Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

# Enantioselective Isothiourea-Catalysed *trans*-Dihydropyridinone Synthesis using Saccharin-derived Ketimines: Scope and Limitations

Daniel G. Stark,<sup>a</sup> Claire M. Young,<sup>a</sup> Timothy J. C. O'Riordan,<sup>b</sup> Alexandra. M. Z. Slawin<sup>a</sup> and Andrew D. Smith<sup>\*a</sup>

a. EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK. KY16 9ST.

b. Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42, 6EY, UK.

e-mail: ads10@st-andrews.ac.uk

### SUPPORTING INFORMATION

#### Contents

| General Information                                  | S2   |
|------------------------------------------------------|------|
| Preparation of Sulfonyl Imine Substrates             | S4   |
| Isothiourea-Catalysed Michael Addition-Lactamisation | S7   |
| NMR Spectra                                          | S18  |
| HPLC Data                                            | \$50 |
| References and Notes                                 | S65  |

### **General Information**

Reactions involving moisture sensitive reagents were carried out under a nitrogen atmosphere using standard vacuum line techniques in addition to dry solvents. All glassware used was flame dried and cooled under vacuum. For moisture sensitive reactions, solvents (THF, CH<sub>2</sub>Cl<sub>2</sub>, toluene, hexane and Et<sub>2</sub>O) were obtained anhydrous and purified by an alumina column (Mbraun SPS-800). Petrol is defined as petroleum ether 40-60 °C. All other solvents and commercial reagents were used as supplied without further purification unless stated otherwise.

Room temperature (RT) refers to 20-25 °C. Temperatures of 0 °C and -78 °C were obtained using ice/water and CO<sub>2</sub>(s)/acetone baths respectively. Reflux conditions were obtained using an oil bath equipped with a contact thermometer. *Under reduced pressure* refers to the use of a Büchi Rotavapor R-2000 rotary evaporator with a Vacubrand CVC<sub>2</sub> vacuum controller or a Heidolph Laborota 4001 rotary evaporator with a vacuum controller.

Analytical thin layer chromatography was performed on pre-coated aluminium plates (Kieselgel 60 F<sub>254</sub> silica). Plates were visualised under UV light (254 nm) or by staining with either phosphomolybdic acid or KMnO<sub>4</sub> followed by heating. Flash column chromatography was performed on Kieselgel 60 silica in the solvent system stated under a positive pressure of compressed air or on a Biotage<sup>®</sup> IsoleraTM 4, using Biotage<sup>®</sup> Snap Ultra or Biotage<sup>®</sup> KP Sil columns under the solvent system stated.

<sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F nuclear magnetic resonance (NMR) spectra were acquired on either a Bruker Avance 300 (300 MHz, <sup>1</sup>H, 75 MHz <sup>13</sup>C, 282 MHz <sup>19</sup>F), Bruker Avance II 400 (400 MHz, <sup>1</sup>H, 101 MHz <sup>13</sup>C, 376 MHz <sup>19</sup>F) or a Bruker Avance II 400 (500 MHz, <sup>1</sup>H, 126 MHz <sup>13</sup>C, 470 MHz <sup>19</sup>F) spectrometer at ambient temperature in the deuterated solvent stated. All chemical shifts are quoted in parts per million (ppm) relative to the residual solvent as the internal standard. All coupling constants, *J*, are quoted in Hz. Multiplicities are indicated by: s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), ABq (AB quartet), sept (septet), oct (octet), m (multiplet), dd (doublet of doublets), ddd (doublet of doublet of doublet of aromatic, Ph to denote phenyl, Bn to denote benzyl, py to denote pyridyl and br to denote broad.

Infrared spectra ( $\nu_{max}/cm^{-1}$ ) were recorded on either a Perkin-Elmer Spectrum GX FT-IR spectrometer using a Shimadzu IRAffinity-1 using a Pike attenuated total reflectance (ATR) accessory. Only the characteristic peaks are quoted.

Melting points were recorded on an Electrothermal 9100 melting point apparatus and are uncorrected. *Decomp* refers to decomposition.

