Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

5-Position-selective C-H Trifluoromethylation of 8-Aminoquinoline Derivatives

Yoichiro Kuninobu,^{*1,2} Mitsumi Nishi^{1,2} and Motomu Kanai^{*1,2}

 ¹ Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
 ² ERATO, Japan Science and Technology Agency (JST), Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

*e-mail: kuninobu@mol.f.u-tokyo.ac.jp; kanai@mol.f.u-tokyo.ac.jp

Table of Contents

General	S2
Synthesis and Characterisation of 8-Aminoquinolines	S3-S11
References	S11
¹ H and ¹³ C NMR Spectra	S12-S120

General.

All reactions were carried out in a dry and degassed solvent under an argon atmosphere. All reagents were purchased from commercial sources and used without further purification unless otherwise noted. Quinolylamides **1a-1d**, ^{1a} **1e**, ^{1b} **1f**, ^{1a} **1g**, ^{1c} **1h**, ^{1d} **1i**, ^{1e} 1j,^{1f} 1k,^{1g} 1l,^{1d} and 1m-1r, carbamates $1s^{2a}$ and 1t,^{2b} urea 1u, sulfonamides $1v^{3a}$ and 1w, ^{3b} and *N*-benzylquinolylamines $4b^4$ and 4c, ⁵ were prepared from 8-aminoquinoline according to the literature methods and identified by comparing the spectroscopic data with those of reported data. Trifluoromethylated products 5a are known compounds.⁶ Nitroquinolines⁷ and aminoquinolines^{7b} were synthesized according to the literature methods. 1-Trifluoromethyl-1,2-benziodoxol-3(1H)-one (2) (contains 60%) diatomaceous earth). 8-aminoquinoline (**4a**), 5-methoxy-2-nitroaniline, 2-methyl-8-aminoquinoline, 7-methyl-8-nitroquinoline, 3-bromoquinoline, and 5-aminoquinoline were purchased from Tokyo Kasei Kogyo Co. Copper(I) chloride, 4-methoxy-2-nitroaniline, and 6-methoxycarbonylquinoline were purchased from Wako Co. 1,2-Dichloroethane was purchased from Sigma Aldrich Co and degassed before use. Column chromatography was performed with silica gel (230-400 mesh ASTM). Recycling preparative HPLC (LC-9210NEXT; column, JAIGEL-1H and JAIGEL-2H; solvent, CHCl₃) was used for isolation of trifluoromethylated products **5b** (as mixtures of 5- and 7- regioisomers) after removing metal wastes through a short pad of silica gel. NMR spectra were recorded on 500 MHz (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR) and 400 MHz (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, 368 MHz for ¹⁹F NMR) spectrometers. Proton and carbon chemical shifts are reported relative to the solvent used as an internal reference. Fluorine chemical shifts are reported relative to trifluoroacetic acid (δ -76.55 ppm) as an external reference. Infrared (IR) spectra were recorded on Fourier transform infrared spectrophotometer. ESI-MS spectra were measured on a spectrometer for HRMS.

Synthesis and Characterisation of Quinolylamides, Carbamates, Urea, Sulfonamides, and Quinolylamines.

Synthesis of 8-nitroquinolines.

Method A:^{7a} To a solution of 4-methoxy-2-nitroaniline (5.09 g, 33.0 mmol, 1.0 equiv) in conc. HCl (40 mL) and conc. H₃PO₄ (15 mL), acrolein (6.5 mL, 97 mmol, 2.9 equiv) was slowly added at 80 °C for 1 h. The mixture was stirred at 95 °C for 6 h, and then cooled to 0 °C. After neutralization with aq. NH₃, the resulting powder was filtered off and dissolved in acetone. The solvent was removed and 6-methoxy-8-nitroquinoline was obtained as a brown solid (4.68 g, 70% yield).

Method B:^{7b} A cold mixture of conc. H_2SO_4 (20.0 mL) and conc. HNO₃ (10.0 mL) was added to the solution of 3-bromoquinoline (6.8 mL, 50.0 mmol, 1.0 equiv) in conc. H₂SO₄ (20.0 mL) at 0 °C, then heated to 50 °C. After 30 min, the reaction mixture was neutralized by slow addition of NaOH. Formed precipitate was filtered off and washed with water. A brown residue was dissolved in dichloromethane and dried over MgSO₄. The residue was purified by column chromatography on silica gel (hexane/dichloromethane = 1/2) to give 3-bromo-8-nitroquinoline (2.46 g, 19% yield).

