Efficient Synthesis of Pyrrolo[1,2-a]quinoxalines Catalyzed by Brønsted Acid through Cleavage of C-C Bond

Caixia Xie^a, Lei Feng^a, Wanli Li^a, Xiaojun Ma^a, Xinkun Ma^a, Yihan Liu^a and Chen Ma^{*a,b}

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R.

China.

^bState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, P. R. China.

Supporting Information

Table of contents

1.	Preparation of starting	materials	S1-S2	
2.	Spectra data of starting materials S3-S5			
3.	¹ H NMR, ¹³ C NMR and HRMS spectraS5-S51			
4.	Reference		S	5 51

1. Preparation of starting materials

1.1 General procedure for preparation of 2-(1*H*-pyrrol-1-yl)anilines.

Scheme 1 General procedure for preparation of 2-(1H-pyrrol-1-yl)anilines.

2-(1*H*-pyrrol-1-yl)anilines were prepared according to a modified literature procedure.¹A mixture of substituted 2-nitroaniline (20 mmol) and 2,5-dimethoxytetrahydrofuran(20 mmol) in acetic acid (100 mL) was refluxed for 2 h with vigorous stirring. After cooling, the reaction mixture was poured into water (300 mL) and extracted with EtoAc three times (3×50 mL). The combined organic layers were dried with MgSO₄ and the solvent was removed in vacuo to afford a residue. The residue was added to iron powder (80 mmol) and NH₄Cl (20mmol) in water (50 mL) and reflux for 4 h. After cooling, the reaction mixture was poured into water (300 mL) and extracted time times (3×50 mL). The combined organic layers were dried with ethyl acetate time times (3×50 mL). The combined into water (300 mL) and extracted with ethyl acetate time times (3×50 mL). The combined organic layers were dried with MgSO₄ and the solvent was removed in vacuo to afford a residue. The residue was poured the solvent was removed in vacuo to afford a residue. The combined by column chromatography on silica gel using petroleum ether / EtoAc as eluent to provide the desired product. The spectra data are shown in **2** part.

Scheme 2 General procedure for preparation of 2-(1H-indol-1-yl)anilines

2-(1H-indol-1-yl)anilines were prepared according to a modified literature procedure.² A

mixture of 2-nitroaniline (2 mmol), N-heterocycle (2 mmol) and NaOH (2 mmol) in DMSO (4 mL) was stirred vigorously for 2 h. After cooling, the reaction mixture was poured into water (30 mL) and extracted with EtOAc three times (3×30 mL). The combined organic layers were dried with MgSO₄ and the solvent was removed in vacuo to afford a residue. The residue was added to iron powder (16 mmol) and NH₄Cl (1 mmol) in water (30 mL) and refluxed for 4 h. After cooling, the reaction mixture was poured into water (100 mL) and extracted with ethyl acetate twice (3×30 mL). The combined organic layers were dried with MgSO₄ and the solvent was poured into water (100 mL) and extracted with ethyl acetate twice (3×30 mL). The combined organic layers were dried with MgSO₄ and the solvent was removed in vacuo to afford a residue. The residue was purified by column chromatography on silica gel using petroleum ether / ethyl acetate as eluent to provide the desired product. The spectra data are shown in **2** part.

1.3 General procedure for preparation of Benzhydryl 3-oxobutanoate

Scheme 3 General procedure for preparation of Benzhydryl 3-oxobutanoate Benzhydryl 3-oxobutanoate was prepared according to a modified literature procedure.³ In a 100 mL round-bottom flask, equipped with a magnetic stir bar and a reflux condenser, 2,2,6-trimethyl-4*H*-1,3-dioxin-4-one (2 mmol, 0.28 g) and benzyl alcohol (2 mmol, 0.36 g) was dissolved in 5 mL xylene. The reaction was heated to vigorous reflux for 4 h, then cooled to room temperature. Xylene was removed *in vacuo*. The residue was purified by column chromatography on silica gel using petroleum ether / ethyl acetate as eluent to provide the desired product. This compound is literature known.³

2. Spectra data of starting materials

2-(1H-pyrrol-1-yl)aniline (1a)

¹H NMR (400 MHz, CDCl₃): δ = 7.16-7.12 (m, 2H), 6.82 (t, *J* = 2.1 Hz, 2H), 6.79-6.75 (m, 2H), 6.33 (t, *J* = 2.0, 2H), 3.68 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 142.07, 128.59, 127.54, 127.20, 121.74, 118.43, 116.13, 109.42; HRMS calcd for C₁₀H₁₀N₂ [(M+H)⁺]: 159.0917; found, 159.0916.

