Supporting Information

Ligand-free Cu-catalyzed [3+2] Cyclization for the Synthesis of

Pyrrolo[1,2-a]quinolines with Ambient Air as Terminal Oxidant

Yang Yu,^[a] Yuan Liu,^[a] Aoxiao Liu,^[a] Hexin Xie,^[a] Hao Li,*^[a] and Wei Wang*^[a,b]

^[a]State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Mei-long Road, Shanghai, 200237, China

^[b]Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA

Table of contents

I. General Information	
II. General Procedure for the Synthesis	s of Ethyl 2-(quinolin-2-yl)acetate
derivatives	S2
III. General Procedure for the Synthesis of [3+2] products
IV. Synthesis of polycyclic compound	6H-chromeno[<i>3,4-a</i>]indolizin-6-one
(6h)	
V. Synthesis of intermediate ethyl 5-oxo-3,5-	diphenyl-2-(pyridin-2-yl) pentanoate
(6d) and mechanism study	S14
VI. References	
VII. ¹ H and ¹³ C-NMR spectra data	

1. General Information

Unless otherwise noted, all reagents were obtained commercially and used without further purification. Unless otherwise specified, all other reagents were purchased from Acros, Aldrich, Fisher, Adamas-beta Co. Ltd. or TCI and used without further purification. ¹H NMR spectra was recorded at 400 MHz, ¹³C NMR spectra was recorded at 100 MHz. ¹H NMR spectra was recorded with tetramethylsilane ($\delta = 0.00$ ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ ($\delta = 77.00$ ppm) or DMSO-*d*₆ ($\delta = 39.51$ ppm) as internal reference. Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br).

2. General Procedure for the Synthesis of Ethyl 2-(quinolin-2-yl)acetate derivatives

Procedure A¹

To a solution of 2-merhylquinoline (716 mg, 5 mmol) and diethyl carbonate (2.24 mL, 18.5 mmol) in anhydrous THF (8 mL), LDA (2.0 M, tetrahydrofuran solution) (7 mL, 14 mmol) was added dropwise under nitrogen atmosphere at - 78 °C. The resulting solution was stirred at - 78 °C for 1.5 h. After completion of the reaction, 5 mL water was added and the mixture was warmed gradually to rt. Then, 50 mL water was added again and the solution was extracted with ethyl acetate. The organic layer was washed with saturated sodium bicarbonate solution and brine, then dried over sodium sulfate. The solvent was removed under reduced pressure. The obtained residue was purified by column chromatography to give the compound as yellow liquid (940 mg, 87%).

Procedure B²

To a solution of 6-bromo-2-merhylquinoline (1.11 g, 5 mmol) in anhydrous THF (20 mL), lithium hexamethyldisilazide (1 M, tetrahydrofuran solution) (20 mL, 20 mmol) was added dropwise under nitrogen atmosphere at -60 °C. The resulting solution was stirred below -60 °C for 30 min. To the reaction solution, diethyl carbonate (1.34 mL, 11 mmol) was added. Then the mixture was stirred at rt for 3 h. After the completion of the reaction, 1 N HCl was added. The reaction solution was extracted with ethyl acetate. The organic layer was washed with saturated sodium bicarbonate solution and brine, then dried over sodium sulfate. The solvent was removed under reduced pressure. The obtained residue was purified by column chromatography to give compound (1.51 g, 76%).

Characterization Data for Substrates

Ethyl 2-(6-Methylquinolin-2-yl)acetate (1h). The title compound was prepared according to general procedure **A** using 2,6-dimethylquinoline as the starting material in 70% yield as yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.55 (s, 1H), 7.52 (d, *J* = 8.8 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 4.01 (s, 2H), 2.52 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 154.0, 146.6, 136.3, 136.1, 132.0, 128.9, 127.2, 126.5, 121.8, 61.2, 44.9, 21.7, 14.3; HRMS (EI) m/z calcd for C₁₄H₁₅NO₂ [M]⁺: 229.1103; found: 229.1105.