6-Methoxy-8-nitroquinoline. Method A; 70% yield; brown solid; $R_f = 0.40$ (hexane/ethyl acetate = 1/1); ¹H NMR (500 MHz, CDCl₃) δ 3.99 (s, 3H), 7.28 (d, J = 2.9 Hz, 1H), 7.50 (dd, J = 8.6, 4.6 Hz, 1H), 7.72 (d, J = 2.9 Hz, 1H), 8.14 (dd, J = 8.6, 1.7 Hz, 1H), 8.92 (dd, J = 4.6, 1.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 56.1, 109.3, 116.5, 122.9, 129.9, 134.8, 135.3, 148.6, 149.9, 156.0; IR (KBr, v / cm⁻¹) 3009, 2973, 2936, 2833, 1632, 1598, 1525, 1496, 1449, 1360, 1335, 1244, 1156, 1047, 1032, 855, 786, 757, 635; HRMS (ESI⁺) Calcd for C₁₀H₈N₂NaO₃ ([M+Na]⁺) 227.0433, Found 227.0432.

6-Methoxycarbonyl-8-nitroquinoline. Method B; 3% yield; light yellow solid; $R_f = 0.25$ (dichloromethane); ¹H NMR (500 MHz, CDCl₃) δ 4.03 (s, 3H), 7.65 (dd, J = 8.6, 4.0 Hz, 1H), 8.38 (dd, J =8.6, 1.7 Hz, 1H), 8.60 (d, J = 1.8 Hz, 1H), 8.77 (d, J = 1.8 Hz, 1H), 9.15 (dd, J = 4.0, 1.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 52.9, 123.0, 123.4, 127.1, 128.2, 134.1, 137.3, 140.8, 148.0, 154.3, 164.4; IR (KBr, v / cm⁻¹) 3059, 2959, 1725, 1631, 1533, 1463, 1438, 1354, 1333, 1274, 1207, 1041, 981, 908, 794, 765, 736; HRMS (ESI⁺) Calcd for C₁₁H₈N₂NaO₄ ([M+Na]⁺) 255.0382, Found 255.0388.

3-Bromo-8-nitroquinoline. Method B; 19% yield; pale yellow solid; Br $R_f = 0.38$ (hexane/dichloromethane = 2/1); ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.75 (m, 1H), 7.98 (d, J = 8.5 Hz, 1H), 8.07 (d, J =7.6 Hz, 1H), 8.44 (s, 1H), 9.06 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 119.2, 124.0, 126.6, 129.7, 131.1, 137.3, 137.5, 148.1, 153.6; IR (KBr, v / cm⁻¹) 3094, 3049, 1620, 1585, 1531, 1483, 1349, 1322, 1189, 1090, 912, 896, 820, 793, 769, 730, 657; HRMS (ESI⁺) Calcd for C₉H₅BrN₂NaO₂ ([M+Na]⁺) 274.9432, Found 274.9442.

Synthesis of 8-aminoquinolines.^{7b}

A mixture of 6-methoxy-8-nitroquinoline (2.82 g, 13.8 mmol, 1.0 equiv), activated charcoal (1.38 g), iron chloride (448 mg, 2.76 mmol, 0.20 equiv), and hydrazine monohydrate in methanol (80 mL) was stirred at 80 °C for 12 h. The reaction mixture was filtered through Celite and the solvent was removed under reduced pressure to give 8-amino-6-methoxyquinoline (2.00 g, 83% yield).

8-Amino-6-methoxyquinoline. 83% yield; dark brown oil; $R_f = 0.50$ (hexane/ethyl acetate = 1/1); ¹H NMR (500 MHz, CDCl₃) δ 3.82 (s, 3H), 5.09 (brs, 2H), 6.43 (d, J = 2.9 Hz, 1H), 6.60 (d, J = 2.9 Hz, 1H), 7.26 (dd, J = 8.0, 4.0 Hz, 1H), 7.88 (dd, J = 8.0, 1.2 Hz, 1H), 8.61 (dd, J = 4.0, 1.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 54.9, 94.2, 101.2, 121.5, 129.6, 134.5, 135.1, 144.7, 144.9, 158.5; IR (neat, v / cm^{-1}) 3471, 3367, 3002, 2959, 2938, 2834, 1621, 1589, 1504, 1469, 1451, 1428, 1384, 1341, 1277, 1242, 1226, 1198, 1162, 1041, 1021, 900, 823, 791, 655; HRMS (ESI⁺) Calcd for C₁₀H₁₁N₂O ([M+H]⁺) 175.0871, Found 175.0876.

