Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting information

for

Copper-TEMPO-catalyzed synthesis of α -ketoamide via tandem sp³C-H aerobic oxidation and amination of phenethyl alcohol derivatives

Chengkou Liu,[†] Zhao Yang,[‡] Shiyu Guo,[†] Yu Zeng,[†] Ning Zhu,[†] Xin Li,[†] Zheng Fang^{*, †} and Kai Guo^{*, §, †}

[†]College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road, Nanjing, 211816, China

[‡]College of Engineering China Pharmaceutical University, 24 Tongjiaxiang, NanJing, 210003, China

[§]State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, China

Table of contents:

General experimental information	S3
Scheme S1: traditional methods for the synthesis of a-	S3
ketoamides	
Table S1: optimization of the reaction condition ^a	S4
Table S2: the equiv. of TEMPO screening	S5
Table S3: the equiv. of CuBr screening	S5
Table S4: the equiv. of K_2CO_3 screening	S6
Table S5: the equiv. of amine screening	S6
General experimental details for the synthesis of a-ketoamides	S7
Figure S1: control experiments	S8
The label experiment of eq 7	S9
The detailed mechanism in Jiao's report	S10
Figure S2: a plausible mechanism for our system	S10
Analytical data for compounds 3 and P	S11-24
¹ H NMR and ¹³ C NMR spectra of those compounds	S25-54

General experimental information

Reagents and solvents: Commercially available reagents were used without any further purification. All organic solvents were also of reagent grade quality without any further purification.

Chromatography: Flash column chromatography was performed using silicycle silica gel (200-300 mesh).

Analytical thin-layer chromatography (TLC) was performed on 0.2 mm coated silica gel plates (HSGF 254) and visualized using a UV lamp (254 nm or 365 nm).

Nuclear Magnetic Resonance Spectroscopy:

¹H NMR was recorded on magnet system 400'54 ascend purchased from Bruker Biospin AG. ¹H NMR spectra chemical shifts (δ) are reported in parts per million (ppm) referenced to TMS (0 ppm).

¹³C NMR spectra chemical shifts (δ) are reported in parts per million (ppm) were referenced to carbon resonances in the NMR solvent.

ESI-MS spectra were recorded on Agilent Q-TOF 6520.

Scheme S1 Traditional methods for the synthesis of a-ketoamides

\bigcirc	∽ ^{oh} + (litions		
1a	1	2a		33	a
Entry	Catalyst	Additive	Solvent	T(℃)	Yield (%) ^b
1	CuBr ₂	pyridine	Toluene	90	8
2	CuI	pyridine	Toluene	90	trace
3	CuBr ₂ /CuI	pyridine	Toluene	90	76
4	CuBr	pyridine	Toluene	90	88
5	CuO	pyridine	Toluene	90	NO
6	NiBr ₂	pyridine	Toluene	90	NO
7°	CuBr	pyridine	Toluene	90	52
8 ^d	CuBr	pyridine	Toluene	90	NO
9	CuBr		Toluene	90	4
10	CuBr	TEA	Toluene	90	70
11	CuBr	DIPEA	Toluene	90	73
12	CuBr	K_2CO_3	Toluene	90	86
13	CuBr	Cs_2CO_3	Toluene	90	34
14	CuBr	K_2CO_3	DMSO	90	85
15	CuBr	K_2CO_3	DMF	90	72
16	CuBr	K_2CO_3	Dioxane	90	62
17	CuBr	K_2CO_3	DMSO	80	85
18	CuBr	K_2CO_3	DMSO	70	86
19	CuBr	K ₂ CO ₃	DMSO	60	72
20 ^e	CuBr	K_2CO_3	DMSO	70	84

Table S1 optimization of the reaction condition^a

^aReaction condition: 1a (1 mmol), 2a (3 mmol), catalyst (0.1 mmol), additive (2 mmol), TEMPO (0.2 mmol) and solvent (3 mL) were heated under O_2 (O_2 balloon) for 12h. ^bYields of the isolated product. ^cIn the absence of TEMPO. ^dUnder N_2 . ^eUnder air.