Ethyl 2-(7-Chloroquinolin-2-yl)acetate (1i). The title compound was prepared according to general procedure **B** using 7-chloro -2-methylquinoline as the starting material in 72% yield as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 8.0 Hz, 1H), 8.06 (s, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.48 (d, *J* = 8.4Hz, 1H), 7.43 (d, *J* = 8.4 Hz, 1H), 4.21 (q, *J* = 6.8 Hz, 2H), 4.02 (s, 2H), 1.27 (t, *J* = 6.8 Hz, 3H); ¹³C NMR

(100 MHz, CDCl₃): δ 170.4, 156.2, 148.4, 136.5, 135.6, 128.9, 128.4, 127.6, 125.5, 122.1, 61.4, 44.9, 14.3; HRMS (EI) m/z calcd for C₁₃H₁₂ClNO₂ [M]⁺: 249.0557; found: 249.0555.

Ethyl 2-(Bbenzo[f]quinolin-3-yl)acetate (11). The title compound was prepared according to general procedure **A** using 3-methylbenzo[*f*]quinoline as the starting material in 75% yield as yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.89 (d, *J* = 8.4 Hz, 1H), 8.57 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 2.0 Hz, 2H), 7.91 (d, *J* = 7.2 Hz, 1H), 7.61 - 7.69 (m, 2H), 7.58 (d, *J* = 8.8 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 4.08 (s, 2H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 154.4, 147.9, 131.7, 131.4, 131.1, 129.6, 128.8, 128.0, 127.3, 127.2, 124.2, 122.7, 121.9, 61.2, 44.6, 14.3; HRMS (EI) m/z calcd for C₁₇H₁₅NO₂ [M]⁺: 265.1103; found: 265.1104.

3. General Procedure for Synthesis of [3+2] Products

General procedure for synthesis of compounds **3a-3f**, **3i-3l**, **5e**, **5f**, **5h**: To a solution of **1** (0.2 mmol) and **2** (0.4 mmol) in DMSO (1.0 mL) was added the $Cu(OAc)_2$ (0.06 mmol) and DBU (0.4 mmol). The resulting solution was stirred for 18 h at 75 °C in air. After the reaction was cooled to ambient temperature, the mixture was diluted with ethyl acetate, washed sequentially with saturated aq. NH₄Cl and water. The organic layer was dried over Na₂SO₄, filtered and evaporated under reduced pressure. The crude reaction mixture was directly purified by Al₂O₃ (PE/EA = 50:1-20:1) to give the corresponding product.

General procedure for synthesis of compounds **3g**, **3h**, **5a-5d**, **5g**: To a solution of **1** (0.2 mmol) and **2** (0.4 mmol) in DMSO (1.0 mL) was added CuCl (0.06 mmol) and TBD (0.4 mmol). The resulting solution was stirred for 12 h at 75 °C in air. After the reaction was cooled to ambient temperature, the mixture was diluted with ethyl acetate, washed sequentially with saturated aq. NH₄Cl and water. The organic layer

was dried over Na_2SO_4 , filtered and evaporated under reduced pressure. The crude reaction mixture was directly purified by Al_2O_3 (PE/EA = 50:1-20:1) to give the corresponding product.

Ethyl 1-benzoyl-2-phenylpyrrolo[*1,2-a*]quinoline-3-carboxylate (3a). 81% yield, yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.30 (d, *J* = 9.6 Hz, 1H), 7.97 (m, 1H), 7.83 (d, *J* = 9.6 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 2H), 7.47 (m, 4H), 7.33-7.30 (t, *J* = 7.6 Hz, 2H), 7.16 (br, 5H), 4.10 (q, *J* = 7.0 Hz, 2H), 1.00 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.2, 164.6, 138.1, 137.1, 135.6, 133.7, 133.3, 132.5, 130.5, 129.9, 129.1, 128.7, 128.3, 127.1, 127.0, 126.7, 126.1, 125.1, 125.0, 118.7, 118.4, 106.7, 59.8, 13.9. HRMS (ESI) m/z calcd for C₂₈H₂₁NO₃ (M+1)⁺ 420.1600, found 420.1606.