HPLC analyses were obtained on two separate machines; a Gilson HPLC consisting of a Gilson 305 pump, Gilson 306 pump, Gilson 811C dynamic mixer, Gilson 805 manometric module, Gilson 401C dilutor, Gilson 213XL sample injector and sample detection was performed with a Gilson 118 UV/vis detector while the temperature was assumed to be 20 °C; a Shimadzu HPLC consisting of a DGU-20A5 degasser, LC-20AT liquid chromatograph, SIL-20AHT autosampler, CMB-20A communications bus module, SPD-M20A diode array detector and a CTO-20A column oven which allowed the temperature to be set from 25-40 °C. Separation was achieved using DAICEL CHIRALCEL OD-H and OJ-H columns or DAICEL CHIRALPAK AD-H, AS-H, IA, IB, IC and ID columns. All chiral HPLC traces were compared to the authentic racemic spectrum prepared in analogous fashion.

Mass spectrometry (m/z) data were acquired by electrospray ionisation (ESI), electron impact (EI), atmospheric solids analysis probe (ASAP) or nanospray ionisation (NSI) either at the University of St Andrews or the EPSRC National Mass Spectrometry Service Centre, Swansea. At the University of St Andrews, low and high resolution ESI MS were carried out on a Micromass LCT spectrometer. At the EPSRC National Mass Spectrometry Service Centre, low resolution NSI MS was carried out on a Micromass Quattro II spectrometer and high resolution NSI MS on a Thermofisher LTQ Orbitrap XL spectrometer.

Optical rotations were measured on a Perkin Elmer Precisely/Model-341 polarimeter operating at the sodium D line with a 100 mm path cell at rt.

# Preparation of Sulfonyl Imine Substrates

Methylbenzo[d]isothiazole 1,1-dioxide



Following a literature procedure<sup>[1]</sup>, in a flame-dried flask, saccharin (10 g, 54.5 mmol, 1.0 eq.) was dissolved in anhydrous THF (500 mL, 0.1 M) and cooled to 0 °C. Methylmagnesium bromide (0.3 M in ether, 36 mL, 109 mmol, 2.0 eq.) was added over 10 minutes. The reaction was allowed to warm to RT and stirred at RT for 17 hours. Sat. aq. NH<sub>4</sub>Cl (200 mL) was added and the THF layer was separated. The aqueous layer was extracted with  $CH_2Cl_2$  (3 × 200 mL). The combined organics were dried (MgSO<sub>4</sub>), filtered and concentrated to dryness under reduced pressure. The crude material was purified by trituration with  $CH_2Cl_2$  (20 mL) to give **38** as an off-white solid (5.34 g, 29.5 mmol, 54%). mp 198–202 °C {Lit.<sup>[1]</sup> 213–213.5 °C}; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta_{H}$ : 2.67 (3H, s, *CH*<sub>3</sub>), 7.65–7.80 (3H, m, *ArH*), 7.88–7.95 (1H, m, *ArH*). All data in accordance with literature.<sup>[2]</sup>

# General Procedure A: Preparation of Sulfonyl Imine Substrates

Following a literature procedure<sup>[3]</sup>, compound **38** (1 eq.) was dissolved in ethanol (0.3 M) and heated to 80 °C. The aldehyde (1 eq.), acetic acid (10 mol%) and piperidine (10 mol%) were added. The reaction was stirred at 80 °C for 3 hours then cooled to 0 °C and filtered. The filter cake was washed with cold ethanol and, unless stated, was used without further purification.