8-Amino-3-bromoquinoline. 96% yield; yellow solid; $R_f = 0.30$ B (hexane/ethyl acetate = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 4.96 (brs, 2H), 6.92 (d, J = 7.6 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 7.33-7.37 (m, 1H), 8.22 (d, J = 1.8 Hz, 1H) 8.73 (d, J = 1.8 Hz,

N NH2

1H); ¹³C NMR (100 MHz, CDCl₃) δ 110.3, 115.0, 117.5, 128.7, 129.8, 136.2, 137.0, 144.1, 148.1; IR (KBr, v / cm⁻¹) 3468, 3358, 1614, 1594, 1578, 1564, 1496, 1465, 1370, 1331, 1190, 1176, 1127, 909, 893, 824, 757; HRMS (ESI⁺) Calcd for C₉H₈BrN₂ ([M+H]⁺) 222.9871, Found 222.9862.

8-Amino-6-methoxycarbonylquinoline. 86% yield; yellow solid; $R_f = 0.13$ (hexane/ethyl acetate = 5/1); ¹H NMR (500 MHz, CDCl₃) δ 3.06 (s, 3H), 5.11 (brs, 2H), 7.39 (dd, *J* = 4.0, 8.0 Hz, 1H), 7.48 (d, *J* = 1.8 Hz, 1H), 7.87 (d, *J* = 1.7 Hz, 1H),

8.12 (dd, J = 8.0, 1.7 Hz, 1H), 8.80 (dd, J = 4.0, 1.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.3, 108.9, 118.9, 122.0, 127.9, 128.7, 137.4, 140.0, 144.1, 149.4, 167.2; IR (KBr, v / cm⁻¹) 3383, 3346, 3210, 1717, 1664, 1587, 1561, 1491, 1446, 1376, 1334, 1256, 1226, 992, 810, 763; HRMS (ESI⁺) Calcd for C₁₁H₁₀N₂NaO₂ ([M+Na]⁺) 225.0640, Found 225.0632.

8-Amino-7-methylquinoline. 95% yield; yellow solid; $R_f = 0.50$ (hexane/ethyl acetate = 1/1); ¹H NMR (500 MHz, CDCl₃) δ 2.37 (s, 3H), 4.93 (brs, 2H), 7.12 (d, J = 8.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.31 (dd, J = 8.0, 4.0 Hz, 1H), 8.04 (dd, J = 8.0, 1.7 Hz, 1H), 8.75 (dd,

J = 4.0, 1.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 17.6, 115.3, 118.0, 120.4, 127.1, 129.9, 135.8, 138.0, 141.1, 147.4; IR (KBr, ν / cm^{-1}) 3418, 3326, 1616, 1590, 1506, 1469, 1369, 1100, 822, 793, 665; HRMS (ESI⁺) Calcd for C₁₀H₁₁N₂ ([M+H]⁺) 159.0922, Found 159.0923.

Typical procedure for the synthesis of quinolylamides 1.

To a solution of 8-aminoquinoline (**4a**, 721 mg, 5.00 mmol, 1.0 equiv) and Et_3N (1.4 mL, 10.0 mmol, 2.0 equiv) in dichloromethane (14 mL), pivaloyl chloride (0.67 mL, 5.5 mmol, 1.1 equiv) was added, and the reaction mixture was stirred at room temperature for 10 h. The mixture was diluted with dichloromethane (5.0 mL) and washed with water. The organic layer was dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate = 5/1) to give **1a** (1.14 g, 99% yield).

