Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Cu(I)-Catalyzed Oxidative Homo-Coupling of

Thiazoline-4-Carboxylates: Synthesis of 4,4'-Bithiazoline Derivatives

Xinxin Fang^{*a*}, Kaifan Zhang^{*a*}, Hequan Yao^{*a*}* and Yue Huang^{*b*}*

^a State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University, Nanjing, 24 Tong Jia Xiang, 210009, P. R. China.

^b Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 24 Tong Jia Xiang, 210009, P. R. China. E-mail: hyao@cpu.edu.cn, yhuang@cpu.edu.cn

1. General Information	1
2. General Procedure for the Preparation of Substrates	1
2.1 Preparation of Thiazoline-4-carboxylates	1
2.2 Preparation of Oxazoline-4-carboxylates	1
3. Cu(I)-catalyzed Homo-coupling of Thiazoline-4-carboxylates	2
3.1 General Procedure	2
3.1.1 Optimization for Synthesis of 4,4'-Bithiazoline-4-carboxylates	2
3.1.2 Typical Experimental Procedure for Synthesis of 2a-2r	3
3.1.3 Gram-scale Reaction of 2a	3
3.1.4 Further Functionalization of Generated Homo-coupling Products	4
3.2 Characterization of the Homo-coupling and Functionalizationed Products	5
References	16
¹³ C and ¹ H-NMR Spectra of Title Compounds	17

1. General Information

All chemicals and reagents were purchased from commercial suppliers and used without further purification. The products were purified by flash chromatography on silica gel. Melting point (mp) was measured on a microscopic melting point apparatus. ¹H NMR spectra were recorded at 300 MHz NMR spectrometer. ¹³C NMR spectra were recorded at 75 MHz NMR spectrometer. NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 or 77.0 ppm) as the internal standard. High resolution mass measurement was performed with an electrospray ionization (ESI) method on a Q-TOF mass spectrometer operating in positive ion mode.

2. General Procedure for the Preparation of Substrates

2.1 Preparation of Thiazoline-4-carboxylates

As shown in Scheme S1, the suspension of benzonitrile (20 mmol) and L-cysteine (40 mmol) in EtOH (30 mL) was stirred at room temperature or refluxed for 3 h, then water (20 mL) was added and the reaction mixture was stirred at room temperature overnight. EtOH was removed in vacuum. To the remaining solution was added 1N HCl to adjust to pH = 3 under 0 °C. The resulting precipitate was filtered to yield a white solid 2-pheny-4, 5-dihydrothiazole-4-carboxylic acid, which directly next step without purification. Crude was used to 2-phenyl-4, 5-dihydrothiazole-4-carboxylic acid (4.1g, 20 mmol) was dissolved in 20 mL DMF at 0 ℃, to which potassium bicarbonate (2.0 g, 20 mmol) was added. After stirring for 30 min, iodomethane (1.86 mL, 30 mmol) was added and the solution was brought to room temperature and stirred for 3h until completion by TLC (hexanes: ethyl acetate = 10:1). The reaction mixture was then diluted in ethyl acetate (40 mL), washed with brine 3 times, and dried over Na₂SO₄. The crude product mixture was then concentrated in vacuum and purified by flash chromatography on silica gel to yield the product as a white solid (3.63 g, 82% yield, 2 steps, mp 67 °C). Data are consistent with a previously characterized compound. All other thiazolines were prepared via a route reported by corresponding literatures.¹

Scheme S1. Preparation of thiazoline-4-carboxylates

2.2 Preparation of Oxazoline-4-carboxylates

As shown in **Scheme S2**, to a dichloromethane solution (20 mL) of L-serine methyl ester hydrochloride (1.85 g, 10 mmol) and ethyl benzimidate hydrochloride (2.08 g, 13.4 mmol) was added triethylamine (1.9 mL, 13.4 mmol) at 0 °C and the reaction mixture was then stirred at room temperature overnight. After completion of the reaction, the reaction mixture was diluted with dichloromethane (30 mL), washed with saturated NaHCO₃ solution (40 mL) and brine (40 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The residue was purified by flash chromatography on silica gel to afford the product (5.71 g, 89% yield) as a white liquid.²

Scheme S2. Preparation of oxazoline-4-carboxylate

3. Cu(I)-catalyzed Homo-coupling of Azoline-4-carboxylates

3.1 General Procedure

3.1.1 Optimization for Synthesis of 4,4'-Bithiazoline-4-carboxylates^a

	S Ph N 1a	Ca O ₂ Me 1,4	t. /Ligand xidant S Base Ph -dioxane	Za Za	+ S- + Ph		Ph
Entry	Cat.	Base	Solvent	Ligand	Т	Yield	dr^b
-	(mol %)		(1.0 mL)		(°C)	$(\%)^b$	
1	CuI (10)	Cs ₂ CO ₃	1,4-dioxane	L1	70	44	1.4:1
2	CuI (10)	CsF	1,4-dioxane	L1	70	trace	/
3	CuI (10)	CsOAc	1,4-dioxane	L1	70	60	1.2:1
4	CuI (10)	K ₂ CO ₃	1,4-dioxane	L1	70	trace	/
5	CuI (10)	Na ₂ CO ₃	1,4-dioxane	L1	70	trace	/
6	CuI (10)	Et ₃ N	1,4-dioxane	L1	70	trace	/
7	CuI (10)	K ₃ PO ₄	1,4-dioxane	L1	70	40	1.9:1
8	CuI (10)	DIPEA	1,4-dioxane	L1	70	nr	/
9	Cu ₂ O (10)	CsOAc	DCM	L1	70	36	1.3:1
10	Cu ₂ O (10)	CsOAc	DCE	L1	70	30	1.5:1
11	Cu ₂ O (10)	CsOAc	THF	L1	70	39	1.3:1
12	Cu ₂ O (10)	CsOAc	toluene	L1	70	31	1.2:1
13	Cu ₂ O (10)	CsOAc	DMF	L1	70	trace	/
14	Cu ₂ O (10)	CsOAc	MeOH	L1	70	33	1.3:1
15	Cu ₂ O (10)	CsOAc	MeCN	L1	70	52	1.4:1
16	Cu ₂ O (10)	CsOAc	1,4-dioxane	L2	70	67	1.2:1
17	Cu ₂ O (10)	CsOAc	1,4-dioxane	L3	70	23	1.8:1
18	Cu ₂ O (10)	CsOAc	1,4-dioxane	L4	70	68	1.4:1
19	Cu ₂ O (10)	CsOAc	1,4-dioxane	L5	70	33	1.4:1
20	Cu ₂ O (10)	CsOAc	1,4-dioxane	L6	70	59	1.7:1
21	Cu ₂ O (5)	CsOAc	1,4-dioxane	L1	70	44	1.1:1
22	Cu ₂ O (15)	CsOAc	1,4-dioxane	L1	70	82	1.1:1
23	Cu ₂ O (20)	CsOAc	1,4-dioxane	L1	70	69	1.2:1
24	Cu ₂ O (15)	CsOAc	1,4-dioxane	L1	65	63	1.1:1