Ethyl 1-benzoyl-2-(4-fluorophenyl)pyrrolo[*1,2-a*]quinoline-3-carboxylate (3b). 67% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.39 (d, *J* = 9.2 Hz, 1H), 7.78 (d, *J* = 6.4 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 2H), 7.60 (d, *J* = 8.8 Hz, 2H), 7.43-7.37 (m, 3H), 7.26-7.15 (m, 4H), 6.84 (t, *J* = 8.4 Hz, 2H), 4.21 (q, *J* = 6.8 Hz, 2H), 1.12 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.2, 164.5, 162.1(d, *J*_{C-F} = 245 Hz), 138.1, 137.1, 134.5, 133.5, 132.5, 132.2 (d, *J*_{C-F}=8.1Hz), 129.8, 129.6, 129.5, 129.1, 128.4, 126.9, 126.2, 125.1, 125.0, 118.7,118.3, 114.0 (d, *J*_{C-F}=21.4Hz), 106.7, 59.8, 14.0. HRMS(ESI) m/z calcd for C₂₈H₂₀FNO₃ (M+1)⁺ 438.1505, found 438.1502.

Ethyl 1-benzoyl-2-(4-chlorophenyl)pyrrolo[*1,2-a*]quinoline-3-carboxylate (3c). 74% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.39 (d, *J* = 9.6 Hz, 1H), 7.78-7.76 (m, 1H), 7.69 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 2H), 7.60-7.57 (m, 2H), 7.44-7.34 (m, 3H), 7.27-7.23 (m, 2H), 7.16-7.09 (m, 4H), 4.21 (q, *J* = 7.2 Hz, 2H), 1.13 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.1, 164.4, 138.0, 137.0, 134.1, 133.5, 133.2, 132.5, 132.2, 131.9, 129.8, 129.1, 128.8, 128.5, 127.2, 126.9, 126.1, 125.1, 125.1, 118.7, 118.3, 106.6, 59.9, 14.0. HRMS(ESI), calcd for C₂₈H₂₀ClNO₃ (M+1)⁺454.1210, found 454.1213.

Ethyl 1-(3-bromobenzoyl)-2-phenylpyrrolo[*1,2-a*]quinoline-3-carboxylate (3d). 65% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, *J* = 9.6 Hz, 1H), 7.79-7.77 (m, 1H), 7.60-7.54 (m, 4H), 7.42-7.34 (m, 4H), 7.19-7.13 (m, 5H), 4.19 (q, *J* = 7.2 Hz, 2H), 1.07 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 188.9, 164.5, 137.4, 137.0, 136.1, 133.5, 132.4, 131.6, 131.2, 130.5, 129.2, 128.8, 128.4, 127.3, 127.1, 127.0, 125.6, 125.2, 125.1, 118.6, 118.4, 106.8, 59.8, 13.9. HRMS(ESI), calcd for C₂₈H₂₀BrNO₃ (M+1)⁺498.0705, found 498.0708.

Ethyl 1-benzoyl-2-(4-methoxyphenyl)pyrrolo[1,2-a]quinoline-3-carboxylate (3e).

57% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.38 (d, J = 9.6 Hz, 1H), 7.77-7.68 (m, 3H), 7.60-7.54 (m, 2H), 7.40-7.34 (m, 3H), 7.26-7.21 (m, 2H), 7.15 (d, J = 6.8 Hz, 2H), 6.69 (d, J = 8.8 Hz, 2H), 4.23 (q, J = 7.0 Hz, 2H), 3.72 (s, 3H), 1.15 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.4, 164.7, 158.7, 138.1, 136.9, 135.3, 133.3, 132.5, 131.8, 129.8, 129.0, 128.6, 128.3, 126.6, 126.1, 125.7, 125.1, 124.9, 118.7, 118.4, 112.6, 106.7, 59.8, 55.2, 14.1. HRMS (ESI) m/z calcd for C₂₉H₂₃NO₄ (M+1)⁺ 450.1705, found 450.1706.

Ethyl 1-benzoyl-2-(2-methoxyphenyl)pyrrolo[*1,2-a*]quinoline-3-carboxylate (3f) . 48% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.39 (d, *J* = 9.6 Hz, 1H), 7.78-7.76 (m, 3H), 7.64-7.56 (m, 2H), 7.40-7.34 (m, 3H), 7.22-7.18 (m, 2H), 7.09-7.00 (m, 2H), 6.74-6.71 (m, 1H), 6.60 (d, *J* = 8.4 Hz, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.62 (s, 3H), 1.03 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 189.5, 164.6, 156.8, 138.2, 137.7, 133.1, 132.9, 132.6, 131.6, 129.7, 129.0, 128.9, 128.5, 127.9, 126.8, 126.2, 125.1, 124.8, 123.3, 119.6, 119.1, 118.4, 109.6, 107.4, 59.5, 55.0, 13.9. HRMS(ESI), calcd for C₂₉H₂₃NO₄ (M+1)⁺ 450.1705, found 450.1707.