N-(6-Methoxyquinolin-8-yl)pivalamide (1m). 98% yield; white solid; $R_f = 0.23$ (hexane/ethyl acetate = 5/1); ¹H NMR (500 MHz, CDCl₃) δ 1.42 (s, 9H), 3.92 (s, 3H), 6.78 (d, *J* = 2.3 Hz, 1H), 7.38 (dd, *J* = 8.6, 4.0 Hz, 1H), 8.02 (d, *J* = 8.6 Hz, 1H), 8.56 (d, *J* = 2.3 Hz, 1H), 8.64 (d, *J* = 4.0 Hz, 1H), 10.2 (brs, 1H); ¹³C NMR (125)

MHz, CDCl₃) δ 27.6, 40.3, 55.5, 99.7, 108.3, 121.9, 128.8, 134.8, 135.2, 135.5, 145.5, 158.4, 177.2; IR (KBr, v / cm⁻¹) 3369, 2965, 2939, 1672, 1629, 1595, 1524, 1482, 1454, 1423, 1391, 1337, 1270, 1247, 1207, 1195, 1179, 1157, 1136, 1049, 1032, 923, 891, 829, 795, 673; HRMS (ESI⁺) Calcd for C₁₅H₁₈N₂NaO₂ ([M+Na]⁺) 281.1266, Found 281.1274.

N-(6-Methoxycarbonylquinolin-8-yl)pivalamide (1n). 12% yield; white solid; $R_f = 0.80$ (hexane/ethyl acetate = 1/1); ¹H NMR (500 MHz, CDCl₃) δ 1.43 (s, 9H), 3.96 (s, 3H), 7.51 (dd, J = 8.0, 4.0 Hz, 1H), 8.25 (dd, J = 8.0, 1.8 Hz, 1H), 8.28 (d, J = 1.8 Hz, 1H), 8.89 (dd, J = 4.0, 1.8 Hz, 1H), 9.35 (d, J = 1.8 Hz, 1H), 8.89 (dd, J = 4.0, 1.8 Hz, 1H), 9.35 (d, J = 1.8 Hz, 1H), 8.89 (dd, J = 4.0, 1.8 Hz, 1H), 9.35 (d, J = 1.8 Hz, 1H), 8.89 (dd, J = 4.0, 1.8 Hz, 1H), 9.35 (d, J = 1.8 Hz, 1H), 9.35 (d,

1H), 10.2 (brs, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 27.6, 40.4, 52.4, 115.3, 122.2, 124.3, 127.0, 128.9, 134.8, 137.7, 140.3, 150.2, 166.8, 177.3; IR (KBr, v / cm⁻¹) 3357, 2962, 1717, 1673, 1542, 1481, 1437, 1423, 1274, 1253, 1236, 1199, 1186, 925, 895, 790, 689; HRMS (ESI⁺) Calcd for C₁₆H₁₈N₂NaO₃ ([M+Na]⁺) 309.1215, Found 309.1220.

N-(**3-Bromoquinolin-8-yl)pivalamide** (**10**). 91% yield; light Br yellow solid; $R_f = 0.45$ (hexane/ethyl acetate = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 1.42 (s, 9H), 7.41 (dd, *J* = 8.1, 0.9 Hz, 1H), 7.54-7.60 (m, 1H), 8.32 (d, *J* = 2.2 Hz, 1H), 8.79-8.83 (m, 2H), 10.1 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 27.7, 40.4, 116.6,

117.7, 120.3, 128.8 (2C), 134.9, 136.8, 137.5, 149.2, 177.2; IR (KBr, v / cm^{-1}) 3378, 3059, 2968, 2870, 1677, 1523, 1468, 1454, 1396, 1377, 1364, 1323, 1173, 1155, 1095, 924, 904, 824, 769, 636; HRMS (ESI⁺) Calcd for C₁₄H₁₅BrN₂NaO ([M+Na]⁺) 329.0265, Found 329.0260.

N-(2-Methylquinolin-8-yl)pivalamide (1p). 88% yield; white solid; $R_f = 0.43$ (hexane/ethyl acetate = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 1.43 (s, 9H), 2.74 (s, 3H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.42-7.50 (m, 2H), 8.03 (d, *J* = 8.5 Hz, 1H), 8.74 (dd, *J* = 6.7, 2.7 Hz, 1H), 10.4 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.4, 27.7,

40.3, 116.1, 120.9, 122.2, 126.0, 126.4, 134.0, 136.4, 138.1, 156.9, 177.1; IR (KBr, v / cm⁻¹) 3351, 2959, 1674, 1604, 1533, 1493, 1481, 14347, 1393, 1338, 1160, 926, 838, 759, 697; HRMS (ESI⁺) Calcd for $C_{15}H_{18}N_2NaO$ ([M+Na]⁺) 265.1317, Found 265.1306.