Table S2: the equiv. of TEMPO screening^a

Entry	Equiv. of TEMPO	Yield ^b (%)
1	0.2	86
2	0.15	85
3	0.1	78
4	0.05	83

^areaction conditions: 1a (1 mmol), 2a (3 mmol), CuBr (10 mmol%), TEMPO, K_2CO_3 (2 mmol) in DMSO (3 mL) at 70 °C under air for 12h. ^bioslated yield.

^c24h.

Table S3: the equiv. of CuBr screening^a

Entry	Equiv. of CuBr	Yield ^b (%)
1	0.1	86
2	0.08	82
3	0.05	72
4	0.02	85°

^areaction conditions: 1a (1 mmol), 2a (3 mmol), CuBr, TEMPO (15 mmol%), K_2CO_3 (2 mmol) in DMSO (3 mL) at 70 °C under air for 12h. ^bioslated yield. ^c24h.

Table S4: the equiv. of K₂CO₃ screening^a

Entry	Equiv. of K ₂ CO ₃	Yield ^b (%)
1	2	86
2	1.5	83
3	1	84

^areaction conditions: 1a (1 mmol), 2a (3 mmol), CuBr (8 mmol%), TEMPO (15 mmol%), K_2CO_3 in DMSO (3 mL) at 70 °C under air for 12h. ^bioslated yield.

Table S5: the equiv. of amine screening^a

1a	OH * $() \\ $	Ja Ba
Entry	Equiv. of amine	Yield ^b (%)
1	3	86
2	2.5	88
3	2	84
4	1.5	85

^areaction conditions: 1a (1 mmol), 2a, CuBr (8 mmol%), TEMPO (15 mmol%), K_2CO_3 (1 mmol) in DMSO (3 mL) at 70 °C under air for 12h. ^bioslated yield.

General experimental details for the synthesis of a-

ketoamides

aliphatic amines used as the substrates

The specific phenethyl alcohol derivative (1 mmol, 1.0 eq), aliphalic amine (1.5 mmol, 1.5 eq) and TEMPO (0.15 mmol, 0.15 eq) were dissolved in DMSO (3 mL). Then, CuBr (0.08 mmol, 0.08 eq) and K_2CO_3 (1 mmol, 1 eq) were added to the reaction mixture and stirred for a certain time in a preheated oil batch at 70 °C under air. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL) or dichloromethane (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate or dichloromethanol to afford the desired product.

substituted anilines used as the substrates

The specific phenethyl alcohol derivative (1 mmol, 1.0 eq), substituted anilines (1.5 mmol, 1.5 eq) and TEMPO (0.15 mmol, 0.15 eq) were dissolved in toluene (3 mL). Then, CuBr (0.08 mmol, 0.08 eq) and pyridine (2 mmol, 2 eq) were added to the reaction mixture and stirred for a certain time in a preheated oil batch at 70°C under air. The reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate to afford the desired product.

The label experiment of eq 7

The ¹⁸O was determined by HRMS.

The HRMS spectra of 3a for the reaction under H_2O^{18}

Reaction condition: CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol (122.2 mg, 1 mmol), 1oxa-4-azacyclohexane (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) and H_2O^{18} (36.0 mg, 2 mmol) were mixed in anhydrous DMSO (3 mL) under air (air balloon). The reaction mixture was stirred at 70 °C for 2 h.

The HRMS spectra of 3a for the reaction under H_2O^{16}

Reaction condition: CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol (122.2 mg, 1 mmol), 1oxa-4-azacyclohexane (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) and H_2O^{16} (36.0 mg, 2 mmol) were mixed in anhydrous DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 2 h.

The detailed mechanism in Jiao's report

Figure S2: a plausible mechanism for our system

Analytical data for compounds 3 and P

1)

1-Morpholino-2-phenylethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

Yellow solid (188.4 mg, 86% yield); mp 89-91°C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.3 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 3.78 (br, s, 4H), 3.67 – 3.60 (m, 2H), 3.40 – 3.33 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 191.29, 165.59, 135.08, 133.20, 129.82, 129.24, 66.88, 66.81, 46.41, 41.76; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₃NO₃ 242.0788 found 242.0783.