Ethyl 1-benzoyl-7-bromo-2-phenylpyrrolo[*1,2-a*]quinoline-3-carboxylate (3g). 64% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.42 (d, J = 9.6 Hz, 1H), 7.90 (br, 1H), 7.70 (d, J = 7.6 Hz, 2H), 7.49-7.37 (m, 4H), 7.26-7.10 (m, 7H), 4.18 (q, J = 7.2 Hz, 2H), 1.07 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.1, 164.4, 137.9, 136.8, 135.8, 133.5, 133.4, 131.4, 131.3, 131.1, 130.5, 129.9, 128.4, 127.2, 127.0, 126.8, 126.2, 125.4, 120.3, 119.6, 118.2, 107.3, 59.9, 13.9. HRMS(ESI), calcd for C₂₈H₂₀BrNO₃ (M+1)⁺ 498.0705, found 498.0709.

Ethyl 1-benzoyl-7-mEthyl-2-phenylpyrrolo[*1,2-a*]quinoline-3-carboxylate (3h). 78% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, *J* = 9.6 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.54-7.47 (m, 3H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.26-7.09 (m, 8H), 4.18 (q, *J* = 7.2 Hz, 2H), 2.42 (s, 3H), 1.07 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.2, 164.7, 138.2, 136.9, 135.5, 134.7, 133.8, 133.2, 130.6, 130.5, 130.0, 129.9, 128.7, 128.3, 127.0, 126.9, 126.6, 125.9, 125.2, 118.5, 118.3, 106.5, 59.7, 20.9, 13.9. HRMS(ESI), calcd for C₂₉H₂₃NO₃ (M+1)⁺ 434.1756, found 434.1754.

Ethyl 1-benzoyl-8-chloro-2-phenylpyrrolo[*1,2-a*]quinoline-3-carboxylate (3i). 47% yield, yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.33 (d, *J* = 9.6 Hz, 1H), 8.07 (d, *J* = 8.8 Hz, 1H), 7.88 (d, *J* = 9.2 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.59-7.47 (m, 3H), 7.36-7.32 (m, 2H), 7.17 (m, 5H), 4.11 (q, *J* = 6.4 Hz, 2H), 1.01 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 189.8, 164.4, 138.0, 137.2, 136.2, 134.3, 133.4, 133.3, 133.0, 130.5, 130.0, 129.8, 128.3, 127.2, 127.0, 126.3, 126.0, 125.6, 123.6, 118.8, 118.6, 107.2, 59.9, 13.9. HRMS(ESI), calcd for C₂₈H₂₀CINO₃ (M+1)⁺454.1210, found 454.1212.

Ethyl 1-benzoyl-2-(4-methoxyphenyl)-7-methylpyrrolo[1,2-a]quinoline-3-

Carboxylate (3j). 53% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, *J* = 9.2 Hz, 1H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.54-7.47 (m, 3H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.26-7.09 (m, 5H), 6.67 (d, *J* = 8.4 Hz, 2H) 4.18 (q, *J* = 7.2 Hz, 2H), 3.71 (s, 3H), 2.43 (s, 3H), 1.07 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.4, 164.7, 158.7, 138.2, 136.8, 135.2, 134.7, 133.2, 131.8, 130.6, 130.0, 129.8, 128.6, 128.3, 126.5, 126.0, 125.8, 125.1, 118.5, 118.3, 112.5, 106.5, 59.7, 55.2, 20.9, 14.1. HRMS(ESI), calcd for C₃₀H₂₅NO₄ (M+1)⁺464.1862, found 464.1859.

Ethyl 2-(thiophen-2-yl)-1-(thiophene-2-carbonyl)pyrrolo[*1,2-a*]quinoline-3-carbo xylate (3k). 50% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.35 (d, J = 9.2 Hz, 1H), 7.77 (m, 2H), 7.62 (d, J = 4.4 Hz, 1H), 7.54 (d, J = 9.6 Hz, 1H), 7.40 (br, 3H), 7.24 (d, J = 4.8 Hz, 1H), 6.95 (d, J = 12.0 Hz, 2H), 6.84 (br, 1H), 4.29 (q, J = 6.8 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 182.5, 164.3, 144.9, 136.6, 135.7, 135.5, 133.6, 132.4, 129.5, 129.2, 128.9, 128.1, 126.7, 126.5, 126.4, 126.2, 126.1, 125.2, 125.1, 118.3, 118.2, 107.2, 60.0, 14.1. HRMS(ESI), calcd for C₂₄H₁₇NO₃S₂ (M+1)⁺432.0728, found 432.0728.