(E)-3-Styrylbenzo[d]isothiazole 1,1-dioxide



Following general procedure A, imine **38** (1.50 g, 8.25 mmol), benzaldehyde (0.84 mL, 8.25 mmol), acetic acid (48  $\mu$ L, 0.28 mmol) and piperidine (84  $\mu$ L, 0.28 mmol) gave the title compound as a yellow solid (1.49 g, 67%). mp 247–248 °C {Lit.<sup>[4]</sup> 245–247 °C}; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{H}$ : 7.29 (1H, d, *J* 15.6, C(3)CHCH), 7.42–7.49 (3H, m, PhCH and ArCH), 7.70 (2H, dd, *J* 7.3, 2.3, PhCH), 7.76 (2H, dd, *J* 5.7, 3.0, ArCH), 7.88 (1H, dd, *J* 5.7, 3.0, ArH), 7.92–7.99 (1H, m, ArH), 8.31 (1H, d, *J* 15.6, C(3)CHCH). All data in accordance with literature.<sup>[4]</sup>

# (E)-3-(2-(Naphthalen-1-yl)vinyl)benzo[d]isothiazole 1,1-dioxide



Following general procedure A, imine **38** (500 mg, 2.75 mmol), 1-naphthaldehyde (0.37 mL, 2.75 mmol), acetic acid (16  $\mu$ L, 0.28 mmol) and piperidine (28  $\mu$ L, 0.28 mmol) gave the title compound as an orange solid (580 mg, 1.8 mmol, 49%). mp 277–279 °C (EtOH); v<sub>max</sub> (ATR)/cm<sup>-1</sup>1610 (C=N); <sup>1</sup>H NMR (500 MHz, *d*<sub>6</sub>-DMSO)  $\delta_{H}$ : 7.65 (1H, ddd, *J* 8.0, 6.7, 1.1, Nap*H*), 7.68–7.75 (2H, m, Nap*H*), 7.96 (2H, pd, *J* 7.5, 1.3, Ar*H*), 8.01–8.08 (2H, m, C(3)CHCH + Nap*H*), 8.16 (1H, d, *J* 8.1, Nap*H*), 8.22 (1H, dd, *J* 6.5, 1.6, Ar*H*), 8.42 (2H, t, *J* 8.3, Nap*H*), 8.55 (1H, dd, *J* 6.7, 1.6, Ar*H*), 9.06 (1H, d, *J* 15.4, C(3)CHC*H*); <sup>13</sup>C NMR (126 MHz, *d*<sub>6</sub>-DMSO)  $\delta_{C}$ : 117.4 (C(3)CHCH), 122.6 (ArCH), 123.1 (NapCH), 125.8 (NapCH), 125.9 (ArCH), 126.6 (NapCH), 127.0 (NapCH), 127.8 (NapCH), 128.9 (NapCH), 130.8 (NapC), 131.0 (NapC), 131.2 (ArC(4)), 132.2 (NapCH), 133.4 (NapC), 134.4 (ArCH), 139.5 (ArC(5)), 142.3 (C(3)CHCH), 167.7 (*C*(3)); HRMS (ASAP<sup>+</sup>) C<sub>19</sub>H<sub>14</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> found 320.0742, requires 320.0740 (+0.6 ppm).

(E)-3-(4-(Trifluoromethyl)styryl)benzo[d]isothiazole 1,1-dioxide



Following general procedure A, imine **38** (500 mg, 2.75 mmol), 4-(trifluoromethyl)benzaldehyde (0.38 mL, 2.75 mmol), acetic acid (16  $\mu$ L, 0.28 mmol) and piperidine (28  $\mu$ L, 0.28 mmol) gave the title compound as a white solid (610 mg, 1.8 mmol, 66%). mp 230–232 °C (EtOH);  $\nu_{max}$  (ATR)/cm<sup>-1</sup> 1628 (C=N); <sup>1</sup>H NMR (400 MHz, *d*<sub>6</sub>-DMSO)  $\delta_{H}$ : 7.89 (2H, d, *J* 8.1, Ar'C(3,5)*H*), 7.94 (1H, td, *J* 7.0, 1.4, Ar*H*), 7.97 (1H, td, *J* 7.5, 1.4, Ar*H*), 8.06 (1H, d, *J* 15.8, C(3)CHCH), 8.20–8.25 (3H, m, Ar'C(2,6)*H* and Ar*H*), 8.32 (1H, d, *J* 15.8, C(3)CHCH), 8.53 (1H, d, *J* 7.5, Ar*H*); <sup>19</sup>F NMR (376 MHz, *d*<sub>6</sub>-DMSO)  $\delta_{F}$ : –61.3 (Ar'CF<sub>3</sub>); <sup>13</sup>C NMR (126 MHz, *d*<sub>6</sub>-DMSO)  $\delta_{C}$ : 118.6 (C(3)CHCH), 123.1 (ArCH), 124.4 (q, *J* 272.4, CF<sub>3</sub>), 126.3 (q, *J* 3.9, Ar'C(3,5)H), 126.4 (ArCH), 130.5 (Ar'C(2,6)H), 131.2 (q, *J* 32.0, CCF<sub>3</sub>), 131.3 (ArC(4)), 134.9 (ArCH), 135.0 (ArCH), 138.8 (Ar'C(1)), 139.8 (ArC(5)), 145.0 (C(3)CHCH), 168.1 (C(3)); HRMS (ASAP<sup>+</sup>) C<sub>16</sub>H<sub>11</sub>F<sub>3</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> found 338.0462, requires 338.0457 (+1.5 ppm)

