Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Synthesis of substituted benzooxaborinin-1-ols via palladium-catalysed cyclisation of alkenyl- and alkynyl-boronic acids

Laure Benhamou*, Daniel Walker, Dejan-Krešimir Bučar, Abil E. Aliev and Tom D. Sheppard* <u>l.benhamou@ucl.ac.uk; tom.sheppard@ucl.ac.uk</u>

Ι.	GENE	GENERAL METHODS						
۱۱.	II. OPTIMISATIONS AND GENERAL PROCEDURES							
I	II.1.	SYNTHESIS OF ARYL BROMIDES						
	<i>II.1.1</i>	Synthesis of 1-bromo-2-alkenyl-benzenes						
	II.1.2	Synthesis of 1-bromo-2-alkynyl-benzenes						
I	1.2.	SYNTHESIS OF BORONIC ACIDS (2, 7)						
I	1.3.	PALLADIUM CATALYSED WACKER-TYPE OXIDATION						
	II.3.1	Optimisation of the reaction conditions						
	11.3.2	General procedure for the palladium catalysed Wacker-type oxidation						
I	1.4.	HALOGENATION OF BENZOOXABORININOLS						
I	11.5.	ACID MEDIATED OR PLATINIUM CATALYSED SYNTHESIS OF BENZOOXABOROLE (4)						
I	11.6.	SYNTHESIS OF ALLYLATED BENZOOXABORININOLS (9)						
	II.6.1	Optimisation of the reaction conditions						
	II.6.2	General procedure for the synthesis of allylated-benzooxaborininols						
III.	III. SPECTROSCOPIC DATA							
I	11.1.	1-BROMO-2-ALKLYNYL-BENZENES						
I	11.2.	BORONIC ACIDS (1, 7)						
I	11.3.	BENZOOXABORININOLS AND HALO-BENZOOXABORININOLS (2, 3, 4, 6)						
I	11.4.	BENZOXABOROLES (4)						
I	11.5.	ALLYL-BENZOOXABORININOLS (9)						
IV.	SPEC	TRA20						
I	V.1.	BORONIC ACIDS (1,7)						
I	V.2.	BENZOOXABORININOLS AND HALO-BENZOOXABORININOLS (2, 3, 4, 6)						
I	V.3.	BENZOXABOROLES (4)						
I	V.4.	ALLYL-BENZOOXABORININOLS (9)						
I	IV.5.	BORON NMR SPECTRA						
v.	SINGLE CRYSTAL X-RAY DIFFRACTION STUDIES OF COMPOUND 3E							
VI.	REFE	REFERENCES						

I. General methods

Reactions involving organometallic or moisture sensitive compounds were carried out under argon and glassware was dried in the oven overnight. Dry THF was purchased from Acros Organics (Tetrahydrofuran, 99.5%, Extra Dry over Molecular Sieves, Stabilised, AcroSeal®). *n*BuLi (1,6 mol:L in hexane) and triisopropyl borate was purchased from Acros Organics.

Pd(CH₃CN)₂Cl₂, Pd(PhCN)₂Cl₂, anhydrous CuCl₂ and *tert*-butanol, 2-vinylbenzeneboronic acid were used as received. Flash column chromatography was carried out using normal phase silica gel (33-70 μ m) supplied by VWR or a Biotage automated purification system using SNAP cartridges. Thin layer chromatography was carried out using Merck TLC Silica gel 60 F₂₅₄ plates and products were visualised using combinations of UV light (254 nm).

Benzooxaborininol (2) were obtained by following the procedure already described by our group.¹

¹H NMR spectra were recorded at 400, 500 or 600 MHz, on a Bruker Avance 400, 500 or 600 spectrometers using the residual protic solvent $CDCl_3$ ($\delta = 7.26$ ppm, s) as the internal standard. Chemical shifts are quoted in ppm to the nearest 0.01 ppm using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), qn (quintet), sext (sextet), dd (doublet of doublets), dt (doublet of triplets), m (multiplet) defined as all multi-peak signals where overlap or complex coupling of signals make definitive descriptions of peaks difficult. ¹³C NMR spectra were recorded at 100, 125 or 150 MHz on a Bruker Avance 400, 500 or 600 MHz spectrometers at 25°C (otherwise stated) in CDCl₃ as described below. All chemical shifts were referenced with CDCl₃ solvent ($\delta = 77.0$ ppm, t) as the internal standard. Chemical shifts are reported to the nearest 0.1 ppm. The coupling constants are defined as J and quoted in Hz. Mass spectra were performed in the Department of Chemistry (University College London) and the EPSRC UK National Mass Spectrometry Service. ¹¹B NMR spectra were recorded at 128 MHz on a Bruker Avance 400 MHz spectrometer at 25°C in CDCl₃ using BF₃.Et₂O (neat) as standard. Infrared spectra were obtained on a Perkin Elmer Spectrum 100 FT-IR Spectrometer operating in ATR mode. Melting points were measured with a Gallenkamp apparatus and were uncorrected.

II. Optimisations and general procedures

II.1. Synthesis of aryl bromides

II.1.1. Synthesis of 1-bromo-2-alkenyl-benzenes

1-bromo-2-(prop-1-en-2-yl)benzene,² 1-bromo-2-(prop-1-en-1-yl)benzene,³ 1-bromo-2-(4-methylstyryl)benzene,³ were obtained *via* a Wittig olefination by following procedures already described in the literature.

II.1.2. Synthesis of 1-bromo-2-alkynyl-benzenes

2-bromophenyl)ethynyl)trimethylsilane, 1-bromo-2-(phenylethynyl)benzene, 1-bromo-2-(ptolylethynyl)benzene, were obtained *via* a Sonogashira coupling already described in our group.¹

II.2. Synthesis of boronic acids (2, 7)

Boronic acids were obtained by a classical sequence of lithium bromine exchange followed by a borylation step (cf. General procedure A.1). *ortho*-Alkynylphenylboronic acids were also prepared according to this procedure (Cf. General procedure A.2) and spectroscopic data were consistent with those we have previously reported.¹

Procedures A: General procedures for lithiation-borylation reaction

In a schlenk tube, *n*BuLi (1.6 M in hexane, 1.1 eq) was added dropwise at -78 °C to a solution of aryl bromide (1 eq) in THF(C ≈ 0.15 mol/L). After 1 hour at -78 °C, triisopropylborate (3

eq) was added and the solution was allowed to warm at room temperature overnight. The reaction mixture was then quenched with HCl (2M, 20 mL), extracted with Et_2O (3×20 mL) and dried on anhydrous Na₂SO₄. After filtration, solvent were removed under vacuum and the crude residue was purified by column chromatography on SiO₂ using Petrol:Et₂O (100:0 to 70:30) as eluent. Evaporation of the solvent gave the boronic acid.