Ethyl 3-benzoyl-2-phenylbenzo[*f*]pyrrolo[*1,2-a*]quinoline-1-carboxylate (3l). 70% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.62-8.58 (m, 2H), 8.50 (d, *J* = 10.0 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.78-7.56 (m, 6H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.25-7.11 (m, 7H), 4.21 (q, *J* = 6.8 Hz, 2H), 1.09 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 189.6, 164.6, 138.3, 137.5, 136.9, 133.8, 133.1, 131.0, 130.5, 130.4, 129.9, 129.9, 129.6, 128.8, 128.3, 127.7, 127.1, 127.0, 126.5, 125.9, 122.9, 121.7, 120.7, 118.4, 118.3, 106.0, 59.8, 13.9. HRMS(ESI), calcd for C₃₂H₂₃NO₃ (M+1)⁺ 470.1756, found 470.1761.

Ethyl 3-benzoyl-2-phenylpyrrolo[2,1-a]isoquinoline-1-carboxylate (5a). 63% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.15 (d, J = 7.6 Hz, 1H), 8.67-8.64 (m, 1H), 7.74-7.72 (m, 1H), 7.61-7.56 (m, 2H), 7.47 (dd, J_1 = 8.0 Hz, J_2 = 1.2 Hz, 2H), 7.21-7.01 (m, 9H), 4.18 (q, J = 7.2 Hz, 2H), 0.95 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 188.2, 167.4, 139.1, 136.6, 134.1, 132.4, 131.6, 130.6, 129.8, 129.6, 128.6, 127.9, 127.5, 127.3, 127.1, 127.0, 125.2, 124.4, 124.1, 122.5, 114.4, 111.1, 61.2, 13.6. HRMS(ESI), calcd for C₂₈H₂₁NO₃ (M+1)⁺ 420.1600, found 420.1598.

Ethyl 3-benzoyl-2-(4-chlorophenyl)pyrrolo[2,1-a]isoquinoline-1-carboxylate (5b). 63% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.14 (d, J = 7.6 Hz, 1H), 8.66-8.64 (m, 1H), 7.75-7.73 (m, 1H), 7.62-7.56 (m, 2H), 7.44 (dd, J_1 = 8.0 Hz, J_2 = 1.2 Hz, 2H), 7.29-7.25 (m, 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.10-6.99 (m, 6H), 4.21 (q, J= 7.0 Hz, 2H), 1.02 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 188.1, 167.1, 139.0, 135.3, 133.2, 132.7, 132.6, 131.8, 131.7, 129.9, 129.5, 128.7, 128.0, 127.7, 127.5, 127.2, 125.3, 124.4, 124.1, 122.6, 114.6, 111.0, 61.3, 13.7. HRMS(ESI), calcd for C₂₈H₂₀ClNO₃ (M+1)⁺454.1210, found 454.1207.

Ethyl 3-benzoyl-2-(p-tolyl)pyrrolo[2,1-a]isoquinoline-1-carboxylate (5c). 57% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.14 (d, J = 7.6 Hz, 1H), 8.62-8.60 (m, 1H), 7.74-7.71 (m, 1H), 7.60-7.55 (m, 2H), 7.46 (dd, J_1 = 8.0 Hz, J_2 = 1.2 Hz, 2H), 7.22-7.18 (m, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.06-7.02 (m, 2H), 6.98 (d, J = 8.0 Hz, 2H), 6.82 (d, J = 7.6 Hz, 2H), 4.21 (q, J = 7.2 Hz, 2H), 2.18 (s, 3H), 1.01 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 188.3, 167.5, 139.1, 136.7, 136.6, 132.2, 131.3, 130.9, 130.5, 129.8, 129.6, 128.5, 128.0, 127.8, 127.5, 127.1, 125.1, 124.5, 124.1, 122.5, 114.2, 111.1, 61.2, 21.0, 13.6. HRMS(ESI), calcd for C₂₉H₂₃NO₃ (M+1)⁺434.1756, found 434.1752.