5-methyl-2-(1H-pyrrol-1-yl)aniline (1b)

¹H NMR (400 MHz, CDCl₃): δ = 7.03 (d, *J* = 7.7 Hz, 1H), 6.80 (t, *J* = 2.1 Hz, 2H), 6.60 (d, *J* = 9.2 Hz, 2H), 6.32 (t, *J* = 2.0Hz, 2H), 3.61 (s, 2H), 2.29 (s. 2H); ¹³C NMR (100 MHz, CDCl₃): δ =141.86, 138.62, 126.98, 125.27, 121.86, 119.20, 116.60, 109.24, 21.20; HRMS calcd for C₁₁H₁₂N₂ [(M+H)⁺]: 173.1073; found, 173.1081.

5-chloro-2-(1H-pyrrol-1-yl)aniline (1c)

¹H NMR (400 MHz, CDCl₃): δ = 7.05 (d, *J* = 8.3 Hz, 1H), 6.78-6.76 (m, 3H), 6.74 (dd, *J* = 8.3 Hz, 2.2 Hz, 1H), 6.34 (t, *J* = 2.06 Hz, 2H), 3.76 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 143.15, 133.97, 128.17, 125.95, 121.65, 118.23, 115.62, 109.77; HRMS calcd for C₁₀H₉ClN₂ [(M+H)⁺]: 193.0527; found, 193.0528.

5-fluoro-2-(1H-pyrrol-1-yl)aniline (1d)

¹H NMR (400 MHz, CDCl₃): δ =7.08-7.04 (m, 1H), 6.76 (t, *J*=2.0 Hz, 2H), 6.47-6.42 (m, 2H), 6.33 (t, *J* = 2.0 Hz, 2H), 3.78 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.98 (¹*J*_{C, F} = 243 Hz), 143.93 (³*J*_{C, F} = 12 Hz), 128.61 (³*J*_{C, F} = 11 Hz), 123.64, 121.91, 109.60, 104.93 (²*J*_{C, F} = 23 Hz), 102.57 (²*J*_{C, F} = 26Hz); HRMS calcd for C₁₀H₉FN₂ [(M+H)⁺]: 177.0823; found, 177.0827.

5-methoxy-2-(1H-pyrrol-1-yl)aniline (1e)

¹H NMR (400 MHz, CDCl₃): δ = 7.07 (dd, *J* = 8.8 Hz, 3.6 Hz, 1H), 6.77 (t, *J* = 2.8Hz, 2H), 6.35-6.31 (m, 4H), 3.78 (s, 3H), 3.67 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.94, 143.36, 128.15, 122.12, 121.24, 109.17, 103.66, 102.13, 55.40; HRMS calcd for C₁₁H₁₂ON₂ [(M+H)⁺]: 189.1022; found, 189.1024.

4-chloro-2-(1H-pyrrol-1-yl)aniline (1g)

¹H NMR (300 MHz, CDCl₃): δ = 7.13-7.09 (m, 2H), 6.80 (m, *J* = 1.8 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 1H), 6.33 (d, *J* = 2.1 Hz, 2H), 3.70 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ = 140.67, 128.38, 128.06, 126.98, 122.58, 121.51, 116.94, 109.88; HRMS calcd for C₁₀H₉ClN₂ [(M+H)⁺]: 193.0527; found, 193.0529.

4-fluoro-2-(1H-pyrrol-1-yl)aniline (1h)

¹H NMR (300 MHz, CDCl₃): $\delta = 6.93-6.86$ (m, 2H), 6.83 (t, J = 2.1 Hz, 2H), 6.75 (dd, J = 9.6 Hz, 5.1 Hz, 1H), 6.34-6.31 (m, 2H), 3.65 (s,2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 157.14$ ((¹ $J_{C, F} = 236$ Hz), 137.91, 127.88 (³ $J_{C, F} = 9$ Hz), 121.53, 116.89 (³ $J_{C, F} = 8$ Hz), 115.29 (² $J_{C, F} = 23$ Hz), 114.10 (² $J_{C, F} = 23$ Hz), 109.85; HRMS calcd for C₁₀H₉FN₂ [(M+H)⁺]: 177.0823; found, 177.0821.

2-(1*H*-indol-1-yl)aniline (1i)

¹H NMR (400 MHz, CDCl₃): δ = 7.69-7.67 (m, 1H), 7.23-7.14 (m, 6H), 6.83-6.80 (m, 2H), 6.67 (d, J = 3.16 Hz, 1H), 3.49 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 143.21, 136.42, 129.24, 128.69, 128.62, 124.90, 122.30, 121.04, 120.24, 118.58, 116.31, 110.83, 103.28. HRMS calcd for C₁₄H₁₂N₂ [(M+H)⁺]: 209.1072; found, 209.1071.