Table S1 Screening of Reaction Conditions^a

25	Cu ₂ O (15)	CsOAc	1,4-dioxane	L1	75	84 (86) ^c	1.5:1
26	Cu ₂ O (15)	CsOAc	1,4-dioxane	L1	80	65	1.2:1
27	Cu ₂ O (15)	NaOH	1,4-dioxane	L1	75	trace	/
28	Cu ₂ O (15)	KOH	1,4-dioxane	L1	75	trace	/
29^d	Cu ₂ O (15)	CsOAc	1,4-dioxane	L1	75	81	1.3:1
	Me N			COOH S CO	он (<mark>М. С</mark> Н L6	ООН	

^{*a*} Reaction conditions: **1a** (0.4 mmol, 1 equiv), catalyst, ligand (0.12 mmol), oxidant (0.08 mmol), CsOAc (0.4 mmol), 1,4-dioxane (1.0 mL), air atmosphere, 70 °C, 26 h. ^{*b*} Yield and diastereoselectivity ratio were determined by ¹H-NMR using dibromomethane ($\delta = 4.80$) as an internal standard. ^{*c*} Isolated yield. ^{*d*} Under O₂ atmosphere.

3.1.2 Typical Experimental Procedure for Synthesis of 2a-2r

A reaction tube was charged with azole-4-carboxylate **1** (0.4 mmol, 1 equiv), Cu₂O (0.06 mmol, 15 mol %), Ligand (0.12 mmol, 0.3 equiv), Ph₂I⁺OTf⁻ (0.08 mmol, 0.2 equiv), CsOAc (0.4 mmol, 1 equiv) and 1,4-dioxane (1.0 mL). The reaction mixture was vigorously stirred at 75 °C (oil temperature). After stirring for 26 h, the mixture was cooled to room temperature, diluted with dichloromethane and filtered. The filtrate was washed with saturated NaHCO₃ solution, water and brine, dried over Na₂SO₄, and concentrated in vacuum to give dark residue, which was purified by flash chromatography on silica gel (PE:EA = 100:1-40:1; TLC: R_{f1} = 0.6-0.4, R_{f2} = 0.5-0.2, PE:EA = 20:1) to afford the desired product **2**.

3.1.3 Gram-scale Reaction of 2a

A reaction tube was charged with azole-4-carboxylate **1** (6 mmol, 1.33 g, 1 equiv), Cu₂O (0.9 mmol, 15 mol %), Ligand (1.8 mmol, 0.3 equiv), Ph₂I⁺OTf (1.2 mmol, 0.2 equiv), CsOAc (6 mmol, 1 equiv) and 1,4-dioxane (5.0 mL). The reaction mixture was vigorously stirred at 75 °C (oil temperature). After stirring for 72 hours, the mixture was cooled to room temperature, diluted with dichloromethane and filtered. The filtrate was washed with saturated NaHCO₃, water and brine, dried over Na₂SO₄, and concentrated in vacuo to give dark residue, which was purified by flash chromatography on silica gel to afford 958 mg light yellow solid in 72 % yield, dr = 1.8: 1.

3.1.4 Further Functionalization of Generated Homo-coupling Products

General Procedure for Preparing of 3

A 25 mL flask was charged with **2j** (0.2 mmol, 1 equiv), CuI (0.04 mmol, 20 mol %), 6-methylpicolinic acid (0.08 mmol, 40 mol %), K_3PO_4 (0.8 mmol, 4 equiv) and 4-methoxyphenol (0.6 mmol, 3 equiv). The reaction mixture was then vigorously stirred at 90 °C (oil temperature) under argon for 12 h. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate (20 mL) and filtered through a plug of celite. The mixture was concentrated in vacuum and purified by flash chromatography on silica gel to afford the desired product **3** in 56% yield.³

General Procedure for Preparing of 4

A 25 mL flask was charged with 2j (0.2 mmol, 1.0 equiv), arylboronic acid (0.3 mmol, 1.5 equiv), Pd(OAc)₂ (2.2 mg, 5 mol %), Et₃N (0.6 mmol, 3.0 equiv) and H₂O (3.0 mL). The reaction mixture was stirred at room temperature under air. After the reaction was stopped, the solution was diluted with ethyl acetate, washed with water and brine, dried over Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by flash chromatography on silica gel to afford the desired product **4** in 71% yield.⁴

General Procedure for Preparing of 4,4'-Bithiazoles

	2a N Ph Ph Ph Ph Ph Ph Ph Ph	1.NaOH, MeOH/H ₂ O 2.Oxidant, Solvent, T	Ph N	$N \rightarrow Ph$ S
Entry	Oxidant	Solvent	Т	Yield
	(equiv)	(2.0 mL)	(°C)	$(\%)^b$
1	MnO ₂ (1.1)	DCM	80	trace
2	DDQ (1.1)	DCM	80	31
3	TBHP (1.1)	DCM	80	0

Table S2 Screening of Reaction Conditions^a

4	DTBP (1.1)	DCM	80	0
5	IBX (1.1)	DCM	80	0
6	DDQ (1.1)	1,4-dioxane	80	<10
7	DDQ (1.1)	toluene	80	52
8	DDQ (1.1)	THF	80	<10
9	DDQ (1.1)	EA	80	41
10	DDQ (1.1)	MeCN	80	trace
11	DDQ (2.0)	toluene	80	56
12	DDQ (3.0)	toluene	80	66
13	DDQ (3.0)	toluene	rt	trace
14	DDQ (3.0)	toluene	100	68
15	DDQ (3.0)	toluene	110	74 (70) ^{<i>c</i>}

^{*a*} Reaction conditions: (1) **2a** (0.2 mmol), NaOH (1.6 mmol, 8 equiv), MeOH/H₂O (1:1, 3.0 mL); (2) DDQ (0.6 mmol, 3 equiv), toluene (2.0 ml), 110 °C, 24 h. ^{*b* 1}H NMR yields using dibromomethane (δ = 4.80) as an internal standard. ^{*c*} Isolated yield.