2)

1-Morpholino-2-(*o*-tolyl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 2-methyl-benzeneethano 1b (136.2 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

Yellow solid (191.3 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 6.8 Hz, 1H),7.50 (t, J = 6.9 Hz, 1H), 7.33 (dd, J = 10.0, 7.7 Hz, 2H), 3.79 (d, J = 3.1 Hz, 4H), 3.69 – 3.65 (m, 2H), 3.42 – 3.37 (m, 2H), 2.66 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.21, 166.30, 141.75, 134.00, 132.82, 131.80, 131.58, 126.33, 66.77, 66.75, 46.38, 41.72, 21.94; HRMS (TOF) m/z [M + H]+Calcd for C₁₃H₁₅NO₃ 234.1125 found 234.1122.

1-Morpholino-2-(*m*-tolyl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 3-methylphenethyl alcohol 1c (136.2 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

White solid (195.9 mg, 84% yield); ¹H NMR (300 MHz, DMSO) δ 7.71 (s, 2H), 7.55 (dd, *J* = 19.2, 7.1 Hz, 2H), 3.68 (dd, *J* = 14.2, 3.5 Hz, 4H), 3.52 (t, *J* = 4.2 Hz, 2H), 3.28 (t, *J* = 5.1 Hz, 2H), 2.41 (s, 3H);¹³C NMR (75 MHz, DMSO) δ 191.70 (s), 164.97, 138.98, 135.83, 132.69, 129.24, 126.72, 66.03, 65.83, 45.67, 40.99, 20.71; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₃H₁₅NO₃ 234.1125 found 234.1112.

1-Morpholino-2-(*p*-tolyl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 2-(4-methyphenyl)ethanol 1d (136.2 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

Yellow solid (188.8 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 3.77 (br, s, 4H), 3.64 – 3.60 (m, 2H), 3.37 – 3.33 (m, 2H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl3) δ 190.98, 165.75, 146.36, 130.73, 129.90, 129.86, 66.82, 66.74, 46.34, 41.64, 22.00; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₃H₁₅NO₃ 234.1125 found 234.1106.

5)

1-(4-Methoxyphenyl)-2-morpholinoethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 4-methoxyphenethyl alcohol 1e (152.2 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. Only trace amount of product was detected.

3f

6)

1-(4-fluorophenethyl)-2-morpholinoethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 4-fluorophenethyl alcohol 1f (140.2 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

Yellow solid (170.7 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.95 (m, 2H), 7.19 (t, J = 8.5 Hz, 2H), 3.79 (s, 4H), 3.70 – 3.62 (m, 2H), 3.43 – 3.34 (m, 2H); ¹³C NMR (101 MHz, CDCl3) δ 189.50, 166.94 (d, J=256.7), 165.22, 132.69 (d, J=9.8), 129.75 (d, J=2.8), 116.70, 116.48, 66.89, 66.79, 46.44, 41.84; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₂FNO₃ 238.0874 found 238.0876.

7)

1-(4-Chlorophenyl)-2-morpholinoethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 4-chlorophenethylalcohol 1g (156.6 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

Yellow solid (192.3 mg, 76% yield); mp 112-114 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.85 (m, 2H), 7.56 – 7.46 (m, 2H), 3.82 – 3.74 (m, 4H), 3.69 – 3.63 (m, 2H), 3.42 – 3.34 (m, 2H); ¹³C NMR (101 MHz, CDCl3) δ 188.83, 164.04, 140.76, 130.61, 130.18, 128.64, 65.88, 65.79, 45.43, 40.85; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₂ClNO₃ 276.0398 found 276.0374.

8)

1-(4-bromophenethyl)-2-morpholinoethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 4-bromophenethyl alcohol 1h (200.1 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

White solid (243.5 mg, 82% yield); mp 122-124 °C; ¹H NMR (300 MHz, DMSO) δ 7.84 (s, 4H), 3.74-3.68 (m, 2H), 3.67-3.62 (m, 2H), 3.53 (t, *J* = 4.2 Hz, 2H), 3.30 (t, *J* = 4.5 Hz, 2H); ¹³C NMR (75 MHz, DMSO) δ 190.51 (s), 164.42 (s), 132.53 (s), 131.65 (s), 131.16 (s), 129.52 (s), 66.05 (s), 65.77 (s), 45.66 (s), 41.09 (s); HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₂BrNO₃ 319.9893 found 3199872.