II.3. Palladium catalysed Wacker-type oxidation

II.3.1. Optimisation of the reaction conditions

SOLVENT

		Solvents	Solubilit	ty Conversion			
		DMSO	+	Х			
	OH	CH ₃ CN	+	Х			
B(OH) ₂	$\frac{1 \text{ eq. Pd}(CH_3CN)_2Cl_2}{2} \xrightarrow{B_0}$	Dioxane	+	Х			
	Solvent, R.T., 24h	<i>t</i> BuOH	+	+			
1a	2a	CHCl ₃	Partial	+			
		THF	+	+			
		CH ₂ Cl ₂	Partial	+			
		Toluene	х	traces			
PALLADIUM SOURCE							
		Pd source		Yield (%)			
B(OH)	² 1 eq [Pd], <i>t</i> BuOH	PdCl ₂		-			
	R.T., 24h	$\frac{Pd(PPh_{3})_{2}Cl_{2}}{Pd(CH_{3}CN)_{2}Cl_{2}}$ $Pd(PhCN)_{2}Cl_{2}$ $Pd(PhCN)_{2}Cl_{2}$ $Pd(OAc)_{2}$		-			
0.1 mmol	Yields were measured by ¹ H NMR using an internal ² a			> 95			
1a				60			
	standard (anisole)			decomposition			
		$Pd(Py)_2Cl_2$		-			
CATALYST LOADING							
	x mol% Pd(CH ₃ CN) ₂ Cl ₂ OH	Mol% Cat		Yield (%)			
B(OH) ₂	$\begin{array}{c} 2 \xrightarrow{\text{eq } CuCl_2} & & & \\ \hline t\text{BuOH, 30 }^{\circ}\text{C, 24h} & & & \\ \end{array}$	10		63			
		5		60 30			
1a	Isolated yield 2a	2		37			

OXIDANT

II.3.2. General procedure for the palladium catalysed Wacker-type oxidation

General procedure B

In a round bottom flask, $Pd(CH_3CN)_2Cl_2$ (5 or 10 mol%) and anhydrous $CuCl_2$ (2 eq) were added to a solution of boronic acid (1eq) in *tert*-butanol ([C] \approx 0.04 mol:L). The resulting solution was stirred at 30 °C for 24 hours. The solution was then evaporated to dryness and the crude material was purified by column chromatography to afford the products.

II.4. Halogenation of benzooxaborininols

Procedure C.1: A solution of benzooxaborininol (1 eq) and NXS (2 eq) in acetonitrile ([C] \approx 0.1 mol/L) was stirred at room temperature for 3 days. The reaction mixture was then concentrated and the crude material was filtered through SiO₂ using Petrol:EtOAc (95:5) as solvent. Evaporation of the solvents afforded the halo-benzooxaborininol.

Procedure C.2: A solution of benzooxaborininol (1 eq) and CuCl₂ or CuBr₂ (2.1 eq) in *t*BuOH ([C] ≈ 0.1 mol/L) was stirred at 30 °C overnight. The reaction mixture was then

concentrated and the crude material dissolved in Et₂O and filtered through silica gel to afford the halo-benzooxaborininol.

II.5. Acid mediated or platinium catalysed synthesis of benzooxaborole (4)

Procedure D.1: Acid mediated synthesis of benzooxaboroles

Amberlist 15 resin (≈ 60 mg) was added to a solution of boronic acid in *t*BuOH (C ≈ 0.2 mol/L). The heterogeneous mixture was allowed to stir 24 hours at 30 °C before filtration through a pad of celite. Evaporation of the solvent afforded the benzooxaborole.

Procedure D.2: Pt-catalysed synthesis of benzooxaboroles

Platinium tetrachloride (10 mol%) was added to a solution of boronic acid (1 eq) in CH₂Cl₂ (C \approx 0.2 mol/L). The resulting solution was stirred at room temperature for 24 hours or 3 days depending on the substrate. The mixture was then pre-absorbed on silica and purified by column chromatography using Petrol:Et₂O (100:0 to 50:50) as eluent. Evaporation of the solvent gave the benzooxaborole.

II.6. Synthesis of allylated benzooxaborininols (9)

II.6.1. Optimisation of the reaction conditions

SOLVENT

BASE

II.6.2. General procedure for the synthesis of allylated-benzooxaborininols

<u>General procedure E:</u> In a round-botton flask, the palladium catalyst (5 mol%) and sodium bicarbonate (2 eq) were added to a solution of boronic acid (1 eq) in *tert*-butanol ([C] ≈ 0.15 mol:L). The allyl chloride (5 eq) was then added *via* microsyringe. The solution was allowed to stir for 6 hours at 30°C before evaporation of the volatiles under vacuum. The residue was then purified by column chromatography on silica using Petrol:EtOAc as solvent (100:0 to 80:20) to give the allyl-benzooxaborininol.

III. Spectroscopic Data

III.1. 1-Bromo-2-alklynyl-benzenes

1-Bromo-2-(p-tolylethynyl)benzene

Pd(PPh₃)₂Cl₂ (140 mg, 0.2 mmol, 2 mol%) and CuI (40 mg, 0.2 mmol, 2 mol%) were added to a solution of 2-bromo-iodobenzene (1.3 mL, 10.0 mmol, 1 eq) in Et₂NH (C \approx 0.3 mol/L). After 10 min a solution of tolylacetylene (1.7 mL, 13.0 mmol, 1.3 eq) in Et₂NH (C \approx 15.3 mol/L) was added dropwise over 3 hours via syringe pump and the reaction mixture was left to stir overnight. The resulting mixture was then quenched with a saturated solution of NH₄Cl solution (50 mL) and extracted with Petrol (3×60 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude material was purified by flash chromatography using Petrol as eluent. After purification the product was obtained as a colourless oil (2.41 g, 91%); ¹H NMR (500 MHz, CDCl₃) δ = 7.65 – 7.58 (m, 1H, CH_{Ar}), 7.54 (dd, *J* = 7.6, 1.6, 1H, CH_{Ar}), 7.52 – 7.45 (m, 2H, 2×CH₁₀), 7.30 (td, *J* = 7.6, 1.2, 1H, CH_{Ar}), 7.18 – 7.10 (m, 3H, 2×CH₁₀), CH_{Ar}), 2.37 (s, 3H, CH₃₋₁₀); ¹³C NMR (125 MHz, CDCl₃) δ = 138.9, 133.2, 132.5, 131.7, 129.3, 129.2, 127.1, 125.7, 125.6, 119.9, 94.3, 87.5, 21.6. ppm. These spectroscopic data are in agreement with those reported in the literature.⁴

III.2. Boronic acids (1, 7)

(2-(Prop-1-en-2-yl)phenyl)boronic acid (1d)

The desired product was prepared by following **procedure A.1** using 1-bromo-2-(prop-1-en-2-yl)benzene (500 mg, 2.5 mmol, 1 eq), *n*BuLi (1.8 mL, 2.8 mmol, 1.1 eq) and trimethylborate (0.85 mL, 7.6 mmol, 3.0 eq). After purification the boronic acid was obtained as a white solid (261 mg, 64%); mp = 66 °C; ¹H NMR (600 MHz, CDCl₃ + 1 drop D₂O) δ = 7.87 (d, *J* = 7.4, 1H, CH_{Ar}), 7.41 (td, *J* = 7.4, 1.1, 1H, CH_{Ar}), 7.32 (td, J = 7.4, 1.1, 1H, CH_{Ar}), 7.17 (d, J = 7.4, 1H, CH_{Ar}), 5.32 (d, J = 1.1, 1H, =CH), 5.06 (d, J = 1.1, 1H, =CH), 2.15 (s, 3H, CH₃); ¹³C NMR (151 MHz, CDCl₃) $\delta = 149.8$, 149.5, 135.2, 130.8, 127.4, 127.0, 115.7, 25.8. The carbon adjacent to the boron atom was not observed; FT-IR (ATR) $\upsilon = 3296$, 3072, 2972, 1590, 1342, 1299, 1259, 1229, 1117, 1070, 1040, 1000, 945, 889, 777, 748, 707, 681, 668, 648, 598, 583, 563, 516, 494 cm⁻¹; HRMS (CI) calcd for C₁₁H₁₄O₂B [M + Ethyleneglycol + H]⁺ 188.1118 found 188.1118. These spectroscopic data are in agreement with those reported in the literature.⁵

(2-(Prop-1-en-1-yl)phenyl)boronic acid (1b)

