Electronic Supplementary Information

The synthesis of a pyridine-*N*-oxide isophthalamide rotaxane utilizing supplementary amide hydrogen bond interactions

Nicholas H. Evans,* Charles E. Gell and Michael J. G. Peach

Contents

Part I: Synthesis	
Additional Notes on Experimental Procedures	
Part II: Spectra	
Macrocycle 2	
Bis-nitrile 3	
Bis-amine 4	
Pyridine- <i>N</i> -oxide bis-hexyl thread 5	S10
Alkyne stopper 7	
Rotaxane 8	
Axle 10	
Attempted formation of pseudo-rotaxane 2.5	S19
Part III: Crystallographic Data	
Macrocycle 2.	
Pseudo-rotaxane 1.5.	S21
Part IV: Computational Modelling	
Structural Information	
Energetic Data	
Atomic Coordinate Files Data	S25
Part V: References	

Part I: Synthesis

Additional Notes on Experimental Procedures

(a) Preparation of pyridine-N-oxide bis-hexyl thread 5

Pyridine-*N*-oxide bis-hexyl thread **5** has been reported previously,¹ but a complete experimental procedure and characterisation was not included.

Scheme ESI-1: Synthesis of pyridine-N-oxide bis-hexyl thread 5

Dihexylpyridine-3,5-dicarboxamide² (250 mg, 0.750 mmol) and NaHCO₃ (1.89 g, 22.5 mmol) were dissolved in a 1:1 mixture of H₂O and butanone (60 mL). Then, a saturated solution of Oxone (1.38 g, 2.25 mmol) in H₂O (~ 5 mL) was added to the reaction mixture, and the resulting mixture stirred for 2 h. After this time, NaCl (7.9 g, 135 mmol) was added and the solution extracted with CHCl₃ (3 × 30 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed *in vacuo* to give the title compound as a white solid (246 mg, 94 %). Mp 182–184 °C. ν_{max}/cm^{-1} (neat) 3290 (N–H), 3120 (C–H), 3050 (C–H), 2960 (C–H), 2920 (C–H), 2860 (C–H), 1650 (C=O), 1530 (N–O). δ H(400 MHz; CDCl₃) 8.94 (2H, s, *ortho*-pyridyl Ar*H*), 8.33 (1H, s, *para*-pyridyl Ar*H*), 7.95 (2H, t, ³*J* = 5.4 Hz, N*H*), 3.41–3.46 (4H, NHC*H*₂), 1.61–1.68 (4H, NHCH₂C*H*₂), 1.29-1.40 (12H, 3 × C*H*₂), 0.87-0.90 (6H, C*H*₃). δ C(100 MHz; CDCl₃) 162.2 (C=O), 140.1, 134.2, 124.8 (3 pyridyl Ar C environments), 40.7, 31.4, 29.3, 26.7, 22.5, 14.0 (6 sp³ C environments). *m/z* (ES) 350.2421 ([M + H]⁺, C₁₉H₃₂N₃O₃ requires 350.2438).

(b) Preparation of alkyne stopper 7

A synthesis with full characterisation data has not been previously reported for this compound.

