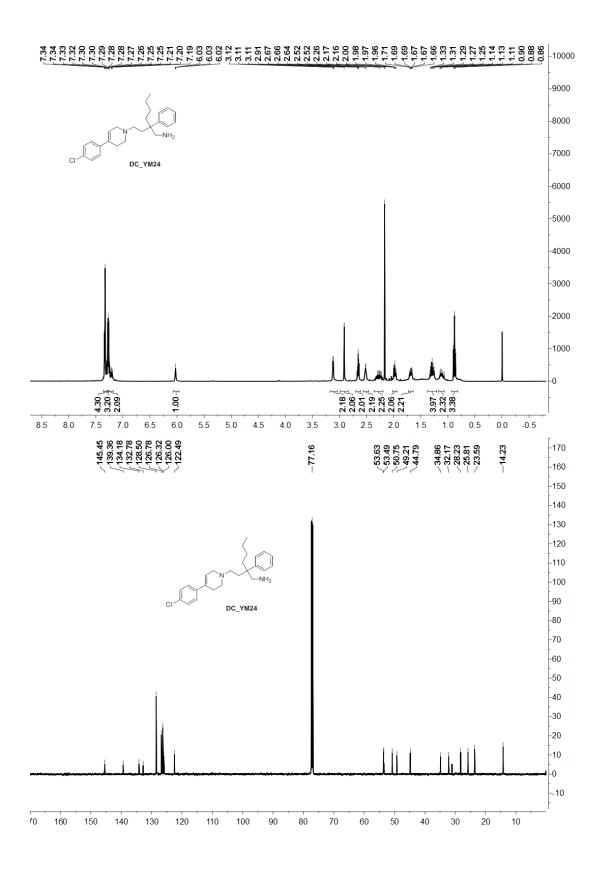


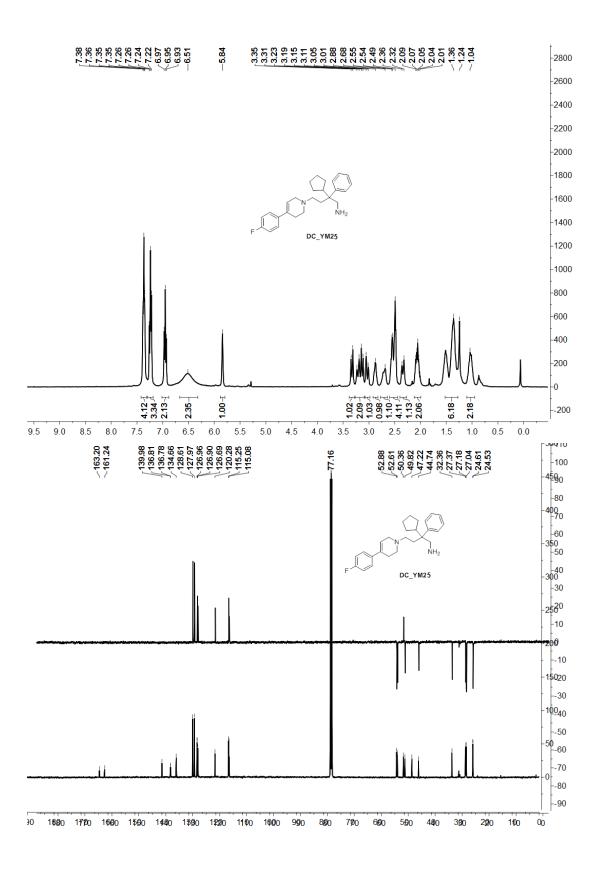



2,159 2,069 2,069 2,069 2,069 2,069 2,069 2,069 2,069 2,050 2,0002








7.310 7.290 7.290 7.280 7.281 7.281 7.283 7.283 7.283 7.283 7.083 6.900 6.900 6.900 6.900 6.900