The desired product was prepared by following **procedure A.1** using 1-bromo- $H_{B(OH)_2}$ 2-(prop-1-en-1-yl)benzene (792 mg, 4.0 mmol, 1eq), *n*BuLi (2.6 mL, 4.2 mmol, 1.1 eq) and triisopropylborate (2.8 mL, 12.0 mmol, 3.0 eq). After purification the boronic acid was obtained as a white solid (490 mg, 76%) as a mixture of *Z*:*E* isomers (ratio 0.3:1); mp = 71 °C; ¹H NMR (600 MHz, CDCl₃ + 1 drop D₂O) δ = 7.92 (d, *J* = 7.5, 1H, *CH*_{Ar(E)}), 7.68 (d, *J* = 7.3, 0.3H, *CH*_{Ar(Z)}), 7.44 (td, *J* = 7.5, 1.1, 1H, *CH*_{Ar(E)}), 7.41 – 7.36 (m, 0.6H, 2×*CH*_{Ar(Z)}), 7.31 (t, *J* = 7.5, 1H, *CH*_{Ar(E)}), 7.28 – 7.21 (m, 0.3H, *CH*_{Ar(Z)}), 7.16 (d, *J* = 7.5, 1H, *CH*_{Ar(E)}), 6.80 (m, 1.3H, =*CH*_(Z), =*CH*_(E)), 6.17 – 6.02 (m, 1.3H, =*CH*_(Z), =*CH*_(E)), 1.92 (dd, *J* = 6.6, 1.7, 0.9H, *CH*_{3(Z)}), 1.70 (dd, *J* = 6.9, 1.7, 3H, *CH*_{3(E)}); ¹³C NMR (151 MHz, CDCl₃) δ = 143.2, 142.6, 135.3, 134.1, 131.6, 131.4, 130.9, 130.8, 130.6, 130.2, 129.2, 126.7, 126.6, 18.8, 14.3. The carbon adjacent to the boron atom was not observed. FT-IR (ATR) υ = 3324, 3015, 1559, 1440, 1334, 1185, 1152, 1083, 1059, 1035, 987, 965, 924, 882, 812, 754, 732, 715, 688, 638, 524, 490 cm⁻¹; HRMS (CI) calcd for C₁₁H₁₄O₂B [M + Ethyleneglycol + H]⁺ 188.1118 found 188.1116.

(2-(4-Methylstyryl)phenyl)boronic acid (1c)

The desired product was prepared by following **procedure A.1** using 1-bromo-2-(4-methylstyryl)benzene (1.00 g, 3.7 mmol, 1 eq), *n*BuLi (2.4 mL, 3.9 mmol, 1.1 eq) and triisopropylborate (2.6 mL, 11.0 mmol, 3.0 eq).

After purification the boronic acid was obtained as a white solid (860 mg, 97%) as a mixture of *Z*:*E* isomers (ratio 1:0.6); mp = 148 °C; ¹H NMR (600 MHz, CDCl₃ + 1 drop D₂O); ¹H NMR (600 MHz, CDCl₃) δ = 7.94 (d, *J* = 7.4, 1H, CH_{Ar(Z)}), 7.69 (d, *J* = 7.5, 0.6H, CH_{Ar(E)}), 7.60 (d, *J* = 7.5, 0.6H, CH_{Ar(E)}), 7.50 (d, *J* = 16.2, 0.6H, =CH_E), 7.42 (m, 2.6H, 2×CH_{Ar(Z)}, CH_{Ar(E)}), 7.33 (t, *J* = 7.4, 1H, CH_{Ar(Z)}), 7.30 (t, *J* = 7.4, 0.6H, CH_{Ar(E)}), 7.23 – 7.15 (m, 2.2H, 2×CH_{Ar(Z)}, 2×CH_{Ar(E)}), 6.98 (m, 4.6H, =CH_(E), 3×CH_{Ar(Z)}, CH_{Ar(E)}), 6.89 (t, *J* = 13.0, 1H,

=C $H_{(Z)}$), 6.75 (d, J = 13.0, 1H, =C $H_{(Z)}$), 2.37 (s, 2H, C $H_{3(E)}$), 2.26 (s, 3H, C $H_{3(Z)}$); ¹³C NMR (151 MHz, CDCl₃) δ = 143.6, 142.6, 138.1, 137.9, 135.7, 134.4, 134.2, 133.2, 132.8, 132.1, 131.4, 130.8, 130.9, 129.6, 129.4, 129.1, 128.9, 128.1, 127.1, 126.7, 126.3, 21.4, 21.3. The carbon adjacent to the boron atom was not observed; FT-IR (ATR) υ = 3042, 3010, 2916, 1589, 1508, 1473, 1439, 1279, 1232, 1192, 1178, 971, 958, 803, 747, 705, 686, 587, 532 cm⁻¹; HRMS (ESI) calcd for C₁₇H₂₀O₂B [M + 2 × OMe + H]⁺ 267.1556 found 267.1556.

(2-(Phenylethynyl)phenyl)boronic acid (7e)

The desired product was prepared by following **procedure A.2** using 1-bromo-2-(phenylethynyl)benzene (1.08 g, 4.2 mmol, 1 eq), *n*BuLi (2.8 mL, 4.4 mmol, 1.1 eq) and triisopropylborate (2.9 mL, 12.6 mmol, 3.0 eq). After purification the boronic acid was obtained as a white solid (780 mg, 83 %); mp = 110 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.02 (d, *J* = 7.5, 1H, CH_{Ar}), 7.60 (d, *J* = 7.5, 1H, CH_{Ar}), 7.57-7.53 (m, 2H, 2×CH_{Ar}), 7.47 (td, *J* = 7.4, 1.4, 1H, CH_{Ar}), 7.43-7.37 (m, 4H, 4×CH_{Ar}), 6.04 (s, 2H, B(OH)₂); ¹³C NMR (CDCl₃, 125 MHz) δ = 135.8, 132.7, 131.7, 130.9, 129.2, 128.7, 128.4, 126.7, 122.0, 93.6, 89.8. The carbon adjacent to the boron atom was not observed; FT-IR (ATR) υ = 3341, 3080, 3054, 2959, 2928, 1590, 1491, 1474, 1440, 1333, 1011, 746, 684, 638, 584, 538, 516 cm⁻¹; LRMS (EI): [M]⁺ 222, [M-OH]⁺ 205. These spectroscopic data are in agreement with those reported in the literature.¹

(2-(Hex-1-yn-1-yl)phenyl)boronic acid (7f)

After purification the boronic acid was obtained as a colourless oil (1.40 mg, 82 %); NMR revealed a mixture of trimer and monomer (ratio 1:0.6). ¹H NMR (CDCl₃, 500 MHz, monomer) $\delta = 7.95$ (dd, J = 7.4, 1.0, 1H, CH_{Ar}), 7.45 (dd, J = 7.6, 1.0, 1H, CH_{Ar}), 7.39 (td, J = 7.4, 1.4, 1H, CH_{Ar}), 7.34 (td, J = 7.6, 1.4, 1H, CH_{Ar}), 5.75 (br, 2H, B(OH)₂), 2.50 (t, J = 7.5, 2H, \equiv CCH₂), 1.64 (qn, J = 7.5, 2H, CH₂(CH₂CH₃)), 1.50 (sext, J = 7.5, 2H, CH₂(CH₃)), 0.97 (t, J = 7.5, 3H, CH₃); ¹³C NMR (CDCl₃, 500 MHz, monomer) $\delta = 135.5$, 132.7, 130.8, 127.7, 127.6, 95.1, 81.8, 30.7, 22.1, 19.2, 13.6. The carbon adjacent to the boron atom was not observed; FT-IR (ATR) $\upsilon = 3423$, 3087, 2959, 2873, 2220, 1642, 1593, 1478, 1443, 1341, 1262, 1237, 1074, 1018, 758, 539 cm⁻¹; LRMS (EI) m/z [M]⁺ 202, [M-CH5]⁺ 184, [M-BO₂H]⁺ 159. These spectroscopic data are in agreement with those reported in the literature.¹

(2-(*p*-Tolylethynyl)phenyl)boronic acid (7c)