## (E)-3-(4-Methoxystyryl)benzo[d]isothiazole 1,1-dioxide



Following general procedure A, imine **38** (500 mg, 2.75 mmol), 4-methoxybenzaldehyde (0.33 mL, 2.75 mol), acetic acid (16  $\mu$ L, 0.28 mmol) and piperidine (28  $\mu$ L, 0.28 mmol) gave the title compound as yellow solid (593 mg, 2.0 mmol, 72%). mp 228–230 °C (EtOH) {Lit.<sup>[4]</sup> 229–232 °C};  $v_{max}$  (ATR)/cm<sup>-1</sup> 1587 (C=N); <sup>1</sup>H NMR (500 MHz, *d*<sub>6</sub>-DMSO)  $\delta_{H}$ : 3.85 (3H, s, OCH<sub>3</sub>), 7.09 (2H, d, *J* 8.3, Ar'C(3,5)*H*), 7.74 (1H, d, *J* 15.6, C(3)CHCH), 7.87–7.96 (2H, m, Ar*H*), 8.00 (2H, d, *J* 8.4, Ar'C(2,6)*H*), 8.16 (1H, d, *J* 6.9, Ar*H*), 8.25 (1H, d, *J* 15.5, C(3)CHCH), 8.48 (1H, d, *J* 7.3, Ar*H*); <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta_{c}$ : 55.6 (OCH<sub>3</sub>), 112.1 (C(3)CHCH), 114.7 (Ar'C(3,5)H), 122.4 (ArCH), 125.6 (ArCH), 127.2 (Ar'C(1)), 131.3 (ArC(4)), 132.0 (Ar'C(2,6)H), 134.2 (ArCH), 134.2 (ArCH), 139.6 (ArC(5)), 147.3 (C(3)CHCH), 162.5 (Ar'C(4)OMe), 167.6 (C(3)); HRMS (NSI<sup>+</sup>) C<sub>16</sub>H<sub>14</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> found 300.0689, requires 300.0689 (+0.0 ppm). All data in accordance with literature.<sup>[4]</sup>

