Synthesis and biological evaluation of palmyrolide A

macrocycles as sodium channel blockers towards

neuroprotection

Satish Chandra Philkhana,,^{1,2} Suneet Mehrotra,³ Thomas F. Murray,³ and D. Srinivasa Reddy^{*1,2}

- 1. CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune, 411008, India,
- 2. Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, NE 68178, USA

*Corresponding author: Dr. D. Srinivasa Reddy CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India. E-mail: ds.reddy@ncl.res.in

> Tel. +91 20 25902445 Fax. +91 20 25902629

Electronic Supplementary Information

Single X-ray Crystal Structure of 18, 30 & 7	\$3-\$5
Copies of ¹ H and ¹³ C NMR Spectra	S6-S73
Graphs of Time and concentration-response analysis of	S74- S79
palmyrolide A analogues	

Single X-ray Crystal Structures of 18 and 30

Single crystals of compound **18** and **30** were obtained from Ethyl acetate/ Hexanes solvent system. X-ray intensity data were collected on a SMART APEX II DUO diffractometer with graphite-monochromatized (Mo K =0.71073 Å) radiation at 296 K. ORTEPs were generated using Mercury program. All the H-atoms were located in the difference Fourier and refined isotropically.

Compound 18:

ORTEP of Compound 18 (50% probability for the thermal ellipsoids)

Crystallographic data for compound **18** deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. **CCDC1454803**.

Crystallographic data for 18 (C₁₉H₃₃O₃N): M = 323.2, Crystal dimensions 0.450 x 0.360 x 0.180 mm³, monoclinic, space group $P 2_{I,a} = 11.998(3)$, b = 8.740(2), c = 18.751(5) Å, $\alpha = 90.00^{\circ}$, $\beta = 104.393(6)^{\circ}$, $\gamma = 90.00^{\circ}$, V = 1904.6 (8) Å³, Z = 4, $\rho_{calcd} = 1.128 \text{gcm}^{63}$, μ (Mo-K_{α}) = 0.075 mm⁶¹, F(000) = 712.0, $2\theta_{max} = 56.68^{\circ}$, T = 296 K, 36143 reflections collected, 9449 unique, 5015 observed ($I > 2\sigma$ (I)) reflections, 424 refined parameters, R value 0.0701,

wR2 = 0.0.1336, (all data R = 0.1626, wR2 = 0.1757), S = 0.987, minimum and maximum transmission 0.967 and 0.987; maximum and minimum residual electron densities 0.674 and - 0.316 eÅ⁻³.

Compound 30:

ORTEP of Compound **30** (50% probability for the thermal ellipsoids)

Crystallographic data for compound **30** deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. **CCDC1454804**.

Crystallographic data for 30 (C₂₁H₃₇O₃N): M = 337.2, Crystal dimensions 0.460 x 0.320 x 0.110 mm³, Orthorhombic, space group $P \ 2_1 2_1 2_1 a = 5.615$ (3), b = 10.654 (5), c = 35.955(17) Å, $\alpha = 90.00^{\circ}$, $\beta = 90.00^{\circ}$, $\gamma = 90.00^{\circ}$, V = 2151.0 (18) Å³, Z = 4, $\rho_{calcd} = 1.085 \text{gcm}^{63}$, μ (Mo-K_{α}) = 0.071 mm⁶¹, F(000) = 776.0, $2\theta_{max} = 52^{\circ}$, T = 296 K, 19159 reflections collected, 4182 unique, 3406 observed ($I > 2\sigma$ (I)) reflections, 232 refined parameters, R value 0.0445, wR2 = 0.0607, (all data R = 0.0617, wR2 = 0.0628), S = 1.618,

minimum and maximum transmission 0.968 and 0.992; maximum and minimum residual electron densities 0.166 and -0.201 e.Å $^{-3}$

Compound 7:

ORTEP of Compound 7 (50% probability for the thermal ellipsoids)

Crystallographic data for compound 7 deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. **CCDC920726.**