Ethyl 3-benzoyl-2-phenylindolizine-1-carboxylate³ (5d). 81% yield, yellow solid. ¹H NMR (400 MHz, DMSO- d_6): δ 9.45 (d, J = 6.8 Hz, 1H), 8.39 (d, J = 8.8 Hz, 1H), 7.62-7.58 (m, 1H), 7.36 (d, J = 7.2 Hz, 2H), 7.26-7.21 (m, 2H), 7.09-6.99 (m, 7H), 4.09 (q, J = 7.0 Hz, 2H), 1.02 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 187.9, 163.8, 139.4, 139.3, 138.6, 134, 131.6, 131.5, 129.5, 128.3, 127.9, 127.3, 127.0, 122.3, 119.5, 115.8, 104.2, 100.0, 59.7, 14.2.

Ethyl 3-benzoyl-2-(4-(trifluoromEthyl)phenyl)indolizine-1-carboxylate (5e). 77% yield, yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.53 (d, J = 7.2 Hz, 1H), 8.41 (d, J = 8.8 Hz, 1H), 7.65-7.61 (m, 1H), 7.31-7.27 (m, 7H), 7.21-7.18 (m, 1H), 7.06-7.02 (m, 2H), 4.07 (q, J = 7.0 Hz, 2H), 0.98 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 188.0, 164.0, 139.3, 139.2, 138.3, 138.2, 131.5, 131.1, 129.1(q, ${}^{1}J_{C-F} = 30$ Hz), 128.9, 128.3, 127.6, 127.5, 124.0 (q, ${}^{2}J_{C-F} = 270$ Hz), 123.6 (q, ${}^{3}J_{C-F} = 3.7$ Hz), 122.4, 119.8, 115.3, 104.8, 59.9, 13.9. HRMS(ESI), calcd for C₂₅H₁₈F₃NO₃ (M+1)⁺ 438.1317, found 438.1317.

Ethyl 3-benzoyl-2-(4-chlorophenyl)indolizine-1-carboxylate³ **(5f).** 68% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.62 (d, J = 7.0 Hz, 1H), 8.46 (d, J = 9.0 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.22 (t, J = 7.5 Hz, 1H), 7.06-6.94 (m, 7H), 4.18 (q, J = 7.0 Hz, 2H), 1.12 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 188.2. 164.1, 139.3, 139.2, 139.1, 133.1, 132.5, 132.4, 131.1, 129.1, 128.2, 127.7, 127.5, 126.9, 122.4, 119.9, 115.1, 104.6, 59.7, 13.9.

Ethyl 3-benzoyl-2-(p-tolyl)indolizine-1-carboxylate (5g). 52% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.62 (d, J = 6.8 Hz, 1H), 8.45 (d, J = 8.8 Hz, 1H), 7.43-7.39 (m, 1H), 7.34 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.2$ Hz, 2H), 7.18-7.14 (m, 1H), 7.04-6.95 (m, 5H), 6.78 (d, J = 8.0 Hz, 2H), 4.22 (q, J = 7.2 Hz, 2H), 2.17 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 188.5, 164.4, 140.7, 139.4, 139.2, 136.7, 131.1, 130.7, 130.6, 129.2, 128.1, 127.5, 127.4, 127.1, 122.4, 119.8, 114.8, 104.7, 59.7, 21.1, 14.1. HRMS(ESI), calcd for C₂₅H₂₁NO₃ (M+1)⁺ 384.1600, found 384.1601.

Ethyl 3-benzoyl-2-(2-methoxyphenyl)indolizine-1-carboxylate (5h). 48% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.65 (d, J = 7.2 Hz, 1H), 8.46 (d, J = 9.2 Hz, 1H), 7.42-7.37 (m, 3H), 7.17-7.13 (m, 1H), 7.03-6.97 (m, 4H), 6.92 (d, J = 8.8 Hz, 1H), 6.65-6.61 (m, 1H), 6.49 (d, J = 8.4 Hz, 1H), 4.15 (q, J = 7.2 Hz, 2H), 3.65 (s, 3H), 1.05 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 188.2, 164.4, 156.5, 139.5, 139.3, 136.7, 132.2, 130.9, 129.0, 128.7, 128.2, 127.1, 126.8, 123.7, 122.1, 119.7, 119.5, 114.7, 109.4, 105.4, 59.5, 55.0, 13.9. HRMS(ESI), calcd for C₂₅H₂₁NO₄ (M+1)⁺ 400.1549, found 400.1553.