3i

9)

1-Morpholino-2-(4-nitrophenyl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 4-nitrobenzeneethanol 1i (167.2 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (4:1) to afford the desired product.

Yellow solid (119.9mg, 42% yield); mp 142-144 °C; ¹H NMR (400 MHz, DMSO) δ 8.41 (d, *J* = 8.4 Hz, 2H), 8.18 (d, *J* = 8.4 Hz, 2H), 3.74 (t, *J* = 4.4 Hz, 2H), 3.67 (t, *J* = 5.2 Hz, 2H), 3.56 (t, *J* = 4.4 Hz, 2H), 3.36 (t, *J* = 4.8 Hz, 2H); ¹³C NMR (101 MHz, DMSO) δ 189.78 (s), 163.89 (s), 150.90 (s), 136.96 (s), 130.84 (s), 124.37 (s), 66.05 (s), 65.73 (s), 45.66 (s), 41.23 (s); HRMS (TOF) m/z [M + K]⁺ Calcd for C₁₂H₁₂N₂O₅ 303.0378 found 303.0330.

10)

1-Morpholino-2-(3-nitrophenyl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 3-nitrobenzeneethanol 1j (167.2 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (4:1) to afford the desired product.

Yellow solid (103.0mg, 39% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.78 (t, J = 1.8 Hz, 1H), 8.48

(ddd, J = 8.2, 2.2, 1.0 Hz, 1H), 8.34 – 8.27 (m, 1H), 7.74 (t, J = 8.0 Hz, 1H), 3.83 – 3.79 (m, 4H), 3.72 – 3.67 (m, 2H), 3.46 – 3.42 (m, 2H); ¹³C NMR (101 MHz, CDCl3) δ 188.25, 164.00, 148.73, 135.24, 134.66, 130.48, 128.96, 124.64, 66.85, 66.74 46.48, 42.10; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₂N₂O₅ 287.0638 found 287.0623.

11)

1-Morpholino-2-(2-nitrophenyl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 2-nitrophenethyl alcohol 1k (167.2 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (4:1) to afford the desired product.

Yellow solid (95.1mg, 36% yield); ¹H NMR (400 MHz, DMSO) δ 8.19 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.95 (td, *J* = 7.5, 1.1 Hz, 1H), 7.91 – 7.82 (m, 2H), 3.75 (d, *J* = 1.2 Hz, 4H), 3.65 (t, *J* = 4.4 Hz 2H), 3.55 (t, *J* = 5.2 Hz, 2H); ¹³C NMR (101 MHz, DMSO) δ 187.03 (s), 161.75 (s), 147.07 (s), 134.83 (s), 133.48 (s), 131.71 (s), 131.14 (s), 124.15 (s), 66.01 (d, *J* = 16.8 Hz), 45.98 (s), 42.11 (s); HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₂N₂O₅ 287.0638 found 287.0637.

12)

1-Morpholino-2-(2,5-dichloropheneyl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 2,5-dichlorophenethyl alcohol 11 (191.0 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

Yellow solid (186.6 mg, 65% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.5 Hz, 1H), 7.39 (dd, J = 9.4, 7.7 Hz, 1H), 7.34 – 7.25 (m, 1H), 3.74 – 3.61 (m, 6H), 3.47 (d, J = 3.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl3) δ 187.39, 163.81, 134.03, 133.29, 132.93, 130.92, 130.90, 130.67, 65.38, 65.33, 45.28, 41.13; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₁Cl₂NO₃ 288.0189 found 288.0165.

3m

13)

1-Morpholino-2-(naphthalen-2-yl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 2-naphthaleneethanol 1m (172.2 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

Yellow solid (220.7 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 8.04 – 7.86 (m, 4H), 7.61 (dt, J = 28.4, 7.3 Hz, 2H), 3.84 (s, 4H), 3.72 – 3.61 (m, 2H), 3.47 – 3.36 (m, 2H); ¹³C NMR (101 MHz, CDCl3) δ 191.34, 165.70, 136.54, 133.16, 132.53, 130.53, 130.02, 129.66, 129.30, 128.08, 127.35, 123.68, 66.87, 66.82, 46.47, 41.83; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₆H₁₅NO₃ 270.1125 found 270.1140.