Copies of ¹H & ¹³C NMR of all compounds

¹H NMR of Compound **2'** at 400 MHz in CDCl₃

¹³C NMR of Compound **2'** at 100 MHz in CDCl₃

¹H NMR of Compound (+)-4' at 400 MHz in $CDCl_3$

¹³C NMR of Compound (+)-4' at 100 MHz in CDCl₃

¹H NMR of Compound (-)-4 a' at 400 MHz in CDCl₃

¹³C NMR of Compound (-)-4 a' at 100 MHz in CDCl₃

¹H NMR of Compound **10** at 200 MHz in CDCl₃

¹³C NMR of Compound **10** at 50 MHz in CDCl₃

¹H NMR of Compound **11** at 400 MHz in CDCl₃

¹³C NMR of Compound **11** at 100 MHz in CDCl₃

¹³C NMR of Compound **12** at 125 MHz in CDCl₃

¹H NMR of Compound **13** at 400 MHz in CDCl₃

¹H NMR of Compound **14** at 400 MHz in CDCl₃

¹³C NMR of Compound **14** at 100 MHz in CDCl₃

¹H NMR of Compound **16** at 200 MHz in DMSO-d6

¹³C NMR of Compound **17** at 50 MHz in CDCl₃

¹H NMR of Compound **18** at 400 MHz in CDCl₃

¹³C NMR of Compound **18** at 100 MHz in CDCl₃

¹H NMR of Compound **19** at 400 MHz in CDCl₃

¹H NMR of Compound **20** at 400 MHz in CDCl₃

¹H NMR of Compound **21** at 400 MHz in $CDCl_3$

¹³C NMR of Compound **21** at 100 MHz in CDCl₃

¹H NMR of Compound **22** at 400 MHz in CDCl₃

¹³C NMR of Compound **22** at 100 MHz in CDCl₃

¹³C NMR of Compound **23** at 100 MHz in CDCl₃

¹H NMR of Compound **24** at 400 MHz in CDCl₃

S38

¹³C NMR of Compound **24** at 100 MHz in CDCl₃

¹³C NMR of Compound **25** at 100 MHz in CDCl₃

¹H NMR of Compound **26** at 200 MHz in CDCl₃

¹H NMR of Compound **29** at 400 MHz in CDCl₃

¹H NMR of Compound **30** at 400 MHz in CDCl₃

¹³C NMR of Compound **30** at 100 MHz in CDCl₃

¹H NMR of Compound **31** at 500 MHz in CDCl₃

¹³C NMR of Compound **31** at 125 MHz in CDCl₃

¹H NMR of Compound **32** at 400 MHz in CDCl₃

¹H NMR of Compound **33** at 400 MHz in CDCl₃

¹³C NMR of Compound **33** at 100 MHz in CDCl₃

S56

¹H NMR of Compound **34** at 400 MHz in CDCl₃

¹³C NMR of Compound **34** at 100 MHz in CDCl₃

¹H NMR of Compound at 400 MHz in CDCl₃

¹H NMR of Compound **35** at 200 MHz in CDCl₃

¹³C NMR of Compound **35** at 50 MHz in CDCl₃

¹H NMR of Compound **36** at 200 MHz in CDCl₃

¹H NMR of Compound **37** at 500 MHz in CDCl₃

¹H NMR of Compound **38** at 400 MHz in CDCl₃

¹H NMR of Compound **39** at 200 MHz in CDCl₃

¹H NMR of Compound **40** at 200 MHz in CDCl₃

¹³C NMR of Compound **40** at 50 MHz in CDCl₃

¹H NMR of Compound **41** at 400 MHz in CDCl₃

¹³C NMR of Compound **41** at 50 MHz in CDCl₃

S73

Graphs showing a 3-parameter logistic fit of the palmyrolide A analogues Time-concentration-response inhibition of veratridine of each compound tested.

Figure 2: Time and concentration-response analysis of ()-palmyrolide A, (-)-1 and its analogues where sodium influx was monitored with SBFI (340/380) responses to veratridine in the absence and presence of each analogue. The compounds shown are (A & B) ()-palmyrolide A (-)-1;(C & D)(13*R*,E)-15-(*tert*-butyl)-8,13-dimethyl-1-oxa-8-azacyclopentadec-10-ene-2,9-dione (41); (E & F) (13*R*,15*R*,E)-15-(*tert*-butyl)-8,13-dimethyl-

1-oxa-8-azacyclopentadec-6-ene-2,9-dione (**14**); (G & H) (3*R*,13*R*,E)-15-(*tert*-butyl)-3,8,13trimethyl-1-oxa-8-azacyclopentadec-10-ene-2,9-dione (**38**).