N-(7-Methylquinolin-8-yl)pivalamide (1q). 98% yield; pale orange solid; $R_f = 0.11$ (hexane/ethyl acetate = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 1.46 (s, 9H), 2.44 (s, 3H), 7.34 (dd, *J* = 8.1, 4.5 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 1H), 7.56 (d, *J* = 8.5 Hz, 1H), 8.09 (dd, *J* = 8.1, 1.8 Hz, 1H), 8.80 (dd, *J* = 4.5, 1.8 Hz, 1H), 8.96 (brs, 1H); ¹³C NMR

 $(100 \text{ MHz, CDCl}_3) \ \delta \ 20.1, \ 27.8, \ 39.9, \ 120.5, \ 123.9, \ 126.4, \ 130.3, \ 131.7, \ 133.3, \ 135.7, \\ 142.6, \ 149.0, \ 177.2; \ IR \ (KBr, \nu \ / \ cm^{-1}) \ 3373, \ 2964, \ 2920, \ 2869, \ 1683, \ 1510, \ 1489, \ 1467, \\ 1384, \ \ 1360, \ \ 1316, \ \ 1166, \ \ 898, \ \ 8.5, \ \ 825, \ \ 794, \ \ 655; \ \ HRMS \ \ (ESI^+) \ \ Calcd \ \ for \\ C_{15}H_{18}N_2NaO \ ([M+Na]^+) \ 265.1317, \ Found \ 265.1327.$

N-(Quinolin-5-yl)pivalamide (1r). 36% yield; white solid; $R_f = 0.10$ (hexane/ethyl acetate = 5/1); ¹H NMR (500 MHz, CDCl₃) δ 1.38 (s, 9H), 7.36 (dd, J = 8.6, 4.0 Hz, 1H), 7.61-7.67 (m, 1H), 7.70 (d, J = 7.5 Hz, 1H), 7.78 (brs, 1H), 7.94 (d, J = 8.6 Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H), 8.88 (dd, J = 4.0, 1.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃)

δ 27.7, 39.6, 120.9, 122.3, 123.4, 127.5, 129.1, 129.9, 132.5, 148.6, 150.3, 177.4; IR

(KBr, v / cm⁻¹) 3264, 2977, 2964, 1654, 1620, 1597, 1572, 1523, 1494, 1399, 1367, 1316, 1207, 1189, 1151, 939, 798; HRMS (ESI⁺) Calcd for $C_{14}H_{16}N_2NaO$ ([M+Na]⁺) 251.1160, Found 251.1170.

Synthesis of carbamates.^{2b}

A mixture of 8-aminoquinoline (**4a**, 0.72 g, 5.00 mmol, 1.0 equiv), di-*tert*-butyl dicarbonate (2.18 g, 10.0 mmol, 2.0 equiv), and dioxane (14 mL) was stirred at 85 °C for 2 d. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/dichloromethane = 1/2) to give **1s** (1.2 g, 98% yield).

tert-Butyl(6-methoxyquinolin-8-yl)carbamate (1t). 97% yield; white solid; $R_f = 0.43$ (hexane/ethyl acetate = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 1.57 (s, 9H), 3.91 (s, 3H), 6.71 (d, J = 2.7 Hz, 1H), 7.37 (dd, J = 8.5, 4.0 Hz, 1H), 8.00 (dd, J = 8.5, 1.8 Hz, 1H), 8.14 (s, 1H), 8.43 (dd, J = 4.0, 1.8 Hz, 1H), 8.97 (brs, 1H); ¹³C NMR (400

MHz, CDCl₃) δ 28.4, 55.5, 80.5, 98.5, 106.8, 122.0, 129.1, 134.8, 134.9, 136.2, 145.4, 152.7, 158.6; IR (KBr, v / cm⁻¹) 3352, 2985, 1726, 1627, 1525, 1479, 1454, 1427, 1389, 1368, 1338, 1255, 1229, 1159, 1120, 1057, 1033, 1001, 826, 787, 686, 662; HRMS (ESI⁺) Calcd for C₁₅H₁₈N₂NaO₃ ([M+Na]⁺) 297.1215, Found 297.1215.