14)

1-Morpholino-2-(thiophen-2-yl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 2-thiopheneethanol 1n (128.2 mg, 1 mmol), 1-oxa-4azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

Yellow oil (155.3 mg, 69% yield); mp 93-95 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (ddd, J = 5.9, 4.4, 1.0 Hz, 2H), 7.17 (dd, J = 4.8, 4.0 Hz, 1H), 3.78 – 3.71 (m, 4H), 3.69 – 3.62 (m, 2H), 3.51 – 3.44 (m, 2H); ¹³C NMR (101 MHz, CDCl3) δ 182.90, 164.41, 140.36, 136.87, 136.37, 128.82, 66.89, 66.70, 46.52, 42.03; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₀H₁₁NO₃S 226.0532 found 226.0552.

15)

1-Morpholino-2-(pyridine-3-yl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), 3-(2-hydroxyethyl)pyridine 1o (123.2 mg, 1 mmol), 1-oxa-4-

azacyclohexane 2a (130.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (4:1) to afford the desired product.

Yellow solid (121.0 mg, 55% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 8.81 – 8.75 (m, 1H), 8.19 (dd, J = 8.0, 2.0 Hz, 1H), 7.46 – 7.37 (m, 1H), 3.72 (s, 4H), 3.63 – 3.58 (m, 2H), 3.38 – 3.33 (m, 2H); ¹³C NMR (101 MHz, CDCl3) δ 189.45, 164.13, 154.80, 151.17, 136.73, 128.77, 123.92, 66.68, 66.55, 46.25, 41.79; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₁H₁₂N₂O₃ 221.0921 found 221.0928.

1-Phenyl-2-(piperidin-1-yl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), azocyclohexane 2b (127.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

Yellow solid (184.5 mg, 85% yield); mp 94-96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 1.4 Hz, 2H), 7.65 – 7.59 (m, 1H), 7.49 (t, J = 7.7 Hz, 2H), 3.69 (s, 2H), 3.31 – 3.23 (m, 2H), 1.71 – 1.64 (m, 4H), 1.57 – 1.47 (m, 2H); ¹³C NMR (101 MHz, CDCl3) δ 192.05, 165.54, 134.74, 133.36, 129.65, 129.09, 47.12, 42.24, 26.29, 25.54, 24.47; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₃H₁₅NO₂ 218.1184 found 218.1184.

$$\mathbb{O}_{\mathbb{N}}$$

3q

17)

1-Phenyl-2-(pyrrolidin-1-yl)ethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), tetrahydro pyrrole 2c (106.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

Yellow solid (168.6 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.94 (m, 2H), 7.62 (t, J = 8.0 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 3.64 (t, J = 6.8 Hz, 2H), 3.40 (t, J = 6.2 Hz, 2H), 2.00 – 1.87 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 191.59, 164.93, 134.59, 132.86, 129.80, 128.91, 46.62, 45.19, 25.85, 23.96; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₃NO₂ 204.1019 found 204.1026.

1-(4-Methylpiperazin-1-yl)-2-phenylethane-1,2-dione:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), 1-methylpiperazine 2d (150.3 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by dichloromethane (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using dichloromethane/methanol (30:1) to afford the desired product.

Yellow solid (188.0 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.87 (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 3.82 – 3.71 (m, 2H), 3.39 – 3.28 (m, 2H), 2.51 – 2.45 (m, 2H), 2.36 – 2.32 (m, 2H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl3) δ 191.54, 165.44, 134.88, 133.16, 129.69, 129.11, 54.95, 54.49, 46.04, 45.81, 41.20; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₃H₁₆N₂O₂ 233.1285 found 233.1281.

N,N-Diethyl-2-oxo-2-phenylacetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), diethylamine 2e (219.4 mg, 3 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air (air balloon). The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (6:1) to afford the desired product.