The desired product was prepared by following **procedure A.2** using 1bromo-2-(p-tolylethynyl)benzene (1.00 g, 3.7 mmol, 1 eq), *n*BuLi (2.5 mL, 4.0 mmol, 1.1 eq) and triisopropylborate (2.6 mL, 11.0 mmol, 3.0 eq). After purification the boronic acid was obtained as a white solid (680 mg, 78 %); mp = 159 - 161 °C; ¹H NMR (500 MHz, CDCl₃) δ = 8.00 (d, *J* = 7.5, 1H, *CH*_{Ar}), 7.58 (d, *J* = 7.0, 1H, *CH*_{Ar}), 7.48 - 7.42 (m, 3H, 3×*CH*_{Ar}), 7.39 (td, *J* = 7.5, 1.2, 1H, *CH*_{Ar}), 7.19 (d, *J* = 8.0, 2H, 2×*CH*_{Ar}), 5.69 (s, 2H, B(OH)₂), 2.39 (s, 3H, *CH*₃); ¹³C NMR (151 MHz, CDCl₃) δ = 139.5, 135.7, 132.6, 131.6, 131.0, 129.5, 128.3, 127.0, 118.9, 93.8, 89.3, 21.7. The carbon adjacent to the boron atom was not observed; FT-IR (ATR) υ = 3339, 3057, 3023, 1590, 1559, 1510, 1475, 1439, 1408, 1373, 1147, 1096, 1065, 1036, 1003, 953, 755,637, 508 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₃BO₂ [M]⁺ 235.10394 found 235.10388.

(2-Ethynylphenyl)boronic acid (7a)

(2-((Trimethylsilyl)ethynyl)phenyl)boronic acid was prepared by following **procedure A.2** using ((2-bromophenyl)ethynyl)trimethylsilane (1.00 g, 3.9 mmol, 1 eq), *n*BuLi (2.6 mL, 4.1 mmol, 1.1 eq) and triisopropylborate (2.7 mL, 11.8 mmol, 3.0 eq). After purification the TMS-proctected boronic acid was obtained as a white solid (560 mg, 65 %). This latter was dissolved in THF and stirred in presence of a saturated solution of sodium hydroxide for 30 minutes. The aqueous solution was then washed with Et₂O (3×10 mL) before addition of HCl (2M) and extraction with Et₂O (3×20 mL) dried on anhydrous Na₂SO₄. After filtration solvent were removed under vacuum and the crude residue was filtered through a small pad of SiO₂ using Petrol:Et₂O as eluent to afford the pure boronic acid as a white solid (250 mg, 44% over two steps); mp = 95 °C; ¹H NMR (600 MHz, CDCl₃ + 1 drop D₂O) δ = 8.00 (m, 1H, *CH*_{Ar}), 7.64 – 7.51 (m, 1H, *CH*_{Ar}), 7.53 – 7.37 (m, 2H, 2×*CH*_{Ar}), 5.82 (br s, 2H, B(*OH*)₂), 3.48 (s, 1H, \equiv *CH*); ¹³C NMR (151 MHz, CDCl₃ + 1 drop D₂O) δ = 135.8, 133.3, 131.0, 129.0, 125.5, 85.2, 81.4. The carbon adjacent to the boron atom was not observed; FT-IR (ATR) ν = 3491, 3353, 3288, 3262, 1437, 1389, 1362, 1335, 1256, 1164, 1151, 1069, 1043, 1017, 789, 757, 700, 687, 615, 576, 559, 537 cm⁻¹; HRMS (CI) calcd for C₈H₇O₂B [M + H]⁺ 146.0648 found 146.0647.

III.3. Benzooxaborininols and halo-benzooxaborininols (2, 3, 4, 6)

1*H*-Benzo[c][1,2]oxaborinin-1-ol (2a)

OH The desired product was prepared by following procedure B using 2vinylbenzeneboronic acid (100 mg, 0.68 mmol, 1eq), Pd(CH₃CN)₂Cl₂ (9 mg, 0.03 mmol, 0.05 eq) and CuCl₂ (182 mg, 0.14 mmol, 2 eq.) in *tert*-butanol (12 mL). Purification by column chromatography on silica using Petrol:Et₂O (100:0 to 80:20) afforded the product as a colourless oil as a mixture of monomer and dimer (ratio M:D = 1:0.4) (72) mg, 71%); ¹H NMR (600 MHz, CDCl₃) $\delta = 8.09$ (d, J = 7.6, 0.4H, CH_{Ar(D)}), 8.02 (d, J = 7.5, 1H, $CH_{Ar(M)}$), 7.65 (td, J = 7.6, 1.2, 0.4H, $CH_{Ar(D)}$), 7.61 (td, J = 7.5, 1.2, 1H, $CH_{Ar(M)}$), 7.47 $(d, J = 7.6, 0.4H, CH_{Ar(D)}), 7.44 - 7.35 (m, 2.4H, CH_{Ar(D)}, 2 \times CH_{Ar(M)}), 7.20 (d, J = 5.4, 0.4H)$ $=CH_{Ar(D)}$, 7.04 (d, J = 5.4, 1H, $=CH_{(M)}$), 6.45 (d, J = 5.4, 0.4H, $=CH_{(D)}$), 6.31 (d, J = 5.5, 1H, =CH_(M)), 4.82 (s, 1H, BOH); ¹³C NMR (151 MHz, CDCl₃) δ = 143.0, 142.7, 142.5, 142.0, 133.7, 132.89, 132.84, 132.5, 126.5, 126.5, 125.6, 125.5, 110.6, 110.5; the carbon adjacent to the boron atom was not observed; ¹¹B NMR (128 MHz, CDCl₃ + 1 drop D₂O) δ = 27.8 ; FT-IR (ATR) v = 3424, 3068, 2923, 1629, 1479, 1435, 1392, 1292, 1242, 1205, 1193, 1092, 1060, 960, 924, 883, 793, 763, 750, 685, 622, 560, 497, 460, 427 cm⁻¹; HRMS (EI) calcd for C₈H₇BO₂ [M]⁺ 146.0539 found 146.0535.

4-Chloro-3-methyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (3b)

QН The desired product was prepared by following **procedure B** using (2-(prop-1en-1-yl)phenyl)boronic acid (100 mg, 0.62 mmol, 1eq), Pd(CH₃CN)₂Cl₂ (8 mg, 0.03 mmol, 0.05eq) and CuCl₂ (166 mg, 0.12 mmol, 2 eq) in tert-butanol (11 ċι mL). Purification by column chromatography on silica using Petrol:Et₂O (100:0 to 80:20) afforded a mixture of monomeric and dimeric benzooxaborininol (84 mg) which was converted to the chloro-benzooxaborininol by stirring the mixture of benzooxaborininol in tert-butanol (5 mL) in the presence of CuCl₂ (83 mg, 0.06 mmol, 1eq) for 4 hours. After purification by column chromatography on SiO₂, a mixture of monomeric and dimeric (ratio M:D = 0.5:1) halo-benzooxaborininol was obtained as a white solid (70 mg, 58%); mp = 137 -138 °C; ¹H NMR (600 MHz, CDCl₃) $\delta = 8.01$ (d, J = 7.8, 1H, CH_{Ar(D)}), 7.97 (d, J = 7.8, 0.5H, $CH_{Ar(M)}$), 7.89 (d, J = 7.8, 1H, $CH_{Ar(D)}$), 7.82 (d, J = 7.8, 0.5H $CH_{Ar(M)}$ 7.74 (t, J = 7.8, 1H, $CH_{Ar(D)}$), 7.69 (t, J = 7.8, 0.5H, $CH_{Ar(M)}$), 7.42 (m, 1.5H, $CH_{Ar(D)}$, $CH_{Ar(M)}$), 4.59 (s, 0.5H, BOH), 2.45 (s, 3H, CH_{3(D)}), 2.39 (s, 1.5H, CH_{3(M)}); ¹³C NMR (151 MHz, CDCl₃) δ = 148.7, 148.1, 141.7, 141.0, 133.5, 133.4, 133.0, 132.7, 126.4, 126.4, 123.1, 123.0, 114.3, 113.7, 19.6,

19.5; ¹¹B NMR (128 MHz, CDCl₃+ 1 drop D₂O) δ = 27.7 ; FT-IR (ATR) υ = 3304, 2917, 1620, 1366, 1307, 1291, 1242, 1210, 1099, 968, 762, 752, 640, 629, 602 cm⁻¹; HRMS (CI) calcd for C₉H₉BClO₂ [M + H]⁺ 194.0415 found 194.0415.