General Procedure. A 25 mL round bottom flask was charged with 0.2 mmol **2**, 1.6 mmol NaOH, 5 mL MeOH/H₂O (1:1), heated to reflux for 2 h.⁵ MeOH was removed in vacuum. 6 N HCl was added until pH = 4, the resulting precipitate was filtered to yield a white solid 2,2'-diphenyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylic acid, which was used directly to next step without purification. A reaction tube was charged with the acid (0.2 mmol, 1 equiv), DDQ (0.6 mmol, 3 equiv) and toluene (2.0 mL). The reaction mixture was vigorously stirred at 110 °C (oil temperature) under air for 24 h. After cooling to room temperature, diluted with dichloromethane and filtered, the filtrate was concentrated in vacuum directly to give dark residue, which was purified by flash chromatography on silica gel to afford the desired product **5**.⁶

3.2 Characterization of the Homo-coupling and Functionalizationed Products

Crystal structure of 2a

Figure S1. ORTEP plot of the crystal structure of 2a (at 30% probability level).

X-ray crystallographic data of 2a

CCDC number	1441556
Empirical formula	$C_{22}H_{20}N_2O_4S_2$
Formula weight	440.52
Temperature	296 K
Wavelength	0.71073 Å
Space group	P2(1)/c
Unit cell dimensions	a= 9.621(3) Å =90 °
	b= 14.256(5) Å =111.224(5) °
	$c= 8.097(3) \text{ Å} =90 ^{\circ}$
Volume	$1035.2(6) \text{ Å}^3$
Ζ	2
Density (calculated)	1.413 Mg/m3
F(000)	460.0
Completeness to theta = 25.010°	99.4%
Absorption correction	MULTI-SCAN
Max. and min. transmission	0.939 and 0.923
R indices (all data)	R=0.0324(1524)
	wR2(reflections)= 0.0867(1813)

Crystal structure of 2a'

Figure S2. ORTEP plot of the crystal structure of 2a' (at 30% probability level).

I ruy crystanographic aata of 2a	X-ray	crystall	ographic	data	of 2a'
----------------------------------	-------	----------	----------	------	--------

CCDC number	1444167	
Empirical formula	$C_{22}H_{20}N_2O_4S_2$	
Formula weight	440.52	
Temperature	296 K	
Wavelength	0.71073 Å	
Space group	P2(1)/c	
Unit cell dimensions	a= 11.3995(11) Å	=90 °
	b= 15.4075(15) Å	= 97.817(2) °

	c= 12.3398(12) Å =90 °
Volume	$2147.2(4) \text{ Å}^3$
Ζ	4
Density (calculated)	1.363 Mg/m3
F(000)	920.0
Completeness to theta = 25.010°	99.9%
Absorption correction	MULTI-SCAN
Max. and min. transmission	0.941 and 0.926
R indices (all data)	R=0.0385(3191)
	wR2= 0.1058(3796)

Characterization data of 2a-2r

(4R,4'S)-dimethyl 2,2'-diphenyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (2a)

Pale white solid, 45.6 mg, 52% yield, mp 145-146 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.83-7.67 (m, 4H), 7.44-7.35 (m, 2H), 7.35-7.27 (m, 4H), 4.57 (d, *J* = 11.7 Hz, 2H), 4.21 (d, *J* = 11.7 Hz, 2H), 3.81 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 170.9, 132.8, 131.5, 128.6, 128.4, 94.7, 53.1, 38.9 ppm; HRMS (ESI) calcd for [C₂₂H₂₀N₂O₄S₂ + H]⁺ 441.0937, found 441.0939.

(4R,4'R)-dimethyl 2,2'-diphenyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (2a')

Pale yellow solid, 30.4 mg, 34% yield, mp 165-166 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.01-7.76 (m, 4H), 7.61-7.45 (m, 2H), 7.40 (dd, J = 8.2, 6.4 Hz, 4H), 4.14 (d, J = 12.2 Hz, 2H), 3.91 (d, J = 12.2 Hz, 2H), 3.77 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 171.0, 132.8, 131.7, 128.8, 128.5, 92.8, 53.3, 38.6 ppm; HRMS (ESI) calcd for [C₂₂H₂₀N₂O₄S₂ + H]⁺ 441.0937, found 441.0936.

(4R,4'S)-dimethyl 2,2'-di-p-tolyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (2b)

White solid, 32.0 mg, 34% yield, mp 159-160 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 4H), 7.11 (d, *J* = 7.9 Hz, 4H), 4.54 (d, *J* = 11.7 Hz, 2H), 4.18 (d, *J* = 11.7 Hz, 2H), 3.80 (s, 6H), 2.32 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.2, 171.0, 141.8, 130.2, 129.0, 128.6, 94.6, 53.0, 38.8, 21.5 ppm; HRMS (ESI) calcd for [C₂₄H₂₄N₂O₄S₂ + H]⁺ 469.1250, found 469.1250.

(4R,4'R)-dimethyl 2,2'-di-p-tolyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]- 4,4'-dicarboxylate (2b')

White solid, 29.0 mg, 31% yield, mp 166-167 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2 Hz, 4H), 7.20 (d, *J* = 7.9 Hz, 4H), 4.12 (d, *J* = 12.2 Hz, 2H), 3.89 (d, *J* = 12.2 Hz, 2H), 3.76 (s, 6H), 2.39 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 170.8, 142.2, 130.2, 129.1, 128.8, 92.8, 53.3, 38.5, 21.6 ppm; HRMS (ESI) calcd for [C₂₄H₂₄N₂O₄S₂ + H]⁺ 469.1250, found 469.1257.