Yellow solid (108.7 mg, 53% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.85 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 3.53 (q, J = 7.2 Hz, 2H), 3.21 (q, J = 7.1 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl3) δ 191.66, 166.80, 134.64, 133.28, 129.64, 129.01, 42.16, 38.85, 14.14, 12.87; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₅NO₂ 206.1176 found 206.1191.

20)

N-Butyl-2-oxo-2- phenylacetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), butylamine 2f (219.4 mg, 3 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air (air balloon). The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (7:1) to afford the desired product.

Yellow oil (41.0 mg, 20% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 8.23 (m, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.07 (s, 1H), 3.32 (dd, *J* = 13.4, 7.0 Hz, 2H), 1.56 – 1.47 (m, 2H), 1.38-1.28 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.93, 160.75, 133.32, 132.35, 130.17, 127.44, 38.13, 30.30, 19.03, 12.68; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₅NO₂ 206.1176 found 206.1193.

N-Benzyl-2-oxo-2-phenylacetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), benzylamine 2g (160.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and K_2CO_3 (138.2 mg, 1 mmol) were mixed in DMSO (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (20:1) to afford the desired product.

Yellow solid (35.8 mg, 15% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 8.24 (m, 2H), 7.54 (tt, 7.6, 1.2,1H), 7.43 – 7.35 (m, 3H), 7.30 – 7.20 (m, 5H), 4.48 (d, *J* = 6.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.53, 160.55, 136.08, 133.42, 132.25, 130.19, 127.80, 127.47, 126.86, 126.79, 42.42; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₅H₁₃NO₂ 262.0838 found 262.0861.

22)

N-(4-Cyanophenyl)-2-oxo-2-phenylacetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), 4-aminobenzonitrile 2h (177.2 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and pyridine (158.2 mg, 2 mmol)

were mixed in toluene (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (10:1) to afford the desired product.

Yellow solid (210.0 mg, 84% yield); ¹H NMR (300 MHz, DMSO/ CDCl₃) δ 10.33 (s, 1H), 8.18 (d, *J* = 7.8 Hz, 2H), 7.90 (d, *J* = 7.9 Hz, 2H), 7.62-7.55 (m, 3H), 7.45 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (75 MHz, DMSO/CDCl₃) δ 187.28, 161.02, 141.23, 134.30, 132.65, 132.39, 130.45, 128.27, 120.04, 118.39, 107.19; HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₅H₁₀N₂O₂ 249.0670 found 249.0747.

3w

23)

N-(2-Cyanophenyl)-2-oxo-2-phenylacetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), 2-aminobenzonitrile 2i (177.2 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and pyridine (158.2 mg, 2 mmol) were mixed in toluene (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (10:1) to afford the desired product.

Yellow solid (215.1 mg, 86% yield); ¹H NMR (300 MHz, DMSO) δ 11.27 (s, 1H), 8.15 (d, *J* = 7.4 Hz, 2H), 7.94 (d, *J* = 7.7 Hz, 1H), 7.84 – 7.74 (m, 3H), 7.65 (t, *J* = 7.6 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (75 MHz, DMSO) δ 188.86, 163.49, 138.51, 134.90, 134.06, 133.39, 132.54, 129.95, 128.99, 126.88, 125.95, 116.63, 108.10; HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₅H₁₀. N₂O₂ 273.0634 found 273.0692.

24)

N-(3-Cyanophenyl)-2-oxo-2-phenylacetamide:

CuBr (177.2 mg, 1.5 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), 3-aminobenzonitrile 2j (354.4 mg, 3 mmol), TEMPO (23.4 mg, 0.15 mmol) and pyridine (158.2 mg, 2 mmol) were mixed in toluene (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (10:1) to afford the desired product.

White solid (210.0 mg, 84% yield); ¹H NMR (300 MHz, DMSO) δ 11.29 (s, 1H), 8.25 (s, 1H), 8.15 – 8.07 (m, 2H), 8.03 (dt, *J* = 6.5, 2.3 Hz, 1H), 7.78 (t, *J* = 7.4 Hz, 1H), 7.65-7.60 (m, 4H); ¹³C NMR (75 MHz, DMSO) δ 188.71, 163.24, 138.47, 134.86, 132.41, 130.36, 130.07, 128.98, 128.07, 124.77, 122.99, 118.43, 111.77; HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₅H₁₀N₂O₂ 249.0670 found 249.0743.