(E)-3-(4-Bromostyryl)benzo[d]isothiazole 1,1-dioxide



Following general procedure A, imine **38** (500 mg, 2.75 mmol), 4-bromobenzaldehyde (509 mg, 2.75 mmol), acetic acid (16  $\mu$ L, 0.28 mmol) and piperidine (28  $\mu$ L, 0.28 mmol) gave the title compound as an off-white solid (608 mg, 1.8 mmol, 64%). mp 256–260 °C (EtOH); v<sub>max</sub> (ATR)/cm<sup>-1</sup> 1622 (C=N); <sup>1</sup>H NMR (500 MHz, *d*<sub>6</sub>-DMSO)  $\delta_{H}$ : 7.75 (2H, d, *J* 8.3, Ar'C(3,5)*H*), 7.89–8.00 (5H, m, Ar'C(2,6)*H* + C(3)C*H*CH + Ar*H*), 8.20 (1H, d, *J* 7.1, Ar*H*), 8.24 (1H, d, *J* 15.7, C(3)CHC*H*), 8.50 (1H, d, *J* 7.4, Ar*H*); <sup>13</sup>C NMR (126 MHz, *d*<sub>6</sub>-DMSO)  $\delta_{C}$ : 116.1 (C(3)CHCH), 122.6 (Ar*C*H), 125.4 (Ar'C(4)Br), 125.8 (Ar*C*H), 130.9 (Ar*C*(4)), 131.4 (Ar'C(2,6)H), 132.1 (Ar'C(3,5)H), 133.7 (Ar'C(1)), 134.4 (Ar*C*H), 134.4 (Ar*C*H), 139.5 (Ar*C*(5)), 145.5 (C(3)CHCH), 167.7 (*C*(3)); HRMS (ESI<sup>+</sup>) C<sub>15</sub>H<sub>15</sub><sup>19</sup>BrNO<sub>2</sub>S [M+H]<sup>+</sup> found 347.9694, requires 347.9688 (+1.7 ppm).

# (E)-3-(2-(Furan-2-yl)vinyl)benzo[d]isothiazole 1,1-dioxide



Following general procedure A, imine **38** (500 mg, 2.75 mmol), furfural (0.23 mL, 2.75 mmol), acetic acid (16  $\mu$ L, 0.28 mmol) and piperidine (28  $\mu$ L, 0.28 mmol) gave the title compound as a dark yellow solid (490 mg, 1.9 mmol, 69%). mp 230–233 °C (dec.) (EtOH);  $v_{max}$  (ATR)/cm<sup>-1</sup> 1618 (C=N); <sup>1</sup>H NMR (400 MHz,  $d_6$ -DMSO)  $\delta_H$ : 6.80 (1 H, dd, *J* 3.5, 1.8, FurC(4)*H*), 7.30 (1 H, d, *J* 3.5, FurC(3)*H*), 7.46 (1 H, d, *J* 15.4, C(3)CHCH), 7.85–7.96 (2 H, m, Ar*H*), 8.10 (1H, d, *J* 1.8, FurC(5)*H*), 8.12 (1H, d, *J* 15.4, C(3)CHCH), 8.14–8.21 (1 H, m, Ar*H*), 8.39 (1 H, dd, *J* 5.7, 3.0, Ar*H*); <sup>13</sup>C NMR (100 MHz,  $d_6$ -DMSO)  $\delta_c$ : 111.5 (C(3)CHCH), 113.9 (FurC(4)H), 120.1 (FurC(3)H), 122.4 (ArCH), 125.5 (ArCH), 130.8 (ArC(4)), 132.6 (FurC(5)H), 134.3 (ArCH), 139.5 (ArC(5)), 148.2 (C(3)CHCH), 151.2 (FurC(2)), 167.3 (C(3)); HRMS (ESI<sup>+</sup>) C<sub>13</sub>H<sub>10</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> found 260.0378, requires 260.0376 (+0.8).

## Isothiourea-Catalysed Michael Addition-Lactamisation

General procedure B: Isothiourea-Catalysed Michael Addition-Lactamisation



*i*-Pr<sub>2</sub>NEt (1.5 eq.) and pivaloyl chloride (1.5 eq.) were added to a solution of requisite carboxylic acid (1.0 eq.) in CH<sub>2</sub>Cl<sub>2</sub> (0.06 M) at 0 °C. The reaction mixture was allowed to stir at 0 °C for 10 min then cooled to -78 °C. The requisite Michael acceptor (1.0 eq.), (2*R*,3*S*)-HyperBTM **17** (5 mol%), and *i*-Pr<sub>2</sub>NEt (1.0 eq.) were added and reaction stirred at -78 °C until complete by TLC analysis. The reaction mixture was quenched with aq. HCl (0.1 M) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (×3). The combined organics were dried over MgSO<sub>4</sub>, filtered and concentrated under reduced pressure to give the crude reaction mixture. Products were purified by Biotage<sup>®</sup> Isolera<sup>TM</sup> 4 in the solvent system reported.