Synthesis of urea derivative 1u.

To a solution of 8-aminoquinoline (**4a**, 721 mg, 5.00 mmol, 1.0 equiv) and Et_3N (1.4 mL, 10.0 mmol, 2.0 equiv) in dichloromethane (14 mL), *N*,*N*-dimethylcarbamoyl chloride (0.50 mL, 3.50 mmol, 1.1 equiv) was added and the reaction mixture was

stirred at room temperature for 24 h. H_2O (5.0 mL) was added to the reaction mixture and the mixture was extracted with ethyl acetate (3×5.0 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate = 2/1) to give **1u** (296 mg, 27% yield).

1,1-Dimethyl-3-(quinolin-8-yl)urea (1u). 27% yield; pale brown solid; $R_f = 0.18$ (hexane/ethyl acetate = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 3.17 (s, 6H), 7.35-7.44 (m, 2H), 7.48-7.55 (m, 1H), 8.14 (dd, J = 8.5, 1.8 Hz, 1H), 8.57 (d, J = 6.7 Hz, 1H), 8.76 (dd, J = 4.0, 1.8 Hz, 1H), 9.36 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ

36.4, 114.6, 119.4, 121.3, 127.6, 128.0, 136.0, 136.3, 138.5, 147.7, 155.6; IR (KBr, v / cm⁻¹) 3369, 3062, 2922, 1662, 1530, 1490, 1463, 1427, 1387, 1350, 1329, 1262, 1186, 1167, 1007, 823, 794, 757, 639, 615; HRMS (ESI⁺) Calcd for $C_{12}H_{13}N_3NaO$ ([M+Na]⁺) 238.0956, Found 238.0966.

Synthesis of sulfonamides.^{3a}

A mixture of 8-aminoquinoline (**4a**, 721 mg, 5.00 mmol, 1.0 equiv), *p*-toluenesulfonyl chloride (953 mg, 5.00 mmol, 1.0 equiv), and pyridine (10.0 mL), was stirred at 110 °C for 1 h. The reaction mixture was cooled to 70 °C and poured into water (10.0 mL). The resulting suspension was filtered and the precipitate was washed with water. The resulting solid was dried under reduced pressure at 50 °C to give sulfonamide **1w** (1.18 g, 79% yield).

Synthesis of aminoquinoline 4b.⁴

To a solution of 8-aminoquinoline (**4a**, 442 mg, 3.00 mmol, 1.0 equiv) in pyridine (0.24 mL, 3.00 mmol, 1.0 equiv), benzyl chloride (0.52 mL, 4.50 mmol, 1.5 equiv) was slowly added at 140 °C, then the mixture was heated at 140 °C for 12 h. Pyridine was removed under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/ ethyl acetate = 5/1) to give **4b** (567 mg, 80% yield).

N-(quinolin-8-yl)benzylamine (4b). 80% yield; pale yellow solid; $R_f = 0.50$ (hexane/ethyl acetate = 5/1); ¹H NMR (500 MHz, CDCl₃) δ 4.59 (d, J = 5.8 Hz, 2H), 6.66 (brs, 1H), 6.68 (d, J = 7.5 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 7.28-7.33 (m, 1H), 7.34-7.42 (m, 4H), 7.48

(d, J = 7.5 Hz, 2H), 8.08 (dd, J = 8.0, 1.7 Hz, 1H), 8.75 (dd, J = 4.0, 1.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 47.6, 105.1, 114.1, 121.4, 127.1, 127.4, 127.7, 128.6 (2C), 136.0, 138.2, 139.2, 144.5, 146.9; IR (KBr, ν / cm^{-1}) 3420, 3060, 3021, 1605, 1573, 1520, 1478, 1451, 1439, 1420, 1380, 1360, 1337, 1296, 1274, 1121, 1026, 992, 821, 793, 746, 738, 692; HRMS (ESI⁺) Calcd for C₁₆H₁₄N₂Na ([M+Na]⁺) 257.1055, Found 257.1047.