25)

2-Oxo-2-phenyl-N-(4-fluorophenyl)acetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), 4-fluoroaniline 2k (166.7 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and pyridine (158.2 mg, 2 mmol) were mixed in toluene (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (30:1) to afford the desired product.

¹H NMR (400 MHz, DMSO) δ 11.05 (s, 1H), 8.08 (d, *J* = 8.2 Hz, 2H), 7.84 – 7.74 (m, 3H), 7.62 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (101 MHz, DMSO) δ 189.32 (s), 163.01 (s), 159.95 (s), 157.55 (s), 134.77 (s), 134.06 (d, *J* = 2.5 Hz), 132.58 (s), 129.97 (s), 129.02 (s), 122.00 (d, *J* = 8.0 Hz), 115.68 (s), 115.45 (s); HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₄H₁₀FNO₂ 242.0623 found 242.0669.

26)

2-Oxo-2-phenyl-N-(4-chlorophenyl)acetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), 4-chloroaniline 2l (191.4 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and pyridine (158.2 mg, 2 mmol) were mixed in toluene (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (30:1) to afford the desired product.

Yellow solid (165.8 mg, 64% yield); ¹H NMR (400 MHz, DMSO) δ 11.11 (s, 1H), 8.08 – 8.03 (m, 2H), 7.82 – 7.73 (m, 3H), 7.61 (t, *J* = 7.7 Hz, 2H), 7.49 – 7.43 (m, 2H); ¹³C NMR (101 MHz, DMSO) δ 189.13, 163.17, 136.62, 134.85, 132.48, 129.98, 129.05, 128.86, 128.29, 121.69; HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₄H₁₀ClNO₂ 258.0327 found 258.0399.

27)

2-Oxo-2-phenyl-N-(4-bromophenyl)acetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), 4-bromoaniline 2m (258.1 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and pyridine (158.2 mg, 2 mmol) were mixed in toluene (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (30:1) to afford the desired product.

Yellow solid (187.8 mg, 62% yield); ¹H NMR (400 MHz, DMSO) δ 11.12 (s, 1H), 8.10 – 8.05 (m, 2H), 7.80 – 7.73 (m, 3H), 7.65 – 7.58 (m, 4H); ¹³C NMR (101 MHz, DMSO) δ 189.10, 163.18, 137.05, 134.83, 132.48, 131.77, 129.99, 129.04, 122.05, 116.42; HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₄H₁₀BrNO₂ 301.9822 found 301.9772.

28)

2-Oxo-2-phenyl-N-(4-(methoxycarbonyl)phenyl)acetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), 4-(methoxycarbonyl)aniline 2n (226.8 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and pyridine (158.2 mg, 2 mmol) were mixed in toluene (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H₂O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (8:1) to afford the desired product.

Yellow solid (223.6 mg, 79% yield); ¹H NMR (300 MHz, DMSO) δ 11.29 (s, 1H), 8.12 – 8.06 (m, 2H), 8.02 (d, *J* = 8.8 Hz, 2H), 7.92 (d, *J* = 8.8 Hz, 2H), 7.78 (t, *J* = 7.4 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 188.90, 165.66, 163.53, 141.98, 134.84, 132.40, 130.29, 129.96, 129.03, 125.28, 119.63, 51.91; HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₆H₁₃NO₄ 282.0772 found 282.0825.

29)

2-Oxo-2-phenyl-N-(4-(aminocarbonyl)phenyl)acetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), p-aminobenzamide 2o (204.2 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and pyridine (158.2 mg, 2 mmol) were mixed in toluene (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After

cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (5:1) to afford the desired product.

White solid (198.4 mg, 74% yield); ¹H NMR (300 MHz, DMSO) δ 11.16 (s, 1H), 8.09 (d, *J* = 7.8 Hz, 2H), 7.96 (d, *J* = 8.3 Hz, 3H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.77 (t, *J* = 7.0 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 2H), 7.35 (s, 1H); ¹³C NMR (75 MHz, DMSO) δ 189.13, 167.31, 163.43, 140.23, 134.84, 132.50, 130.15, 129.98, 129.06, 128.49, 119.38; HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₅H₁₂. N₂O₃ 267.0775 found 267.0852.