(4R,4'S)-dimethyl 2,2'-di-m-tolyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (2c)

White oil liquid, 36.5 mg, 39% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.56 (d, J = 2.8 Hz, 4H), 7.24-7.12 (m, 4H), 4.55 (d, J = 11.7 Hz, 2H), 4.20 (d, J = 11.7 Hz, 2H), 3.80 (s, 6H), 2.31 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.6, 171.0, 138.1, 132.8, 132.2, 129.1, 128.2, 125.8, 94.6, 53.1, 38.8, 21.3 ppm; HRMS (ESI) calcd for [C₂₄H₂₄N₂O₄S₂ + H]⁺ 469.1250, found 469.1251.

(4R,4'R)-dimethyl 2,2'-di-m-tolyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]- 4,4'-dicarboxylate (2c')

Yellow solid, 33.1 mg, 35% yield, mp 135-136 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.70 (s, 2H), 7.68-7.59 (m, 2H), 7.37-7.26 (m, 4H), 4.14 (d, *J* = 12.2 Hz, 2H), 3.90 (d, *J* = 12.2 Hz, 2H), 3.77 (s, 6H), 2.38 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 171.2, 138.2, 132.8, 132.5, 129.2, 128.3, 126.1, 92.8, 53.3, 38.5, 21.3 ppm; HRMS (ESI) calcd for [C₂₄H₂₄N₂O₄S₂ + H]⁺ 469.1250, found 469.1250.

(4R,4'S)-dimethyl 2,2'-di-o-tolyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]- 4,4'-dicarboxylate (2d)

White solid, 29.3 mg, 31% yield, mp 103-104 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.51 (dd, J = 8.0, 1.5 Hz, 2H), 7.37-7.24 (m, 2H), 7.19 (d, J = 7.2 Hz, 4H), 4.48 (d, J = 11.6 Hz, 2H), 4.18 (d, J = 11.7 Hz, 2H), 3.82 (s, 6H), 2.45 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 173.0, 170.7, 137.5, 132.3, 131.3, 130.3, 129.9, 125.7, 95.5, 53.1, 39.1, 21.4 ppm; HRMS (ESI) calcd for $[C_{24}H_{24}N_2O_4S_2 + H]^+$ 469.1250, found 469.1248.

(4R,4'R)-dimethyl 2,2'-di-o-tolyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]- 4,4'-dicarboxylate (2d')

White solid, 24.4 mg, 26% yield, mp 142-143 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.57 (dd, J = 7.6, 1.5 Hz, 2H), 7.31-7.28 (m, 2H), 7.27-7.15 (m, 4H), 4.06 (d, J = 12.1 Hz, 2H), 3.90 (d, J = 12.1 Hz, 2H), 3.80 (s, 6H), 2.58 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 171.4, 138.0, 132.3, 131.3, 130.4, 130.0, 125.6, 93.7, 53.2, 38.7, 21.2 ppm; HRMS (ESI) calcd for [C₂₄H₂₄N₂O₄S₂ + H]⁺ 469.1250, found 469.1251.

(4R,4'S)-dimethyl 2,2'-bis(4-methoxyphenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4, 4'-dicarboxylate (2e)

White oil liquid, 27.4 mg, 27% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, *J* = 8.8 Hz, 4H), 6.80 (d, *J* = 8.7 Hz, 4H), 4.53 (d, *J* = 11.7 Hz, 2H), 4.17 (d, *J* = 11.6 Hz, 2H), 3.79 (s, 6H), 3.77 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 170.7, 161.6, 129.8, 125.1, 113.1, 94.0, 54.8, 52.5, 38.3 ppm; HRMS (ESI) calcd for [C₂₄H₂₄N₂O₆S₂ + H]⁺ 501.1149, found 501.1151.

(4R,4'R)-dimethyl 2,2'-bis(4-methoxyphenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (2e')

White solid, 22.8 mg, 23% yield, mp 175-176 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, *J* = 8.5 Hz, 4H), 6.89 (d, *J* = 8.5 Hz, 4H), 4.11 (d, *J* = 12.2 Hz, 2H), 3.89-3.84 (m, 8H), 3.75 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.0, 170.0, 162.4, 130.5, 125.7, 113.7, 92.7, 55.4, 53.2, 38.6 ppm; HRMS (ESI) calcd for [C₂₄H₂₄N₂O₆S₂ + H]⁺ 501.1149, found 501.1151.

(4R,4'S)-dimethyl 2,2'-bis(4-(methoxycarbonyl)phenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (2f)

White solid, 38.0 mg, 34% yield, mp 154-155 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 8.2 Hz, 4H), 7.72 (d, J = 8.3 Hz, 4H), 4.51 (d, J = 11.8 Hz, 2H), 4.17 (d, J = 11.8 Hz, 2H), 3.81 (s, 6H), 3.75 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 170.5, 166.3, 136.4, 132.6, 129.6, 128.5, 94.7,

53.3, 52.3, 39.0 ppm; HRMS (ESI) calcd for $[C_{26}H_{24}N_2O_8S_2 + H]^+$ 557.1047, found 557.1048.

(4R,4'S)-dimethyl 2,2'-bis(4-acetylphenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (2g)

Yellow oil liquid, 32.5 mg, 31% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.76-7.72 (m, 8H), 4.52 (d, *J* = 11.8 Hz, 2H), 4.18 (d, *J* = 11.8 Hz, 2H), 3.75 (s, 6H), 2.48 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 197.4, 171.8, 170.4, 139.0, 136.4, 128.8, 128.3, 94.7, 53.3, 39.0, 26.7 ppm; HRMS (ESI) calcd for [C₂₆H₂₄N₂O₆S₂ + H]⁺ 525.1149, found 525.1157.