Following general procedure B, phenyl acetic acid (26 mg, 0.19 mmol), pivaloyl chloride (36 µL, 0.29 mmol) and *i*-Pr<sub>2</sub>NEt (51 µL, 0.29 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3.2 mL), (2*R*,3*S*)-HyperBTM **17** (3 mg, 0.01 mmol), cyclic sulfonyl imine **14** (50 mg, 0.19 mmol), *i*-Pr<sub>2</sub>NEt (33 µL, 0.19 mmol) at –78 °C gave crude reaction mixture (85:15 dr). Purification by Biotage® Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, hexane:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 1 CV)] gave the title compound (53 mg, 73%) as a white solid (91:9 dr). mp 230-232 °C {Lit.<sup>[5]</sup> 232-233 °C};  $[\alpha]_D^{20}$  +134.0 (*c* 1.0, CHCl<sub>3</sub>) {Lit.<sup>[5]</sup>  $[\alpha]_D^{20}$  –177.0 (*c* 1.03, CH<sub>2</sub>Cl<sub>2</sub>) for 99% ee, 8*R*,9*R* isomer}; Chiral HPLC analysis, Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 13.1 min, t<sub>R</sub> (8*R*,9*R*): 23.0 min; 95% ee; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{H}$ : 4.06 (1H, d, *J* 7.2, C(8)*H*), 4.17 (1H, dd, *J* 7.2, 4.3, C(9)*H*), 6.14 (1H, d, *J* 4.3, C(10)*H*), 7.10–7.17 (4H, m, Ar*H*), 7.26–7.30 (6H, m, Ar*H*), 7.65 (1H, m, Ar*H*), 7.72–7.79 (2H, m, Ar*H*), 7.88–7.92 (1H, m, Ar*H*). All data in accordance with literature.<sup>[5]</sup>

(8*S*,9*S*)-8-(4-Bromophenyl)-9-phenyl-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3-*a*]pyridin-7-one 5,5-dioxide



Following general procedure B, 4-bromophenyl acetic acid (80 mg, 0.37 mmol), pivaloyl chloride (69  $\mu$ L, 0.56 mmol) and *i*-Pr<sub>2</sub>NEt (98  $\mu$ L, 0.56 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6 mL), (2*R*,3*S*)-HyperBTM **17** (5 mg, 0.019 mmol), cyclic sulfonyl imine **14** (100 mg, 0.37 mmol), *i*-Pr<sub>2</sub>NEt (64  $\mu$ L, 0.37 mmol) at -78 °C gave crude reaction mixture (89:11 dr). Purification by Biotage® Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, hexane:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 1 CV)] gave the title compound (129 mg, 75%) as a white solid (>95:5 dr). mp 182–184 °C;  $[\alpha]_D^{20}$  +78.7 (*c* 0.1, CHCl<sub>3</sub>); Chiral HPLC analysis, Chiralpak AD-H (80:20 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 44.6 min, t<sub>R</sub> (8*R*,9*R*): 51.5 min; 97% ee; v<sub>max</sub> (ATR)/cm<sup>-1</sup> 3028 (C-H), 1735 (C=O); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{H}$ : 4.00 (1H, d, *J* 9.0, C(8)*H*), 4.17 (1H, dd, *J* 9.0, 3.8, C(9)*H*), 6.12 (1H, d, *J* 3.8, C(10)*H*), 6.99 (2H, d, *J* 8.4, Ar*H*), 7.07 (2H, d, *J* 6.6, Ar*H*), 7.24–7.30 (3H, m, Ar*H*), 7.38 (2H, d, *J* 8.4, Ar*H*), 7.65–7.69 (1H, m, Ar*H*), 7.73–7.75 (2H, m, Ar*H*), 7.89