4-Chloro-3-(p-tolyl)-1H-benzo[c][1,2]oxaborinin-1-ol (3c)

The desired product was prepared by following **procedure C.2** using 3-(*p*-tol tolyl)-1*H*-benzo[c][1,2]oxaborinin-1-ol (50 mg, 0.21 mmol, 1 eq), CuCl₂ (57 mg, 0.42 mmol, 2 eq) in *tert*-butanol (2 mL). Purification by column chromatography on silica using Petrol:EtOAc (100:0 to 80:20) afforded the chlorobenzooxaborininol (56 mg, 98%) as a white solid; mp = 194 - 195 °C; ¹H NMR (600 MHz, CDCl₃ + 1 drop D₂O) $\delta = 8.06$ (dd, J = 7.4, 0.6, 1H, CH_{Ar}), 8.00 (d, J = 8.1, 1H, CH_{Ar}), 7.80 – 7.65 (m, 3H, CH_{Ar}, 2×CH_{ptol}), 7.47 (td, J = 7.4, 0.7, 1H, CH_{Ar}), 7.27 (d, J = 5.9, 2H, 2×CH_{ptol}), 2.43 (s, 3H, CH₃); ¹³C NMR (151 MHz, CDCl₃ + 1 drop D₂O) $\delta = 147.8$, 141.4, 139.3, 133.0, 132.8, 132.4, 129.3, 128.8, 127.0, 124.0, 114.0, 21.5; ¹¹B NMR (128 MHz, CDCl₃ + 1 drop D₂O) $\delta = 27.8$; FT-IR (ATR) $\upsilon = 3055$, 3024, 2913, 2852, 1600, 1401, 1377, 1306, 1287, 1269, 1245, 1184, 1158, 1104, 1059, 873, 816, 763, 734, 719, 590, 534 cm⁻¹; HRMS (CI) calcd for C₁₅H₁₂BClO₂ [M + H]⁺ 271.0697 found 271.0693.

4-Chloro-3-phenyl-1H-benzo[c][1,2]oxaborinin-1-ol (3e)

The desired product was prepared by following **procedure C.2** using 3-phenyl-H = H

4-Bromo-3-phenyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (6e)

The desired product was prepared by following **procedure C.2** using 3phenyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (60 mg, 0.27 mmol, 1eq), CuBr₂ (121 mg, 0.54 mmol, 2.1 eq) in *tert*-butanol (mL). Purification by filtration through a pad of silica using Et₂O as solvent afforded the bromo-benzooxaborininol (21 mg, 26%) as a white solid; mp = 86 - 88 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.06 (d, *J* = 7.5, 1H, CH_{Ar}), 8.02 (d, *J* = 8.2, 1H, CH_{Ar}), 7.75 (td, *J* = 7.5, 1.3, 1H, CH_{Ar}), 7.73 (dd, *J* = 8.2, 1.3, 1H, CH_{Ar}), 7.50 - 7.44 (5H, m, CH_{Ar}); ¹³C NMR (600 MHz, CDCl₃) δ = 149.2, 141.8, 136.7, 133.3, 132.8, 129.7, 129.3, 129.2, 128.1, 127.3, 126.7, 105.3; ¹¹B NMR (128 MHz, CDCl₃+1 drop D₂O) δ = 28.0 ; FT-IR (ATR) υ = 3059, 2952, 2921, 2852, 1693, 1595, 1579 cm⁻¹; HRMS (CI) calcd for C₁₄H₁₁BO₂Cl [M+H]⁺ 299.9951 found 299.9957.

III.4. Benzoxaboroles (4)

3,3-Dimethylbenzo[c][1,2]oxaborol-1(3H)-ol (4d)

The desired product was prepared by following **procedure D.2** using (2-(prop-1en-1-yl)phenyl)boronic acid (98 mg, 0.60 mmol, 1eq), PtCl₄ (20 mg, 0.06 mmol, 0.1 eq) in CH₂Cl₂ (2 mL). Purification by filtration column chromatography on silica using Petrol:Et₂O (100:0 to 50:50) as solvent afforded a mixture of monomeric and dimeric benzooxaborole (50 mg, 50%, ratio M:D = 1:0.2) as a white solid; mp = 82 °C; ¹H NMR (600 MHz, CDCl₃) δ = 7.88 (d, *J* = 7.3, 0.2H, *CH*_{Ar(D)}), 7.76 (d, *J* = 7.3, 1H, *CH*_{Ar(M)}), 7.54 – 7.45 (m, 1.2H, *CH*_{Ar(D)}, *CH*_{Ar(M)}), 7.37 (m, 1.2H, *CH*_{Ar(D)}, *CH*_{Ar(M)}), 7.33 (d, *J* = 7.7, 0.2H, *CH*_{Ar(D)}), 7.29 (d, *J* = 7.6, 1H, *CH*_{Ar(M)}), 7.03 (s, 1H, BOH), 1.65 (s, 1.2H, *CH*_{3(D)}), 1.62 (s, 6H, *CH*_{3(M)}).¹³C NMR (151 MHz, CDCl₃) δ = 161.7, 131.4, 130.9, 127.5, 120.5, 85.2, 29.3. The carbon adjacent to the boron atom was not observed; ¹¹B NMR (128 MHz, CDCl₃+ 1 drop D₂O) δ = 31.3 ; FT-IR (ATR) υ = 3341, 2967, 1607, 1478, 1421, 1323, 1295, 1233, 1127, 1072, 945, 772, 728, 705, 653, 592 cm⁻¹; HRMS (EI) calcd for C₉H₁₁BO₂ [M⁺] 162.0852 found 162.0851. These spectroscopic data are in agreement with those reported in literature.⁶

3-(4-Methylbenzyl)benzo[c][1,2]oxaborol-1(3H)-ol (4c)

The desired product was prepared by following **procedure D.2** with slight modification using 2-(4-methylstyryl)phenyl)boronic acid (100 mg, 0.40 mmol, 1eq), PtCl₄ (15 mg, 0.04 mmol, 0.1 eq) in CH₂Cl₂ (2 mL). The solution was

allowed to stir for 3 days. Purification by filtration column chromatography on silica using Petrol:Et₂O (100:0 to 50:50) as solvent afforded the monomeric benzooxaborole (24 mg, 24%) as a white solid; mp = 95 °C; ¹H NMR (600 MHz, CDCl₃) δ = 7.81 (d, *J* = 7.5, 1H, CH_{Ar}), 7.44 (td, *J* = 7.5, 1.4, 1H, CH_{Ar}), 7.35 (d, *J* = 7.9, 2H, 2×CH_{ptol}), 7.32 (t, *J* = 7.5, 1H, CH_{Ar}), 7.21 (d, *J* = 7.9, 2H, 2×CH_{ptol}), 7.19 (d, *J* = 7.5, 1H, CH_{Ar}), 5.27 (dd, *J* = 11.8, 3.1, 1H, OCH), 4.46 (s, 1H, BOH), 3.18 (dd, *J* = 16.1, 11.8, 1H, CHH), 3.00 (dd, *J* = 16.1, 3.1, 1H, CHH), 2.38 (s, 3H, CH₃); ¹³C NMR (151 MHz, CDCl₃) δ = 145.4, 139.6, 137.6, 133.1, 131.9, 129.3, 127.0, 126.6, 125.9, 76.6, 40.7, 21.3. The carbon adjacent to the boron atom was not observed; ¹¹B NMR (128 MHz, CDCl₃+1 drop D₂O) δ = 28.3 ; FT-IR (ATR) υ = 3374, 3021, 2916, 1600, 1449, 1393, 1348, 1325, 1299, 1268, 1124, 973, 864, 808, 760, 734, 718, 655, 559, 476 cm⁻¹; HRMS (CI) calcd for C₁₅H₁₅BO₂ [M+H] + 239.1238 found 239.1237.