Scheme ESI-2: Synthesis of alkyne stopper 7

NaH (60% dispersion in mineral oil, 50 mg, 1.3 mmol) was added to a solution of 2,2'-diphenylethanol (225 mg, 1.1 mmol) in dry THF (3 mL) under an Ar (g) atmosphere. Then propargyl bromide (80% in toluene, 0.18 mL, 2.9 mmol) was stirred for 24 h at RT under an Ar (g) atmosphere. After careful quenching with H₂O, the reaction mixture was extracted with Et_2O (3 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated to give a yellow oil. The crude material was purified by silica gel column chromatography (95:5 Petrol 40-60/EtOAc) to yield the title compound as a waxy-white solid (140 mg, 52%). $R_{\rm f} = 0.57, 95: 5$ Petrol 40-60/EtOAc. vmax/cm⁻¹ (neat) 3270 (C-H), 3020 (C-H), 3000 (C-H), 2940 (C-H), 2910 (C-H), 2890 (C-H), 2850 (C-H), 2800 (C-H), 2110 (alkyne C-C), 1600 (ring C=C), 1490 (ring C=C), 1450 (ring C=C), 1090 (C-O). δ H(400 MHz; CDCl₃) 7.17-7.31 (10H, m, aromatic H), 4.31 (1H, t, ${}^{3}J = 7.3$ Hz, CHCH₂O), 4.16 (2H, d, ${}^{4}J =$ 2.4 Hz, CH₂CCH), 4.07 (2H, d, ${}^{3}J = 7.3$ Hz, CHCH₂O) 2.42 (1H, t, ${}^{4}J = 2.4$ Hz, alkyne H). &C(100 MHz; CDCl₃) 141.8, 128.4, 128.2, 126.5 (4 Ar C environments), 79.6, 74.6, 72.8, 58.2, 50.8 (3 sp³ C & 2 sp C environments). m/z (ES) 254.1540 ([M + NH_4]⁺, C₁₇H₂₀NO requires 254.1539).

Part II: Spectra

Macrocycle 2

¹H NMR (CDCl₃, 400 MHz)

Macrocycle 2

Bis-nitrile 3

Bis-nitrile 3

Mass Spectrum (ES +ve)

Bis-amine 4

Bis-amine 4

Pyridine-N-oxide bis-hexyl thread 5

¹H NMR (CDCl₃, 400 MHz)

Pyridine-N-oxide bis-hexyl thread 5

Alkyne stopper 7

¹H NMR (CDCl₃, 400 MHz)

Alkyne stopper 7

Rotaxane 8

Rotaxane 8

Axle 10

Axle 10

The upfield shift of the aromatic protons of macrocycle **2** is only ~ 0.025 ppm (compared to an average of ~ 0.5 ppm for the equivalent protons of macrocycle **1**).

The significant downfield shifts of the amide and internal isophthalamide proton of **2** are attributed to hydrogen bonding of the pyridine-*N*-oxide thread **5** predominantly *perching on* and **not** *threading through* macrocycle **2**.

Part III: Crystallographic Data

Macrocycle 2

Single crystals of macrocycle **2** were grown by slow evaporation of a chloroform solution. A suitable crystal was selected and the crystal was mounted on a MITIGEN holder using Paratone-N oil on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 99.9(2) K during data collection. Using Olex2,³ the structure was solved with the ShelXT⁴ structure solution program using Direct Methods and refined with the ShelXL⁵ refinement package using Least Squares minimisation.

X-ray crystal structure of macrocycle 2. Thermal ellipsoids are displayed at 50% probability.

Crystal data for macrocycle 2 (CCDC Number: 1473491):

 $C_{32}H_{30}N_2O_4$ (*M* =506.58 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 8.7998(4) Å, *b* = 13.3320(6) Å, *c* = 12.0001(6) Å, β = 110.314(6)°, *V* = 1320.28(12) Å³, *Z* = 2, *T* = 99.9(2) K, μ (CuK α) = 0.675 mm⁻¹, *Dcalc* = 1.274 g/cm³, 7970 reflections measured (7.856° ≤ 2 Θ ≤ 147.804°), 4647 unique (R_{int} = 0.0340, R_{sigma} = 0.0558) which were used in all calculations. The final R_1 was 0.0434 (I > 2 σ (I)) and wR_2 was 0.1040 (all data).

Pseudo-rotaxane 1.5

Single crystals of pseudo-rotaxane 1.5 were grown by slow diffusion of isopropyl ether into a chloroform solution of 1 and 5. A suitable crystal was selected and mounted on a polyimide loop using Paratone-N oil on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at T = 99.9(3) K during data collection. Using Olex2,³ the structure was solved with the ShelXT⁴ structure solution program using Direct Methods and refined with the ShelXL⁵ refinement package using Least Squares minimisation.