Figure 3: Time and concentration-response analysis of ()-palmyrolide A analogues where sodium influx was monitored with SBFI (340/380) responses to veratridine in the absence and presence of ()-palmyrolide A analogues. The compounds shown are (I & J)(14*R*,16*S*,E)-16-(*tert*-butyl)-8,14-dimethyl-1-oxa-8-azacyclohexadec-10-ene-2,9-dione (21); (K & L) (14*R*,16*S*,E)-16-(*tert*-butyl)-14-methyl-1-oxa-8-azacyclohexadec-10-ene-2,9-dione (19); (M & N)(14*R*,16*R*,E)-16-(*tert*-butyl)-8,14-dimethyl-1-oxa-8-azacyclohexadec-10-ene-2,9-dione (20).

Figure 4: Time and concentration-response analysis of ()-palmyrolide A analogues where sodium influx was monitored with SBFI (340/380) responses to veratridine in the absence and presence of ()-palmyrolide A analogues. The compounds shown are (O & P)(3R, 14R, 16R, E)-16-(*tert*-butyl)-3, 8, 14-trimethyl-1-oxa-8-azacyclohexadec-10-ene-2, 9-dione (**29**); (Q & R) (14R, 16S)-16-(*tert*-butyl)-8, 14-dimethyl-1-oxa-8-azacyclohexadecane-2, 9-dione (**23**); (S & T) (13R, 15R, Z)-15-(*tert*-butyl)-13-methyl-1-oxa-8-azacyclopentadec-6-ene-2, 9-dione (**12**).

Figure 5: Time and concentration-response analysis of ()-palmyrolide A analogues where sodium influx was monitored with SBFI (340/380) responses to veratridine in the absence and presence of ()-palmyrolide A analogues. The compounds shown are (U & V) triazole (34); (W & X) (3R,14R,16S,E)-16-(*tert*-butyl)-3,8,14-trimethyl-1-oxa-8-azacyclohexadec-10-ene-2,9-dione (30); (Y & Z)(3S,13S,15S,Z)-15-(*tert*-butyl)-3,8,13-trimethyl-1-oxa-8-azacyclopentadec-6-ene-2,9-dione (7).

Figure 6: Time and concentration-response analysis of ()-palmyrolide A analogues. Sodium influx was monitored with SBFI (340/380) responses to veratridine in the absence and presence of ()-palmyrolide A analogues. The compounds shown are (A1 & B1) triazole (**33**); (C1 & D1) (13R,15R,E)-15-(*tert*-butyl)-13-methyl-1-oxa-8-azacyclopentadec-6-ene-2,9-dione (**13**); (E1 & F1) (13R,E)-15-(*tert*-butyl)-13-methyl-1-oxa-8-azacyclopentadec-10-ene-2,9-dione (**40**).

Figure 7: Time and concentration-response analysis of ()-palmyrolide A analogues where sodium influx was monitored with SBFI (340/380) responses to veratridine in the absence and presence of ()-palmyrolide A analogues. The compounds shown are (G1 & H1) (14*R*,16*R*)-16-(*tert*-butyl)-8,14-dimethyl-1-oxa-8-azacyclohexadecane-2,9-dione (**22**); (I1 & J1)(14*R*,16*R*,E)-16-(*tert*-butyl)-14-methyl-1-oxa-8-azacyclohexadec-10-ene-2,9-dione (**18**); (K1 & L1) (14*R*,16*R*)-16-(*tert*-butyl)-14-methyl-1-oxa-8-azacyclohexadecane-2,9-dione (**24**); (M1 & N1) (14*R*,16*S*)-16-(*tert*-butyl)-14-methyl-1-oxa-8-azacyclohexadecane-2,9-dione (**24**); (M1 & N1) (14*R*,16*S*)-16-(*tert*-butyl)-14-methyl-1-oxa-8-azacyclohexadecane-2,9-dione (**24**); (M1 & N1) (14*R*,16*S*)-16-(*tert*-butyl)-14-methyl-1-oxa-8-azacyclohexadecane-2,9-dione (**25**).