III.5. Allyl-benzooxaborininols (9)

4-Allyl-3-phenyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (9a)

The desired product was prepared by following **procedure E** using (2-(phenylethynyl)phenyl)boronic acid (100 mg, 0.45 mmol, 1eq), Pd(PhCN)₂Cl₂ (8.6 mg, 0.02 mmol, 5 mol%), NaHCO₃ (76 mg, 0.90 mmol, 2eq) and allyl chloride (185 μ L, 2.25 mmol, 5 eq) in *tert*-butanol (3.5 mL).

Purification by column chromatography on silica using Petrol:EtOAc (100:0 to 80:20) as solvent afforded the monomeric allyl-benzooxaborininol (90 mg, 76% mmol) as a colourless oil; ¹H NMR (600 MHz, CDCl₃) δ = 8.07 (d, *J* = 6.7, 1H, CH_{Ar}), 7.65 (m, 1H, CH_{Ar}), 7.63 – 7.58 (m, 3H, 3×CH_{Ar}), 7.46 – 7.38 (m, 4H, 4×CH_{Ar}), 6.12 (ddt, *J* = 17.4, 10.2, 4.9, 1H, =CH), 5.17 (dd, *J* = 10.2, 1.8, 1H, =CHH), 5.06 (dd, *J* = 17.4, 1.9, 1H, =CHH), 4.54 (s, 1H, BOH), 3.47 – 3.34 (m, 2H, CH₂); ¹³C NMR (151 MHz, CDCl₃) δ = 149.7, 143.2, 137.3, 137.0, 132.8, 132.4, 128.8, 128.7, 128.2, 126.0, 124.3, 116.5, 112.9, 32.5. The carbon adjacent to the boron atom was not observed; ¹¹B NMR (128 MHz, CDCl₃+1 drop D₂O) δ = 28.2; FT-IR (ATR) υ = 3396, 3058, 2918, 2849, 1678, 1603, 1446, 1379, 1316, 1294, 1266, 1198, 993,910, 757, 732, 696, 635, 595 cm⁻¹; HRMS (CI) calcd for C₁₇H₁₅BO₂ [M] + 261.1196 found 261.1195.

4-Allyl-3-(p-tolyl)-1H-benzo[c][1,2]oxaborinin-1-ol (9d)

The desired product was prepared by following **procedure E** using (2-(*p*-tolylethynyl)phenyl)boronic acid (126 mg, 0.53 mmol, 1eq), Pd(PhCN)₂Cl₂ (10.2 mg, 0.03 mmol, 5 mol%), NaHCO₃ (90 mg, 1.10 mmol, 2eq) and

allyl chloride (220 µL, 2.70 mmol, 5eq) in *tert*-butanol (3.5 mL). Purification by column chromatography on silica using Petrol:EtOAc (100:0 to 80:20) as solvent afforded the allyl-benzooxaborininol (100 mg, 68% mmol) as a colourless oil. NMR revealed a mixture of monomer and dimer (ratio M:D = 1:0.4); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.21$ (d, J = 7.3, 0.4H, $CH_{Ar(D)}$), 8.07 (d, J = 7.3, 1H, $CH_{Ar(M)}$), 7.72 – 7.57 (m, 2.8H, 2× $CH_{Ar(D)}$), 2× $CH_{Ar(M)}$), 7.50 (m, 2.8H, 2× $CH_{ptol(D)}$, 2× $CH_{ptol(M)}$), 7.46 – 7.37 (m, 1.4H, $CH_{Ar(D)}$, $CH_{Ar(M)}$), 7.31 – 7.20 (m, 2H, 2× $CH_{ptol(M)}$), 7.13 (d, J = 7.8, 0.8H, 2× $CH_{ptol(D)}$), 6.24 – 6.02 (m, 1.4H, = $CH_{(D)}$, = $CH_{(M)}$), 5.23 – 5.02 (m, 2.8H, = $CH_{2(D)}$, = $CH_{2(M)}$), 4.60 (br s, 1H, BOH), 3.55 – 3.47 (m, 0.8H, $CH_{2(D)}$), 3.47 – 3.39 (m, 2H, $CH_{2(M)}$), 2.41 (s, 3H, $CH_{3(M)}$), 2.39 (s, 1.2H, $CH_{3(D)}$); ¹³C NMR (126 MHz, CDCl₃) $\delta = 150.3$, 149.8, 144.1, 143.3, 138.6, 138.3, 137.5, 137.4, 134.1, 133.6, 132.8, 132.5, 132.3, 128.8, 128.7, 128.6, 125.8, 125.7, 124.2, 116.2, 116.4, 112.9, 112.6, 32.7, 32.6, 21.4. Some signals of the dimer and monomer are overlapping; FT-IR (ATR) $\upsilon = 3388$, 3057, 3026, 2976, 2918, 1972, 1606, 1477, 1440, 1378, 1317, 1294, 1267, 907, 824, 783, 756, 727 cm⁻¹;HRMS (EI) calcd for C₁₈H₁₇BO₂ [M]⁺ 275.1352 found 275.1353.

4-(2-Methylallyl)-3-phenyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (9b)

The desired product was prepared by following **procedure E** using (2-(phenylethynyl)phenyl)boronic acid (100 mg, 0.45 mmol, 1 eq), Pd(PhCN)₂Cl₂ (8.6 mg, 0.02 mmol, 5 mol%), NaHCO₃ (76 mg, 0.9 mmol, 2 eq) and 3-chloro-2-methylprop-1-ene (220 μ L, 2.30 mmol, 5 eq) in *tert*-

butanol (3.5 mL). Purification by column chromatography on silica using Petrol:EtOAc (100:0 to 80:20) as solvent afforded the allyl-benzooxaborininol (104 mg, 83% mmol) as a white solid; mp = 99 - 101 °C; NMR revealed a mixture of monomer and dimer (ratio M:D = 1:0.1); ¹H NMR (600 MHz, CDCl₃ + 1 drop D₂O) δ = 8.24 (dd, *J* = 7.4, 1.4, 0.1H, *CH*_{Ar(D)}), 8.10 - 8.04 (m, 1H, *CH*_{Ar(M)}), 7.72 - 7.60 (m, 3.2H, 2×CH_{Ar(D)}), 3×CH_{Ar(M)}), 7.56 (d, *J* = 8.1, 0.2H, 2×CH_{Ar(D)}), 7.50 (d, *J* = 8.1, 1H, *CH*_{Ar(M)}), 7.48 - 7.29 (m, 4.4H, 4×CH_{Ar(D)}, 4×CH_{Ar(M)}), 4.95 (m, 0.1H, =CHH_(D)), 4.93 (sept, *J* = 1.5, 1H, =CHH_(M)) 4.72 (br s, 0.1H, =CHH_(D)), 4.69 (m, 1H, =CHH_(M)), 4.57 (s, 1H, BOH), 3.38 (s, 0.3H, *CH*_{2(D)}), 3.31 (s, 2H, *CH*_{2(M)}), 1.91 (s, 0.6H, *CH*_{3(D)}), 1.88 (s, 3H, *CH*_{3(M)}); ¹³C NMR (151 MHz, CDCl₃) δ = 150.2, 149.7, 144.54, 144.52, 144.4, 143.6, 137.02, 137.00, 133.5, 132.7, 132.6, 132.4, 128.9, 128.7, 128.6, 128.5, 128.48, 128.45, 128.2, 128.0, 126.0, 125.9, 124.39, 124.36, 113.6, 113.3, 112.3, 112.1, 37.1, 36.9, 23.6, 23.5; ¹¹B NMR (128 MHz, CDCl₃ + 1 drop D₂O) δ = 28.2 ; FT-IR (ATR) υ = 3363, 3058, 3028, 2969, 2929, 2882, 1603, 1476, 1448, 1374, 1316, 1295, 1269,