(4R,4'R)-dimethyl 2,2'-bis(4-acetylphenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'dicarboxylate (2g')

Pale yellow solid, 29.5 mg, 28% yield, mp 65-66 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.45-7.53 (m, 8H), 4.08 (d, *J* = 12.4 Hz, 2H), 3.87 (d, *J* = 12.3 Hz, 2H), 3.71 (s, 6H), 2.56 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 197.5, 171.4, 170.4, 139.3, 136.5, 129.0, 128.4, 92.8, 53.4, 38.8, 26.9 ppm; HRMS (ESI) calcd for [C₂₆H₂₄N₂O₆S₂ + H]⁺ 525.1149, found 525.1145.

(4R,4'S)-dimethyl 2,2'-bis(4-fluorophenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4' -dicarboxylate (2h)

White solid, 40.7 mg, 43% yield, mp 110-111 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.88-7.59 (m, 4H), 6.99-6.96 (m, 4H), 4.56 (d, *J* = 11.8 Hz, 2H), 4.21 (d, *J* = 11.7 Hz, 2H), 3.81 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 170.7, 166.4, 163.0, 130.8, 130.7, 129.0, 115.6, 115.3, 94.6, 53.2, 39.1 ppm; HRMS (ESI) calcd for [C₂₂H₁₈F₂N₂O₄S₂ + H]⁺ 477.0749, found 477.0749.

(4R,4'S)-dimethyl 2,2'-bis(4-chlorophenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'dicarboxylate (2i)

White solid, 45.8 mg, 45% yield, mp 160-161 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, *J* = 8.6 Hz, 4H), 7.28 (d, *J* = 8.5 Hz, 4H), 4.55 (d, *J* = 11.7 Hz, 2H), 4.21 (d, *J* = 11.8 Hz, 2H), 3.81 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 170.6, 137.7, 131.1, 129.8, 128.6, 94.6, 53.2, 39.0 ppm; HRMS (ESI) calcd for [C₂₂H₁₈Cl₂N₂O₄S₂+ H]⁺ 509.0158, found 509.0159.

(4R,4'R)-dimethyl 2,2'-bis(4-chlorophenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'dicarboxylate (2i')

Pale yellow solid, 32.7 mg, 32% yield, mp 164-165 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, J = 8.6 Hz, 4H), 7.38 (d, J = 8.5 Hz, 4H), 4.12 (d, J = 12.3 Hz, 2H), 3.90 (d, J = 12.3 Hz, 2H), 3.77 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.6, 170.0, 138.0, 131.2, 130.0, 128.7, 92.7, 53.4, 38.8 ppm; HRMS (ESI) calcd for [C₂₂H₁₈Cl₂N₂O₄S₂ + H]⁺ 509.0158, found 509.0162.

(4R,4'S)-dimethyl 2,2'-bis(4-bromophenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'dicarboxylate (2j)

White solid, 52.5 mg, 44% yield, mp 170-171 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, *J* = 8.6 Hz, 4H), 7.28 (d, *J* = 8.5 Hz, 4H), 4.55 (d, *J* = 11.7 Hz, 2H), 4.21 (d, *J* = 11.8 Hz, 2H), 3.81 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.5, 170.6, 131.6, 131.5, 130.0, 126.2, 94.6, 53.2, 39.0 ppm; HRMS (ESI) calcd for [C₂₂H₁₈Br₂N₂O₄S₂ + H]⁺ 596.9148, found 596.9149.

(4R,4'R)-dimethyl 2,2'-bis(4-bromophenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'dicarboxylate (2j')

White solid, 47.8 mg, 40% yield, mp 172-173 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, *J* = 8.5 Hz, 4H), 7.54 (d, *J* = 8.5 Hz, 4H), 4.11 (d, *J* = 12.3 Hz, 2H), 3.90 (d, *J* = 12.3 Hz, 2H), 3.77 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.5, 170.1, 131.7, 131.6, 130.2, 126.5, 92.7, 53.4, 38.8 ppm; HRMS (ESI) calcd for [C₂₂H₁₈Br₂N₂O₄S₂ + H]⁺ 596.9148, found 596.9146.

(4R,4'S)-dimethyl 2,2'-bis(4-iodophenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]- 4,4'dicarboxylate (2k)

White solid, 59.7 mg, 43% yield, mp 160-161 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.71-7.59 (m, 4H), 7.52-7.39 (m, 4H), 4.54 (d, *J* = 11.8 Hz, 2H), 4.20 (d, *J* = 11.8 Hz, 2H), 3.80 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.7, 170.6, 137.6, 132.1, 130.0, 98.6, 94.6, 53.2, 39.0 ppm; HRMS (ESI) calcd for [C₂₂H₁₈I₂N₂O₄S₂ + H]⁺ 692.8870, found 692.8868.

(4R,4'S)-dimethyl 2,2'-bis(3-bromo-4-methylphenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4' -dicarboxylate (2l)

White solid, 55.6 mg, 45% yield, mp 170-171 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, *J* = 1.8 Hz, 2H), 7.55 (dd, *J* = 7.9, 1.8 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 4.55 (d, *J* = 11.7 Hz, 2H), 4.20 (d, *J* = 11.8 Hz, 2H), 3.81 (s, 6H), 2.34 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.5, 170.2, 141.1, 131.6, 131.5, 130.1, 127.0, 124.3, 94.0, 52.7, 38.5, 22.5 ppm; HRMS (ESI) calcd for [C₂₄H₂₂Br₂N₂O₄S₂ + H]⁺ 624.9461, found 624.9462.

(4R,4'R)-dimethyl 2,2'-bis(3-bromo-4-methylphenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4' -dicarboxylate (2l')

White solid, 55.4 mg, 44% yield, mp 172-173 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, *J* = 1.8 Hz, 2H), 7.67 (dd, *J* = 7.9, 1.8 Hz, 2H), 7.25 (d, *J* = 7.7 Hz, 2H), 4.12 (d, *J* = 12.3 Hz, 2H), 3.90 (d, *J* = 12.3 Hz, 2H), 3.77 (s, 6H), 2.43 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 169.1, 141.4, 131.7, 131.6, 130.2, 127.1, 124.5, 92.1, 52.9, 38.2, 22.6 ppm; HRMS (ESI) calcd for [C₂₄H₂₂Br₂N₂O₄S₂ + H]⁺ 624.9461, found 624.9463.