4. Synthesis of polycyclic compound 6H-chromeno[3,4-a]indolizin-6-one (6h)

To a solution of ethyl 3-benzoyl-2-(2-methoxyphenyl)indolizine-1-carboxylate (**5h**, 1 mmol, 40 mg) in the solvent of dichloromethane (2 mL) was added BBr₃ (3 eq. 30μ L) dropwise for 15 min at -40 °C. The mixture was stirred for 2 h at the same

temperature. After the reaction was completed, excess BBr₃ was quench by water at -40 °C. Then the reaction was diluted with ethyl acetate in room temperature, washed sequentially with water. The organic layer was dried over Na₂SO₄, filtered and evaporated under reduced pressure. The residue was added 2.5 mL aq. KOH (1 mol/mL) and stirred for 2 h at 75 °C. The mixture was diluted with ethyl acetate, washed with water followed by brine. The organic layer was dried over Na₂SO₄, filtered and evaporated under reduced pressure and the residue was purified by Al₂O₃ (PE/EA = 50:1-20/1) to give **6h** as a yellow solid in 61% yield. ¹H NMR (400 MHz, CDCl₃): δ 9.30 (d, *J* = 7.2 Hz, 1H), 8.60 (d, *J* = 8.8 Hz, 1H), 7.88 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.2 Hz, 2H), 7.62-7.53 (m, 2H), 7.46-7.43 (m, 2H), 7.38-7.27 (m, 2H), 7.18-7.14 (m, 1H), 7.00 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz, 1H), 6.79-6.75 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 187.8, 158.4, 153.2, 139.1, 137.4, 133.6, 130.5, 130.0, 130.0, 129.2, 128.0, 127.8, 127.7, 123.2, 119.6, 117.8, 117.4, 116.6, 115.0, 99.1. HRMS(ESI), calcad for C₂₂H₁₃NO₃ (M+1)⁺ 340.0974, found 340.0970.

5. Synthesis of intermediate ethyl 5-oxo-3,5-diphenyl-2-(pyridin-2-yl)pentanoate and mechanism study

To a solution of **4d** (0.2 mmol) and **2a** (0.4 mmol) in DMSO (1.0 mL) was added TBD or DBU (0.4 mmol). The resulting solution was stirred for 20 min at room temperature. The mixture was diluted with ethyl acetate, washed sequentially with

saturated aq. NH₄Cl and water. The organic layer was dried over Na₂SO₄, filtered and evaporated under reduced pressure. The crude reaction mixture was directly purified by Al₂O₃ (PE/EA = 20:1-4:1) to give the intermediate **6d** with nearly quantitative yield (dr = 1:0.42). ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, *J* = 4.4 Hz, 1H), 8.35 (d, *J* = 4.4 Hz, 0.42H), 7.84 (d, *J* = 8.0Hz, 0.84H), 7.69-7.52 (m, 4H), 7.49-7.23 (m, 6H), 7.22-7.12 (m, 4H), 7.12-7.03 (m, 1.42H), 7.03 -6.90 (m, 2.26H), 4.27-4.17 (m, 2.84), 4.10 (q, *J* = 6.4Hz, 0.84H), 3.80 (q, *J* = 7.8Hz, 2H), 3.43-3.53 (m, 0.84H), 3.28-3.20 (m, 1H), 2.92 (d, *J* = 8.8Hz, 1H), 1.28 (t, *J* = 6.4Hz, 1.26H), 0.80 (t, *J* = 7.8Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 198.1, 198.0, 172.1, 171.5, 157.0, 156.9, 149.5, 149.2, 141.6, 140.7, 137.1, 137.0, 136.9, 136.2, 132.9, 132.8, 132.8, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 128.0, 126.9, 126.5, 123.7, 123.2, 122.8, 122.0, 61.2, 60.7, 60.3, 59.6, 44.2, 44.0, 43.3, 42.7, 14.2, 13.8. HRMS(ESI), calcad for C₂₄H₂₄NO₃. 374.1753, found 374.1756.