1200, 1153, 1132, 930, 838, 822, 732, 697, 649, 632, 540, 449 cm⁻¹; HRMS (EI) calcd for C₁₈H₁₇BO₂ [M] ⁺ 275.13524 found 275.13530. **4-(But-3-en-2-yl)-3-phenyl-1***H*-**benzo[c][1,2]oxaborinin-1-ol (9e)**

The desired product was prepared by following **procedure E** slightly modified using (2-(phenylethynyl)phenyl)boronic acid (50 mg, 0.23 mmol, 1eq), Pd(PhCN)₂Cl₂ (4.3 mg, 0.01 mmol, 5 mol%), NaHCO₃ (38 mg, 0.45

[mmol, 2eq) and crotyl chloride (108 μL, 1.15 mmol, 5eq) in *tert*-butanol (1.8 mL). The resulting mixture was heated at 50 °C for 7 hours. Purification by column chromatography on silica using Petrol:EtOAc (100:0 to 80:20) as solvent afforded the allyl-benzooxaborininol (25 mg, 40%) as pale yellow oil; ¹H NMR (600 MHz, CDCl₃ + 1 drop D₂O) $\delta = 8.08$ (d, J = 7.2, 1H, CH_{Ar}), 7.83 (d, J = 8.2, 1H, CH_{Ar}), 7.62 – 7.56 (m, 1H, CH_{Ar}), 7.53 (m, 2H, 2×CH_{Ar}), 7.46 - 736 (m, 4H, 4×CH_{Ar}), 6.21 (ddd, J = 17.4, 10.6, 3.4, 1H, =CH), 5.14 (m, 2H, =CH₂), 3.85 – 3.78 (m, 1H, CH(CH₃)), 1.48 (d, J = 7.3, 3H, CH₃); ¹³C NMR (151 MHz, CDCl₃) $\delta = 149.7$, 143.2, 141.8, 137.7, 133.1, 131.4, 128.9, 128.7, 128.4, 127.3, 126.4, 125.8, 118.4, 114.1, 37.4, 18.8; ¹¹B NMR (128 MHz, CDCl₃+1 drop D₂O) $\delta = 28.0$; FT-IR (ATR) $\upsilon = 3252$, 3060, 2971, 2932, 2876, 1603, 1473, 1450, 1370, 1314, 1279, 1254, 1174, 1020, 904, 758, 696, 633 cm⁻¹; HRMS (CI) calcd for C₁₈H₁₇BO₂ [M] + 275.1350 found 275.1350.

4-(But-2-en-1-yl)-3-phenyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (9c)

OH B O

The desired product was prepared by following **procedure E** using (2-(phenylethynyl)phenyl)boronic acid (100 mg, 0.45 mmol, 1eq), Pd(PhCN)₂Cl₂ (8.6 mg, 0.02 mmol, 5 mol%), NaHCO₃ (76 mg, 0.9 mmol, 2 eq) and 3-chloro-2-methylprop-1-ene (230 μ L, 2.30 mmol, 5 eq) in *tert*-butanol (3.5 mL). Purification by column chromatography on silica using

Petrol: EtOAc (100:0 to 80:20) as solvent afforded the allyl-benzooxaborininol (104 mg, 83% mmol) as a colourless oil. The NMR revealed a mixture of two isomers cis:trans (ratio E:Z = 1:0.6) and traces of benzooxaborininol; ¹H NMR (600 MHz, CDCl₃ + 1 drop D₂O) δ = 8.13 – 8.08 (m, 1.6H, CH_{Ar(Z)}, CH_{Ar(E)}), 7.71 – 7.54 (m, 6.4H, 4×CH_{Ar(E)}, 4×CH_{Ar(Z)}), 7.50 – 7.36 (m, 6.4H, 4×CH_{Ar(E)}, 4×CH_{Ar(Z)}), 5.72 (dqt, *J* = 15.5, 6.5, 1.9, 1H, =CH(CH₃)_(E)), 5.60 (m, 1.2H, =CH(CH₃)_(Z), =CH(CH₂)_(Z)), 5.38 (dqt, *J* = 15.4, 5.2, 1.9, 1H, =CH(CH₂)_(E)), 3.46 – 3.34 (m, 3.2H, CH_{2(E/Z)}), 1.71 (ddt, *J* = 6.5, 1.7, 1.4, 3H, CH_{3(E)}), 1.68 (br d, *J* = 4.5, 1.8H, CH_{3(Z)}); ¹³C NMR (151 MHz, CDCl₃ + D₂O) δ = 149.3, 149.1, 143.34, 143.31, 137.1, 137.0, 133.0, 132.8,

132.5, 132.40, 130.2, 129.9, 129.2, 128.8, 128.7, 128.6, 128.5, 128.3, 128.1, 126.9, 126.1, 126.0, 125.2, 124.9, 124.4, 123.8, 114.8, 113.8, 31.4, 26.7, 18.3, 13.3; ¹¹B NMR (128 MHz, CDCl₃+1 drop D₂O) δ = 28.2; FT-IR (ATR) υ = 3410, 3055, 3019, 2969, 2912, 2850, 1602, 1548, 1446, 1375, 1314, 1291, 1150, 1000, 777, 760, 735, 696, 655 cm⁻¹; HRMS (CI) calcd for C₁₈H₁₇BO₂ [M] + 275.13524 found 275.13521.

Application of Procedure E to (2-(hex-1-yn-1-yl)phenyl)boronic acid

Procedure E was applied using (2-(hex-1-yn-1-yl)phenyl)boronic acid (115 mg, 0.47 mmol, 1eq), Pd(PhCN)₂Cl₂ (11.5 mg, 0.02 mmol, 5 mol%), NaHCO₃ (96 mg, 0.95 mmol, 2 eq) and allyl chloride (230 μL, 2.37 mmol, 5 eq) in *tert*-butanol (3.5 mL). Purification by column chromatography on silica using Petrol:EtOAc (100:0 to 80:20) as solvent afforded a mixture of allyl-benzooxaborininol and benzooxaborininol (77 mg, ratio = 1.1:1). Moreover, each benzooxaborininol was also present as a mixture of monomer and dimer (ratio M:D = 80:20); ¹H NMR (600 MHz, CDCl₃, monomer) δ = 7.98 (d, *J* = 7.4, 1.1H, CH_{Ar}), 7.94 (d, *J* = 7.4, 1H, CH_{Ar}), 7.62 – 7.53 (m, 3H, 3×CH_{Ar}), 7.50 (d, *J* = 8.1, 1.1H, CH_{Ar}), 7.36 – 7.28 (m, 3H, 3×CH_{Ar}), 6.10 (s, 1H, =CH(O)), 6.00 – 5.93 (m, 1.1H, =CH), 5.14 – 5.00 (m, 2H, =CH₂), 4.61 (s, 1H, BOH), 4.56 (s, 1.1H, BOH), 3.38 (dd, *J* = 3.7, 1.7, 2H, CH_{2allyl}), 2.51 (m, 2H, CH₂), 2.48 – 2.42 (m, 2H, CH₂), 1.65 (m, 4H, 2×CH₂), 1.39 (m, 4H, 2×CH₂), 1.00 – 0.89 (m, 6H, 2×CH₃).