Synthesis of aminoquinoline 4c.⁵

A mixture of 8-aminoquinoline (**4a**, 1.44 g, 10.0 mmol, 1.0 equiv), benzyl bromide (2.9 mL, 24.0 mmol, 2.4 equiv), K_2CO_3 (4.15 g, 30.0 mmol, 3.0 equiv), and acetonitrile (15 mL) was stirred at 120 °C for 7 h. H₂O (10 mL) was added to the reaction mixture and the mixture was extracted with ethyl acetate (3×10 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ ethyl acetate = 5/1) to give **4c** (3.0 g, 93% yield).

N-(quinolin-8-yl)dibenzylamine (4c). 93% yield; yellowish brown solid; $R_f = 0.43$ (hexane/ethyl acetate = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 4.69 (s, 4H), 6.89 (d, *J* = 7.5 Hz, 1H), 7.15-7.29 (m, 11H), 7.32 (d, *J* = 8.6 Hz, 1H), 7.38 (dd, *J* = 8.1, 4.0 Hz, 1H), 8.10 (dd, *J* =

8.1, 1.3 Hz, 1H), 8.93 (dd, J = 4.0, 1.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 56.6, 118.8, 120.6, 120.8, 126.3, 126.7, 128.1, 128.5, 129.8, 136.4, 138.7, 143.0, 146.9, 147.7; IR (KBr, v / cm⁻¹) 3025, 2804, 1600, 1567, 1497, 1469, 1451, 1389, 1362, 1333, 1230, 1137, 1110, 1027, 1006, 946, 828, 809, 790, 749, 739, 705; HRMS (ESI⁺) Calcd for C₂₃H₂₀N₂Na ([M+Na]⁺) 347.1524, Found 347.1530.

References

(1) (a) L. Zhu, R. Qiu, X. Cao, S. Xiao, X. Xu, C.-T. Au and S.-F. Yin, Org. Lett., 2015,
17, 5528; (b) V. G. Zaitsev, D. Shabashov and O. Daugulis, J. Am. Chem. Soc., 2005,
127, 13154; (c) Y. Ano, M. Tobisu and N. Chatani, J. Am. Chem. Soc., 2011, 131,
12986; (d) F.-R. Gou, X.-C. Wang, P.-F. Huo, H.-P. Bi, Z.-H. Guan and Y.-M. Liang,
Org. Lett., 2009, 11, 5726; (e) Y. Ano, M. Tobisu and N. Chatani, Org. Lett., 2012, 14,
354; (f) D. Shabashov and O. Daugulis, J. Am. Chem. Soc., 2010, 132, 3965; (g) M.
Rouffet, C. A. F. de Oliveira, Y. Udi, A. Agrawal, I. Sagi, J. A. McCammon and S. M.
Cohen, J. Am. Chem. Soc., 2010, 132, 8232.

(2) (a) K. Chen, X. Li, S.-Q. Zhang and B.-F. Shi, *Chem. Commun.*, 2016, **52**, 1915; (b)
G. Xue, J. S. Bradshaw, N. K. Dalley, P. B. Savage, K. E. Krakowiak, R. M. Izatt, L.
Prodi, M. Montalti and N. Zaccheroni, *Tetrahedron*, 2001, **57**, 7623.

(3) (a) B. Macías, I. García, M. V. Villa, J. Borrás, A. Castiñeiras, and F. Sanz, *Polyhedron*, 2002, **21**, 1229; (b) J. A. Jacobsen, J. L. Fullagar, M. T. Miller and S. M. Coben, *J. Med. Chem.*, 2011, **54**, 591.

(4) A. Horikawa and K. Yokota, JP2000109462 (A).

(5) X. Ling, Y. Xiong, R. Huang, X. Zhang, S. Zhang and C. Chen, *J. Org. Chem.*, 2013, **78**, 5218.

(6) T. Kino, Y. Nagase, Y. Ohtsuka, K. Yamamoto, D. Uraguchi, K. Tokuhisa and T. Yamakawa, *J. Fluorine Chem.*, 2010, **131**, 98.

(7) (a) Y. Iwamoto, M. Kodera and Y. Hitomi, *Chem. Commun.*, 2015, **51**, 9539; (b) M.
Petit, C. Tran, T. Roger, T. Gallavardin, H. Dhimane, F. Palma-Cerda, M.
Blanchard-Desce, F. C. Acher, D. Ogden and P. I. Dalko, *Org. Lett.*, 2012, **14**, 6366.

OMe NO₂

.

рри 84.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 -10.0 -20.0 -30.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 6807.65- --S90