To a solution of **6d** in DMSO (1.0 mL) was added CuCl (0.06 mmol) and TBD (0.4 mmol). The resulting solution was stirred for 12 h at 75 °C in air. After the reaction was cooled to ambient temperature, the mixture was diluted with ethyl acetate, washed sequentially with saturated aq. NH₄Cl and water. The organic layer was dried over Na₂SO₄, filtered and evaporated under reduced pressure. The crude reaction mixture was directly purified by Al_2O_3 (PE/EA = 50:1-20:1) to give **5d** in 59% yield.

To a solution of **6d** in DMSO (1.0 mL) was added Cu(OAc)₂ (0.06 mmol) and DBU (0.4 mmol). The resulting solution was stirred for 12 h at 75 °C in air. After the reaction was cooled to ambient temperature, the mixture was diluted with ethyl acetate, washed sequentially with saturated aq. NH₄Cl and water. The organic layer was dried over Na₂SO₄, filtered and evaporated under reduced pressure. The crude reaction mixture was directly purified by Al₂O₃ (PE/EA = 50:1-20:1) to give **5d** in 69% yield.

6. References

(1) Z.-H. Zhang, G.-L. Zhou, Y.-T. Song, WO 2011097946A1.

(2) M. Koji, K. Shiro, Y. Naoki, K. Manabu, K. Terukazu, N. Mado, K. Eiichi, Y. Mitsuhiro, US 20140323722A1.

- (3) D. C. Mohan, C, Ravi, V. Pappula, S. Adimurthy, J. Org. Chem. 2015, 80, 6846.
- 7. ¹H and ¹³C-NMR spectra data Ethyl 2-(6-methylquinolin-2-yl)acetate (1h)

Ethyl 1-benzoyl-2-(4-fluorophenyl)pyrrolo[1,2-a]quinoline-3-carboxylate (3b)

Ethyl 1-benzoyl-2-(4-chlorophenyl)pyrrolo[1,2-a]quinoline-3-carboxylate (3c).

Ethyl 1-(3-bromobenzoyl)-2-phenylpyrrolo[1,2-a]quinoline-3-carboxylate (3d).

22

Ethyl 1-benzoyl-2-(4-methoxyphenyl)pyrrolo[1,2-a]quinoline-3-carboxylate (3e).

23

Ethyl 1-benzoyl-2-(2-methoxyphenyl)pyrrolo[*1,2-a*]quinoline-3-carboxylate (3f).

Ethyl 1-benzoyl-7-bromo-2-phenylpyrrolo[1,2-a]quinoline-3-carboxylate (3g).

Ethyl 1-benzoyl-8-chloro-2-phenylpyrrolo[1,2-a]quinoline-3-carboxylate (3i).

Ethyl 1-benzoyl-2-(4-methoxyphenyl)-7-mEthylpyrrolo[*1,2-a*]quinoline-3-Carboxylate (3j).

Ethyl 2-(thiophen-2-yl)-1-(thiophene-2-carbonyl)pyrrolo[*1,2-a*]quinoline-3-carbo xylate (3k).

Ethyl 3-benzoyl-2-phenylbenzo[f]pyrrolo[1,2-a]quinoline-1-carboxylate (3l).

9.0 8.0 7.5 7.0 5.0 4.5 fl (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 9.5 8.5 1.0 6.5 5.5 0.5 0.0 6.0

Ethyl 3-benzoyl-2-phenylpyrrolo[2,1-a]isoquinoline-1-carboxylate (5a).

Ethyl 3-benzoyl-2-(4-chlorophenyl)pyrrolo[2,1-a]isoquinoline-1-carboxylate (5b).

Ethyl 3-benzoyl-2-(p-tolyl)pyrrolo[2,1-a]isoquinoline-1-carboxylate (5c).

Ethyl 3-benzoyl-2-phenylindolizine-1-carboxylate (5d).

Ethyl 3-benzoyl-2-(4-(trifluoromEthyl)phenyl)indolizine-1-carboxylate (5e).

Ethyl 3-benzoyl-2-(4-chlorophenyl)indolizine-1-carboxylate (5f).

Ethyl 3-benzoyl-2-(p-tolyl)indolizine-1-carboxylate (5g).

Ethyl 3-benzoyl-2-(2-methoxyphenyl)indolizine-1-carboxylate (5h).

6H-chromeno[3,4-a]indolizin-6-one (6h)

2.2%

Ethyl 5-oxo-3,5-diphenyl-2-(pyridin-2-yl)pentanoate (6d)