Application of Procedure E to (2-ethynylphenyl)boronic acid

Procedure E was applied using (2-ethynylphenyl)boronic acid (88 mg, 0.60 mmol, 1 eq), Pd(PhCN)₂Cl₂ (11.5 mg, 0.03 mmol, 5 mol%), NaHCO₃ (101 mg, 1.20 mmol, 2 eq) and allyl

chloride (250 µL, 3.00 mmol, 5 eq) in *tert*-butanol (3.5 mL). Purification by column chromatography on silica using Petrol:EtOAc (100:0 to 80:20) as solvent afforded the allyl-benzooxaborininol (12 mg, 11%). Subsequent attempts to purify the final compounds remained unsuccessful; ¹H NMR (500 MHz, CDCl₃) δ = 8.02 (d, *J* = 7.4, 1H, *CH*_{Ar}), 7.70 – 7.59 (m, 1H, *CH*_{Ar}), 7.57 – 7.46 (m, 1H, *CH*_{Ar}), 7.38 (td, *J* = 7.4, 0.9, 1H, *CH*_{Ar}), 6.93 (s, 1H, =*CH*(O)), 5.99 (ddt, *J* = 16.3, 10.2, 6.1, 1H, =*CH*), 5.21 – 4.99 (m, 2H, =*CH*₂), 4.60 (s, 1H, BO*H*), 3.37 – 3.20 (m, 2H, *CH*₂).

IV. Spectra

IV.1. Boronic acids (1,7)

(2-(Prop-1-en-1-yl)phenyl)boronic acid (1b)

(2-(Prop-1-en-2-yl)phenyl)boronic acid (1d)

(2-(4-Methylstyryl)phenyl)boronic acid (1c)

(2-Ethynylphenyl)boronic acid (7a)

(2-(p-Tolylethynyl)phenyl)boronic acid (7c)

(2-(Phenylethynyl)phenyl)boronic acid (7e)

(2-(Hex-1-yn-1-yl)phenyl)boronic acid (7f)

IV.2. Benzooxaborininols and halo-benzooxaborininols (2, 3, 4, 6)

1H-Benzo[c][1,2]oxaborinin-1-ol (2a)

4-Chloro-3-methyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (3b)

4-Chloro-3-(p-tolyl)-1H-benzo[c][1,2]oxaborinin-1-ol (3c)

4-Chloro-3-phenyl-1H-benzo[c][1,2]oxaborinin-1-ol (3e)

¹³C NMR (CDCl₃, 150 MHz, R.T.): isotope effect ⁷

4-Bromo-3-phenyl-1H-benzo[c][1,2]oxaborinin-1-ol (6e)

IV.3. Benzoxaboroles (4)

3-(4-Methylbenzyl)benzo[c][1,2]oxaborol-1(3H)-ol (4c)

3,3-Dimethylbenzo[c][1,2]oxaborol-1(3H)-ol (4d)

IV.4. Allyl-benzooxaborininols (9)

4-Allyl-3-(p-tolyl)-1H-benzo[c][1,2]oxaborinin-1-ol (9d)

4-(But-3-en-2-yl)-3-phenyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (9e)

Application of Procedure E to (2-(Hex-1-yn-1-yl)phenyl)boronic acid

Application of Procedure E to (2-Ethynylphenyl)boronic acid

IV.5. Boron NMR spectra

4-Chloro-3-phenyl-1H-benzo[c][1,2]oxaborinin-1-ol (3e)

4-Bromo-3-phenyl-1H-benzo[c][1,2]oxaborinin-1-ol (6e)

3-(4-Methylbenzyl)benzo[c][1,2]oxaborol-1(3H)-ol (4c)

3,3-Dimethylbenzo[c][1,2]oxaborol-1(3H)-ol (4d)

4-Allyl-3-phenyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (9a)

4-(2-Methylallyl)-3-phenyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (9b)

4-(But-2-en-1-yl)-3-phenyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (9c)

4-(But-3-en-2-yl)-3-phenyl-1*H*-benzo[c][1,2]oxaborinin-1-ol (9e)

V. Single crystal X-ray diffraction studies of compound 3e.

Single X-ray diffraction data was collected using an *Agilent SuperNova (Dual Source)* single crystal X-ray diffractometer equipped with an *Atlas CCD Detector*. The data were collected at 150 K using Cu K_{α} radiation ($\lambda = 1.54184$ Å). The data were collected and processed using the *CrysAlisPro* program.⁸ Empirical absorption correction was performed using spherical harmonics implemented in the *SCALE3 ABSPACK* scaling algorithm. Structure solution and refinement were accomplished using *SHELXS-97* and *SHELXL-97*, respectively.⁹ The structure was solved using direct methods. All non-hydrogen atoms were refined anisotropically, while hydrogen atoms associated with carbon and oxygen atoms were refined isotropically in geometrically constrained positions.

Empirical formula	$C_{14}H_{10}BClO_2$			
$M_{\rm r}$ / g mol ⁻¹	256.48			
T / K	150.0(7)			
Crystal system	triclinic			
Space group	<i>P</i> -1			
<i>a</i> / Å	7.1880(2)			
b / Å	11.2966(3)			
<i>c</i> / Å	15.7477(3)			
lpha / °	84.309(2)			
eta / °	86.703(2)			
γ / °	73.529(2)			
$V / Å^3$	73.529(2)			
Ζ	4			
$ ho_{ m calc}$ / g cm $^{-3}$	1.397			
μ / mm ⁻¹	2.674			
<i>F</i> (000)	528.0			
Crystal size / mm ³	$0.20\times0.14\times0.08$			
Radiation	$\mathrm{Cu}K_{\alpha}(\lambda=1.5418~\mathrm{\AA})$			
Index ranges	$-8 \le h \le 8, -13 \le k \le 13, -18 \le l \le 18$			
Reflections collected	17205			
Independent reflections	4305 [$R_{int} = 0.0221, R_{sigma} = 0.0173$]			
Data, restraints, parameters	4305, 0, 327			
Goodness-of-fit on F^2	1.026			
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0290, wR_2 = 0.0776$			
Final R indexes [all data]	$R_1 = 0.0309, wR_2 = 0.0793$			
Largest diff. peak:hole : e $Å^{-3}$	0.234, -0.226			

Table 1. Crystallographic and refinement parameters for 3e, as obtained by single crystal X-ray diffraction.

VI. References

- ¹ C. Körner, P. Starkov, and T. D. Sheppard, J. Am. Chem. Soc., 2010, 132, 5968.
- ² G. Chen, J. Gui, L. Li, and J. Liao, Angew. Chem. Int. Ed, 2011, 50, 7681.
- ³ K. Gerdes, P. Sagar, R. Fröhlich, B. Wibbeling, and E. U. Würthwein, Eur. J. Org. Chem., 2004, 3465.
- ⁴ I. Nakamura, T. Sato, M. Terada, and Y. Yamamoto, Org. Lett., 2007, 9, 4081.
- ⁵ J. R. Falck, M. Bondlela, S. K. Venkataraman, and D. Srinivas, J. Org. Chem., 2001, 8, 7148.
- ⁶ T. Glinka, R. Higuchi, H. Scott, B. Eastman, and O. Rodny, WO2012109164A1, 2012.
- 7 The observed splitting in the 13 C spectrum is 5±1 ppb, which is in agreement with the magnitude of the one-
- bond ³⁵Cl/³⁷Cl effect reported previously in A.E. Aliev and K.D.M. Harris, *Magn. Reson. Chem.*, 1993, **31**, 54.
- ⁸ CrysAlisPro, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET).
- ⁹ G. M. Sheldrick, Acta Crystallogr. A. 2008, 64, 112–122.