30)

N-(3-nitrophenyl)-2-oxo-2-phenylacetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), 3-nitroaniline 2p (207.3 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and pyridine (158.2 mg, 2 mmol) were mixed in toluene (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (5:1) to afford the desired product.

Yellow solid (202.5 mg, 75% yield); ¹H NMR (300 MHz, DMSO) δ 11.42 (s, 1H), 8.79 (t, *J* = 1.9 Hz, 1H), 8.14 – 8.07 (m, 3H), 8.03 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.81 – 7.59 (m, 4H); ¹³C NMR (75 MHz, DMSO) δ 188.60, 163.28, 147.95, 138.80, 134.89, 132.39, 130.33, 130.11, 129.00, 126.15, 119.05, 114.36; HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₄H₁₀N₂O₄ 269.0568 found 269.0601.

31)

N-(2-methyl-5-nitrophenyl)-2-oxo-2-phenylacetamide:

CuBr (11.5 mg, 0.08 mmol), phenethyl alcohol 1a (122.2 mg, 1 mmol), 2-methyl-5nitroaniline 2q (228.2 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and pyridine (158.2 mg, 2 mmol) were mixed in toluene (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (5:1) to afford the desired product.

Yellow solid (238.6 mg, 84% yield); ¹H NMR (300 MHz, DMSO) δ 10.70 (s, 1H), 8.58 (d, J =

2.2 Hz, 1H), 8.14 – 8.09 (m, 2H), 8.05 (dd, J = 8.4, 2.3 Hz, 1H), 7.78 (t, J = 7.4 Hz, 1H), 7.62 (dd, J = 18.3, 8.2 Hz, 3H), 2.42 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 189.04, 163.97, 145.82, 139.96, 135.75, 134.82, 132.63, 131.69, 129.98, 129.06, 120.51, 119.05, 18.06; HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₅H₁₂N₂O₄ 283.0724 found 283.0758.

32)

CuBr (11.5 mg, 0.08 mmol), 2-naphthaleneethanol (172.1 mg, 1 mmol), 2-amino-6chlorobenzotrifluoride (292.5 mg, 1.5 mmol), TEMPO (23.4 mg, 0.15 mmol) and pyridine (158.2 mg, 2 mmol) were mixed in toluene (3 mL) under air. The reaction mixture was stirred at 70 °C for 12 h. After cooling down to room temperature, the reaction mixture was diluted with H_2O (30 mL) and extracted by ethyl acetate (30 mL). The separated organic layers were dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate (40:1) to afford the desired product.

Yellow solid (207.4 mg, 55% yield); ¹H NMR (400 MHz, DMSO) δ 11.12 (s, 1H), 8.79 (s, 1H), 8.20 (d, *J* = 8.1 Hz, 1H), 8.14 (d, *J* = 8.6 Hz, 1H), 8.07 (d, *J* = 8.9 Hz, 2H), 7.79 – 7.66 (m, 5H); ¹³C NMR (101 MHz, DMSO) δ 188.90 (s), 163.74 (s), 135.97 – 135.85 (m), 135.70 (s), 133.73 (s), 133.21 (s), 132.47 – 132.35 (m), 131.89 (s), 130.61 – 130.54 (m), 129.99 (s), 129.84 (s), 129.69 (s), 128.90 (d, *J* = 7.9 Hz), 127.85 (s), 127.38 (s), 124.00 (s). HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₉H₁₁NO₄F₃Cl 376.0358 found 376.0385.

¹H NMR and ¹³C NMR spectra of those compounds

160424-gk LCK-79 13C-NMR DMSO 303K AV-300

160424-gk LCK-78 1H-NMR DMSO 303K AV-300

LCK-82 LCK-82

GSY-44 GSY-44

GSY-34 GSY-34

S46

LCK-80 LCK-80

LCK-76 LCK-76

LCK-77 LCK-77

S52

S54