X-ray crystal structure of pseudo-rotaxane **1.5***. Thermal ellipsoids are displayed at* 50% *probability.*

Crystal data for pseudo-rotaxane 1.5 (CCDC Number: 1473492)

 $C_{48}H_{62}Cl_3N_5O_8$, $M_r = 943.37$, monoclinic, $P2_1/n$ (No. 14), a = 15.0431(3) Å, b = 10.80301(18) Å, c = 29.7705(5) Å, $\beta = 96.8269(17)^\circ$, $\alpha = \gamma = 90^\circ$, V = 4803.73(15) Å³, T = 99.9(3) K, Z = 4, Z' = 1, μ (CuK_a) = 2.196, 52573 reflections measured, 8552 unique ($R_{int} = 0.0550$) which were used in all calculations. The final wR_2 was 0.2091 (all data) and R_1 was 0.0692 (I > 2(I)).

Part IV: Computational Modelling

Structural Information

Two views of the crystal structure of macrocycle 1.

The same two views of the optimised structure the macrocyclic component of pseudorotaxane 1.5, highlighting the change in conformation of the macrocycle for the syn-syn thread conformation. Thread not shown for clarity.

The same two views of the optimised structure of pseudo-rotaxane 1.5, highlighting the change in conformation of macrocycle 1 (green) for the syn-syn thread conformation; thread highlighted in red.

Two views of the crystal structure of macrocycle 2.

The same two views of the optimised structure the macrocyclic component of pseudorotaxane 2.5, highlighting the change in conformation of the macrocycle for the syn-syn thread conformation. Thread not shown for clarity.

The same two views of the optimised structure of pseudo-rotaxane 2.5, highlighting the change in conformation of macrocycle 2 (green) for the syn-syn thread conformation; thread highlighted in red.

Energetic Data

Relative energies of the thread in the three conformations considered (energies in kJ mol⁻¹):

syn-syn	5.5
syn-anti	0
anti-anti	8.5

Relative binding energies of the pseudo-rotaxane for **1·5** *and* **2·5***, in each of the three thread conformations considered (energies in kJ mol*⁻¹):

	1.5	2.5
syn-syn	0.0	0.0
syn-anti	11.2	30.1
anti-anti	31.8	31.7

Atomic Coordinate Files Data

Reference for supplied structure files, including total energies of structures computed as discussed in the manuscript (B3LYP/6-31G* with solvent and dispersion corrections) in atomic units (Hartree). It was confirmed that none of the structures had any imaginary frequencies; each is a minimum on its respective potential energy surface.

Filename	Structure	Energy
1.mol2	Minimised structure of 1	-1570.75963666
2.mol2	Minimised structure of 2	-1647.97900279
5.mol2	Minimised structure of 5	-1132.67614542
1-5_ss.mol2	Minimised structure of 1.5 with syn-syn thread	-2703.52770075
1-5_sa.mol2	Minimised structure of 1.5 with syn-anti thread	-2703.52345266
1-5_aa.mol2	Minimised structure of 1.5 with anti-anti thread	-2703.51558226
2-5_ss.mol2	Minimised structure of 2.5 with syn-syn thread	-2780.74006196
2-5_sa.mol2	Minimised structure of 2.5 with syn-anti thread	-2780.72858493
2-5_aa.mol2	Minimised structure of 2.5 with anti-anti thread	-2780.72799531

Part V: References

1) J. M. Mercurio, F. Tyrrell, J. Cookson and P. D. Beer, *Chem. Commun.*, 2013, **49**, 10793-10795.

2) J. A. Wisner, P. D. Beer and M. G. B. Drew, Angew. Chem. Int. Ed., 2001, 40, 3606-3609.

3) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.

4) G. M. Sheldrick, Acta Cryst. A, 2015, 71, 3-8.

5) G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112-122.