(4R,4'S)-dimethyl 2,2'-bis(4-fluoro-3-methylphenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4' -dicarboxylate (2m)

White solid, 33.9 mg, 34% yield, mp 160-161 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.76-7.36 (m, 4H), 6.92 (t, *J* = 8.9 Hz, 2H), 4.55 (d, *J* = 11.7 Hz, 2H), 4.20 (d, *J* = 11.8 Hz, 2H), 3.81 (s, 6H), 2.22 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 170.3, 164.5, 161.1, 131.5, 131.4, 128.2, 127.6, 127.5, 124.7, 124.4, 114.7, 114.4, 94.1, 52.6, 38.5, 14.0, 13.9 ppm; HRMS (ESI) calcd for [C₂₄H₂₂F₂N₂O₄S₂ + H]⁺ 505.1062, found 505.1059.

(4R,4'R)-dimethyl 2,2'-bis(4-fluoro-3-methylphenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4' -dicarboxylate (2m')

White solid, 30.8 mg, 30% yield, mp 166-167 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.74 (dd, J = 7.4, 2.3 Hz, 2H), 7.66-6.99 (m, 2H), 7.02 (t, J = 8.9 Hz, 2H), 4.12 (d, J = 12.2 Hz, 2H), 3.89 (d, J = 12.2 Hz, 2H), 3.78 (s, 6H), 2.29 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.3, 169.5, 164.7, 161.4, 131.6, 131.5, 128.2, 127.9, 127.8, 124.9, 124.6, 114.8, 114.5, 92.2, 52.9, 38.3, 14.0, 13.9 ppm; HRMS (ESI) calcd for [C₂₄H₂₂F₂N₂O₄S₂ + H]⁺ 505.1062, found 505.1058.

(4R,4'S)-diethyl 2,2'-diphenyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (2n)

White solid, 31.3 mg, 33% yield, mp 95-96 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.75-7.73 (m, 4H), 7.52-7.17 (m, 6H), 4.60 (d, *J* = 11.6 Hz, 2H), 4.43-4.10 (m, 6H), 1.30 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.7, 169.8, 132.4, 130.9, 128.1, 127.8, 94.2, 61.6, 38.5, 13.6 ppm; HRMS (ESI) calcd for [C₂₄H₂₄N₂O₄S₂ + H]⁺ 469.1250, found 469.1245.

(4R,4'R)-diethyl 2,2'-diphenyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (2n')

Yellow solid, 26.0 mg, 28% yield, mp 48-49 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.02-7.71 (m, 4H), 7.64-7.31 (m, 6H), 4.46-4.10 (m, 6H), 3.99 (d, J = 12.2 Hz, 2H), 1.21 (t, J = 7.1 Hz, 6H); ¹³C NMR

(75 MHz, CDCl₃) δ 170.3, 170.2, 132.4, 131.1, 128.3, 127.9, 92.3, 61.8, 38.1, 13.5 ppm; HRMS (ESI) calcd for $[C_{24}H_{24}N_2O_4S_2 + H]^+$ 469.1250, found 469.1246.

(4R,4'S)-dimethyl 2,2'-di(thiophen-2-yl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (20)

White solid, 21.7 mg, 24% yield, mp 150-151 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.37 (dd, J = 10.1, 4.4 Hz, 4H), 6.97 (t, J = 4.4 Hz, 2H), 4.54 (d, J = 11.6 Hz, 2H), 4.20 (d, J = 11.6 Hz, 2H), 3.80 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 165.3, 136.3, 131.2, 130.4, 127.4, 94.0, 53.1, 39.4 ppm; HRMS (ESI) calcd for [C₁₈H₁₆N₂O₄S₄ + H]⁺ 453.0066, found 453.0065.

(4R,4'S)-dimethyl 2,2'-diphenyl-4,4',5,5'-tetrahydro-[4,4'-bioxazole]-4,4'-dicarboxylate (2r)

White solid, 13.3 mg, 16% yield, mp 222-223 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, *J* = 7.5 Hz, 4H), 7.51 (t, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 4H), 4.85 (d, *J* = 10.0 Hz, 2H), 4.66 (d, *J* = 10.0 Hz, 2H), 3.78 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 167.1, 132.1, 128.9, 128.3, 126.7, 82.3, 72.5, 53.2 ppm; HRMS (ESI) calcd for [C₂₂H₂₀N₂O₆ + H]⁺ 409.1394, found 409.1399.

(4R,4'S)-dimethyl 2,2'-bis(4-(4-methoxyphenoxy)phenyl)-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (3)

Yellow solid, 79.1 mg, 56% yield, mp 50-51 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.82-7.55 (m, 4H), 6.94 (d, J = 9.1 Hz, 4H), 6.90-6.78 (m, 8H), 4.54 (d, J = 11.7 Hz, 2H), 4.18 (d, J = 11.7 Hz, 2H), 3.78 (s, 6H), 3.77 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 171.0, 161.5, 156.4, 148.9, 130.4, 127.0, 121.4, 116.6, 115.0, 94.6, 55.6, 53.1, 39.0 ppm; HRMS (ESI) calcd for [C₃₆H₃₂N₂O₈S₂ + Na]⁺ 707.1492, found 707.1467.

(4R,4'S)-dimethyl 2,2'-diphenyl-4,4',5,5'-tetrahydro-[4,4'-bithiazole]-4,4'-dicarboxylate (4)

White solid, 84.1 mg, 71% yield, mp 90-91 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.97-7.73 (m, 4H),

7.68-7.48 (m, 8H), 7.47-7.30 (m, 6H), 4.62 (d, J = 11.8 Hz, 2H), 4.25 (d, J = 11.7 Hz, 2H), 3.82 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.1, 170.9, 144.2, 140.1, 131.7, 129.1, 128.9, 127.9, 127.1, 127.0, 94.7, 53.1, 39.0 ppm; HRMS (ESI) calcd for $[C_{34}H_{28}N_2O_4S_2 + H]^+$ 593.1563, found 593.1558.