2-(3-methyl-1*H*-indol-1-yl)aniline (1j)

¹H NMR (400 MHz, CDCl₃): δ = 7.80-7.77 (m, 1H), 7.35-7.24 (m, 5H), 7.09 (s, 1H), 6.96-6.89 (m, 2H), 3.48 (s, 2H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 143.27, 136.85, 129.14, 129.00, 128.71, 126.28, 125.24, 122.35, 119.69, 119.20, 118.62, 116.37, 112.50, 110.79, 9.81. HRMS calcd for C₁₅H₁₄N₂ [(M+H)⁺]: 223.1230; found, 223.1232.

2-(1H-imidazol-1-yl)aniline (1k)

¹H NMR (300 MHz, DMSO-d₆): δ =7.75 (s, 1H), 7.30 (s, 1H), 7.17-7.11 (m, 1H), 7.11 (s, 1H), 7.05 (d, J = 7.8 Hz, 1H), 6.89 (d, J = 8.1 Hz, 1H), 6.67 (t, J = 7.5 Hz, 1H), 4.94 (s, 2H); ¹³C NMR (75 MHz, DMSO-d₆): δ =143.21, 137.42, 129.02, 128.89, 126.74, 122.44, 120.28, 116.32, 116.05. HRMS calcd for C₉H₉N₃ [(M+H)⁺]: 160.0869; found, 160.0864.

3.¹H NMR, ¹³C NMR and HRMS spectra

3.1 The spectra of starting materials

2-(1H-pyrrol-1-yl)aniline (1a)

5-methyl-2-(1H-pyrrol-1-yl)aniline (1b)

5-chloro-2-(1H-pyrrol-1-yl)aniline (1c)

5-fluoro-2-(1H-pyrrol-1-yl)aniline (1d)

5-methoxy-2-(1*H*-pyrrol-1-yl)aniline (1e)

4-chloro-2-(1H-pyrrol-1-yl)aniline (1g)

4-fluoro-2-(1H-pyrrol-1-yl)aniline (1h)

2-(1*H*-indol-1-yl)aniline (1i)

S12

2-(3-methyl-1H-indol-1-yl)aniline (1j)

2-(1*H*-imidazol-1-yl)aniline (1k)

3.2 The sprctra of products 4-phenylpyrrolo[1,2-*a*]quinoxaline (4a)

7-methyl-4-phenylpyrrolo[1,2-*a*]quinoxaline (4b)

140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 ppm

7-methoxy-4-phenylpyrrolo[1,2-a]quinoxaline (4c)

7-chloro-4-phenylpyrrolo[1,2-a]quinoxaline (4d)

8-chloro-4-phenylpyrrolo[1,2-a]quinoxaline (4e)

7-fluoro-4-phenylpyrrolo[1,2-*a*]quinoxaline (4f)

8-fluoro-4-phenylpyrrolo[1,2-a]quinoxaline (4g)

6-phenylindolo[1,2-*a*]quinoxaline (4i)

7-methyl-6-phenylindolo[1,2-a]quinoxaline (4j)

4-methylpyrrolo[1,2-a]quinoxaline (4k)

4-ethylpyrrolo[1,2-a]quinoxaline (4l)

4,7-dimethylpyrrolo[1,2-a]quinoxaline (4n)

7-chloro-4-methylpyrrolo[1,2-a]quinoxaline (40)

7-methoxy-4-methylpyrrolo[1,2-a]quinoxaline (4p)

4-(4-methoxyphenyl)pyrrolo[1,2-a]quinoxaline (4q)

4-(3-fluorophenyl)pyrrolo[1,2-a]quinoxaline (4r)

4-(4-fluorophenyl)pyrrolo[1,2-a]quinoxaline (4s)

4-(4-fluorophenyl)-7-methylpyrrolo[1,2-*α*]quinoxaline (4t)

4-(4-methoxyphenyl)-7-methylpyrrolo[1,2-a]quinoxaline (4u)

7-chloro-4-(3-fluorophenyl)pyrrolo[1,2-a]quinoxaline (4v)

7-chloro-4-(4-fluorophenyl)pyrrolo[1,2-*a*]quinoxaline (4w)

7-methoxy-4-(4-methoxyphenyl)pyrrolo[1,2-a]quinoxaline (4x)

4-(3-fluorophenyl)-7-methoxypyrrolo[1,2-a]quinoxaline (4y)

5-(pyrrolo[1,2-a]quinoxalin-4-yl)pentan-2-one (4z)

(Z)-1,3-diphenyl-3-(phenylamino)prop-2-en-1-one (5e)

Acetophenone (5f)

4. Reference

- 1. T. N. P atil, D. R. Kavthe, S. V. Shinde, B. Sridhar, J. Org. Chem. 2010, 75, 3371.
- 2. Z. Y. Zhang, C. X. Xie, G. L. Song, L. Wen, H. Gao, C. Ma, Org. Chem. Front. 2015, 2, 942.

3. M. Wasa, Y. R. Liu, P. S. Roche, N. E. Jacobsen, J. Am. Chem. Soc. 2014, 136, 12872.