2,2'-diphenyl-4,4'-bithiazole (5a)

Yellow solid, 44.8 mg, 70% yield, mp 186-187 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.97 (dd, J = 7.1, 2.5 Hz, 4H), 7.83 (s, 2H), 7.53-7.29 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 151.6, 133.6, 130.2, 129.0, 126.6, 115.3 ppm; HRMS (ESI) calcd for [C₁₈H₁₂N₂S₂ + H]⁺ 321.0515, found 321.0520.

2,2'-di-p-tolyl-4,4'-bithiazole (5b)

White solid, 44.8 mg, 77% yield, mp 198-199 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.91 (d, *J* = 7.9 Hz, 4H), 7.85 (s, 2H), 7.25 (d, *J* = 7.8 Hz, 4H), 2.39 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.5, 151.5, 140.4, 131.0, 129.6, 126.6, 114.8, 21.5 ppm; HRMS (ESI) calcd for $[C_{20}H_{16}N_2S_2 + H]^+$ 349.0828, found 349.0833.

2,2'-di-m-tolyl-4,4'-bithiazole (5c)

White solid, 57.8 mg, 83% yield, mp 160-161 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (s, 2H), 7.87 (s, 2H), 7.81 (d, *J* = 7.7 Hz, 2H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.29-7.18 (m, 2H), 2.43 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.5, 151.5, 138.7, 133.5, 131.0, 128.9, 127.2, 123.9, 115.2, 21.4 ppm; HRMS (ESI) calcd for [C₂₀H₁₆N₂S₂ + H]⁺ 349.0828, found 349.0831.

2,2'-di-o-tolyl-4,4'-bithiazole (5d)

White solid, 50.4 mg, 71% yield, mp 105-106 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.93 (s, 2H), 7.78 (d, J = 7.2 Hz, 2H), 7.33-7.25 (m, 6H), 2.68 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.1, 151.1, 136.7, 132.9, 131.6, 129.9, 129.6, 126.1, 115.7, 21.6 ppm; HRMS (ESI) calcd for [C₂₀H₁₆N₂S₂ +

2,2'-bis(4-fluoro-3-methylphenyl)-4,4'-bithiazole (5e)

White solid, 41.5 mg, 54% yield, m.p. 213-214 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.90-7.82 (m, 3H), 7.10 (t, *J* = 8.7 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.2, 160.9, 151.5, 129.9, 129.8, 125.9, 125.8, 125.6, 115.8, 115.5, 115.1, 14.6 ppm; HRMS(ESI) calcd for [C₂₀H₁₄F₂N₂S₂+ Na]⁺ 407.0459, found 407.0467.

2,2'-di(thiophen-2-yl)-4,4'-bithiazole (5f)

White solid, 44.4 mg, 67% yield, mp 185-186 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 2H), 7.56 (d, J = 3.7 Hz, 2H), 7.42 (d, J = 5.1 Hz, 2H), 7.20-6.99 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 161.9, 150.7, 137.2, 127.9, 127.6, 126.8, 114.9 ppm; HRMS (ESI) calcd for $[C_{14}H_8N_2S_4 + H]^+$ 332.9643, found 332.9641.

References

- 1. T.-S. Kim, Y.-J. Lee, B.-S. Jeong, H.-G. Park and S.-S. Jew, J. Org. Chem. 2006, 71, 8276.
- 2. H. Emten äs, L. Alderin and F. Almqvist, J. Org. Chem. 2001, 66, 6756.
- 3. I. Güell and X. Ribas, Eur. J. Org. Chem. 2004, 3212.
- 4. Q. Liang, P. Xing, Z. Huang, J. Dong, K. B. Sharpless, X. Li and B. Jiang, *Org. Lett.* 2015, 17, 1942.
- R. Oliveira, R. C. Guedes, P. Meireles, I. S. Albuquerque, L. M. Gonçalves, E. Pires, M. R. Bronze, J. Gut, P. J. Rosenthal, M. Prudêncio, R. Moreira, P. M. O' Neill and F. Lopes, *J. Med. Chem.* 2014, 57, 4916.
- 6. R. Chicharro, S. D. Castro, J. L. Reino and V. J. Arán, Eur. J. Org. Chem. 2003, 2314.

¹H NMR and ¹³C NMR Spectra of Title Compounds

4.1606 4.1198 3.9334 3.9334 3.7720

-0.0001

2a' ¹H NMR (300 MHz, CD Cl₃)

S18

~4.5614 ~4.5225 ~4.1996 ~4.1607 ~3.7955 -2.3179 -0.0000-7.6484 -7.6212 -7.2605 -7.1212 -7.1212 Me CO2Me Me 2b $^1\mathrm{H}\,\mathrm{NMR}$ (300 MHz, $\mathrm{CDCl}_3)$ 3.91-3.95H 6.12-2.00¹ 2.001 6.06₁ 4.5 f1 (ppm) 5 4.0 2.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3. 5 3.0 2.0 1.5 1.0 0.5 0.0 -0 -141.83 $\swarrow 130.21$ $\swarrow 128.99$ $\curlyvee 128.56$ <172.21 <171.05 --94.58 -21.49 $\frac{77.45}{77.03}$ -53.04 -38.77 DO2Me Me⁻ 2b ¹³C NMR (75 MHz, CD Cl₃) All-And Alexandra and providence and a providence of the providence of nyan an ing karang k VARIANIANIANIANA Hindor Hinddaller 20 210 200 190 180 170 160 150 140 130 120 110 100 fl (ppm) 90 80 70 60 50 40 30 20 10 ò -1

2c ¹³C NMR (75 MHz, CDCl₃)

4.5036 4.4648 4.1965 4.1965 4.1575 3.8201 -2.4503-0.00027.5284 7.5220 7.5033 7.4968 7.4968 7.2866 7.2866 7.2808 7.2808 7.2611 7.2572 7.2611 7.2572 7.2008 7.1554 CONNE 2d 1 H NMR (300 MHz, CD Cl₃) 1.9241.8733.8332.00^Å 2.01^Å 5.95_Å 5.79-4.5 f1 (ppm) 7.5 4.0 2.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 3. 5 3.0 2.0 1.5 1.0 0.5 0.0 -0 ~173.02 ~170.71 137.54 132.27 131.34 130.31 129.88 125.69 --95.48 $\underbrace{\frac{77.46}{77.04}}_{76.61}$ --53.08 -39.05 -21.38 -o-Me 2d ¹³C NMR (75 MHz, CDCl₃) 间侧桥 210 200 190 180 170 160 150 140 130 120 110 100 fl (ppm) 90 80 70 60 50 40 30 20 10 ò -1

5

20

¹H NMR (300 MHz, CDCl₃)

2d' ¹³C NMR (75 MHz, CDCl₃)

 $\int_{7.7016}^{7.9037} \int_{7.8827}^{7.8827} \int_{7.8762}^{7.8762} \int_{7.7076}^{7.7076} \int_{7.70176}^{7.7076} \int_{7.70076}^{7.7076} \int_{7.70076}$

4.5311
4.4918
4.1888
4.1888
3.8087
3.7488

7.78063 7.7801 7.7801 7.7683 7.7485 7.7389

 $\int_{4.1579}^{4.5393} 4.5000$ $\int_{4.1579}^{4.1579} 4.1579$ $\int_{3.7459}^{3.7459} 5.7214$ -2.4755 -2.4647 -2.4510

Meor C Ac Ac 2g

¹HNMR (300 MHz, CDCl₃)

2g $^{13}\mathrm{C}\,\mathrm{NMR}$ (75 MHz, $\mathrm{CDCl}_3)$

 $\frac{7.9237}{7.8853}$ $\frac{7.8853}{7.8630}$ -7.2012

∫4.1001 4.0589 3.8882 3.8472 3.7130

-2.5551

0.0137 -0.0000 -0.0799

¹H NMR (300 MHz, CDCl₃)

2g'

--0.0004-4.5753 -4.5753 -4.5363 -4.2299 -4.1908 -3.8094 7.7675 7.7604 7.7780 7.77382 7.77382 7.7263 7.7263 7.0224 7.0154 7.0031 8.6936 6.6936 6.6915 6.6948 8.69715 20 F 2h 1 H NMR (300 MHz, CDCl₃) 3.92-3.92-2.02-F00.9 1.96-14.5 f1 (ppm) 7.0 9.0 8.5 8.0 7.5 6.5 6.0 5.5 5.0 4.0 3. 5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 $< \frac{171.16}{170.74}$ ~ 166.37 ~ 163.02 130.80
130.68
130.68
129.02 (115.61 (115.32) --94.60 $\underbrace{ \begin{array}{c} 77.49 \\ 77.05 \\ 76.63 \end{array} }$ -53.16 -39.09 CO2NIG 2h $^{13}\mathrm{C}\,\mathrm{NMR}$ (75 MHz, $\mathrm{CD\,Cl}_3)$ -1 20 210 200 190 180 170 160 150 140 130 120 110 100 fl (ppm) 90 80 70 60 50 40 30 20 10 ò

7.6854 7.6569 7.2991 7.2707

4.5690
4.5299
4.2304
4.1911
3.8101

-0.0003

-1 110 100 fl (ppm)

7.6122 7.5838 7.4580 7.4296

,Br

~4.5654 \4.5261 \4.2291 \4.1900 ~3.8083

-0.0001

7.9217 7.9157 7.5626 7.5565 7.5565 7.5363 7.5363 7.5363 7.1576 7.1312

~4.5650 ~4.5260 ~4.2192 ~4.1800 ~3.8052 -2.3398

-0.0000

8.0527 8.0467 7.6819 7.6758 7.6556 7.6556 7.6496 7.2653 7.2533 7.2335

5

∫_4.1391 ∫_4.0982 _3.9220 _3.8811 _3.7707

-2.4268

--0.0001

~0.0846 ~0.0000 ~4.5670 ~4.5279 ~4.2203 ~4.1812 ~3.8051 $\langle 2.2272 \\ 2.2200 \rangle$ 7.6128 7.6054 7.5829 7.5676 7.5571 7.5571 7.5339 7.5339 7.5339 7.5339 7.5339 6.9538 6.9241 6.8948

7.7607 7.7530 7.7530 7.7285 7.6834 7.6672 7.6672 7.6672 7.6672 7.6672 7.6672 7.6672 7.6672 7.6683 7.6683 7.6683 7.6688 6.9889 6.9889

4.1403 4.0996 3.9141 3.8733 3.7754 $<^{2.2979}_{2.2910}$

7.7666 7.7570 7.7570 7.7570 7.7570 7.7570 7.73359 7.73359 7.73593 7.73593 7.73593 7.73593 7.73593 7.73593 7.73593 7.73593 7.73593 7.73593 7.73593 7.73293 7.72542 7.2542

7.8852 7.8852 7.8852 7.8851 7.8855 7.4955 7.4955 7.4452 7.4472 7.4472 7.4472 7.4472 7.4472 7.4472 7.4472 7.3498 7.3473 7.3536 7.3492 7.3472 7.3492 7.3492 7.3472 7.3492 7.3472 7.3492 7.3592 7.

2n' ¹H NMR (300 MHz, CDCl₃)

7.3923 7.3756 7.3566 7.3566 7.3441 7.2628 6.9827 6.9680 16.9534

¹H NMR (300 MHz, CDCl₃)

4.5611 (4.5226 (4.2220 (4.1835 -3.7970

~0.0734 ~0.0001

20 ¹³C NMR (75 MHz, CDCl₃)

∫4.8682 ∫4.8348 √4.6762 √4.6428 -3.7820-8.0045 -7.9794 -7.5313 -7.5059 -7.5059 -7.4813 -7.4813 -7.4813 -7.4813 -7.4813 -7.4813 -7.3743 -7.3743 -7.3743 -7.2655

2r ¹H NMR (300 MHz, CDCl₃)

110 100 fl (ppm) Ó -1

7.6980 7.6687 6.93501 6.93501 6.8788 6.89384 6.8093 6.8033 6.8033 6.8093 6.80000 6.8003 6.800000000000000000000000

-0.0001

halan dalam (r) (renn) (renn pilon dan d 110 100 fl (ppm) ò -i

¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDCl₃)

~0.0002 ~-0.0760

S48

S50

 $^1\mathrm{H}\,\mathrm{NMR}$ (300 MHz, CDCl_3)

----0.0000