(1H, d, J7.9, ArH); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta_{c}$ :47.4 (*C*(9)H), 55.7 (*C*(8)H), 105.9 (*C*(10)H), 121.9 (ArCH), 121.9 (ArCH), 121.9 (ArCH), 122.0 (ArC(4)Br), 126.5 (ArC(10b)), 127.7 (ArCH), 128.0 (ArCH), 129.3 (ArCH), 129.7 (ArC), 130.5 (ArCH), 131.3 (ArCH), 132.0 (ArCH), 132.8 (ArC), 134.3 (ArCH), 135.0 (*C*(10a)), 140.3 (ArC(4a)), 166.0 (*C*(7)); HRMS (NSI<sup>+</sup>) C<sub>23</sub>H<sub>16</sub><sup>79</sup>BrNO<sub>3</sub>SNa<sup>+</sup> [M+Na]<sup>+</sup>, found 487.9913, requires 487.9926 (-2.7 ppm).

(8*S*,9*S*)-8-(4-Methoxyphenyl)-9-phenyl-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3-*a*]pyridin-7one 5,5-dioxide



Following general procedure B, 4-methoxyphenyl acetic acid (61 mg, 0.37 mmol), pivaloyl chloride (69  $\mu$ L, 0.56 mmol) and *i*-Pr<sub>2</sub>NEt (98  $\mu$ L, 0.56 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6 mL), (2*R*,3*S*)-HyperBTM **17** (5 mg, 0.019 mmol), cyclic sulfonyl imine **14** (100 mg, 0.37 mmol), *i*-Pr<sub>2</sub>NEt (64  $\mu$ L, 0.37 mmol) at -78 °C gave crude reaction mixture (>95:5 dr). Purification by Biotage® Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, hexane:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 1 CV)] gave the title compound (129 mg, 75%) as a white solid (>95:5 dr). mp 220-222 °C;  $[\alpha]_D^{20}$  +54.4 (*c* 0.1, CHCl<sub>3</sub>); Chiral HPLC analysis, Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 19.3 min, t<sub>R</sub> (8*R*,9*R*): 26.6 min; >99% ee;  $\nu_{max}$  (ATR)/cm<sup>-1</sup> 2970 (C-H), 1751 (C=O); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{H}$ : 3.76 (3H, s, ArOC*H*<sub>3</sub>), 4.01 (1H, d, *J* 7.5, C(8)*H*), 4.13 (1H, dd, *J* 7.5, 4.4, C(9)*H*), 6.13 (1H, d, *J* 4.4, C(10)*H*), 6.79–6.82 (2H, m, C(8)Ar(3,5)*H*), 7.08–7.12 (4H, m, Ar*H*), 7.24–7.31 (3H, m, Ar*H*), 7.66 (1H, ddd, *J* 8.2, 5.9, 2.5, Ar*H*), 7.72–7.76 (2H, m, Ar*H*), 7.90 (1H, d, *J* 7.9, Ar*H*); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta_C$ : 47.6 (*C*(9)H), 55.3 (*C*(8)H), 127.7 (Ar*C*H), 127.9 (Ar*C*H), 128.4 (Ar*C*H), 129.3 (Ar*C*H), 129.6 (Ar*C*H), 129.6 (Ar*C*), 131.2 (Ar*C*H), 132.9 (Ar*C*), 134.2 (*C*(10a)), 140.9 (Ar*C*(4a)), 159.2 (C(8)Ar*C*(4)), 166.7 (*C*(7)); HRMS (NSI<sup>+</sup>) C<sub>24</sub>H<sub>19</sub>NO<sub>4</sub>SNa<sup>+</sup> [M+Na]<sup>+</sup>, found 440.0924, requires 440.0927 (–0.7 pm).

(8*S*,9*S*)-9-Phenyl-8-(4-(trifluoromethyl)phenyl)-8,9-dihydro-7*H* benzo[4,5]isothiazolo [2,3*a*]pyridin-7-one 5,5-dioxide



Following general procedure B, 4-trifluoromethylphenyl acetic acid (76 mg, 0.37 mmol), pivaloyl chloride (69 µL, 0.56 mmol) and *i*-Pr<sub>2</sub>NEt (98 µL, 0.56 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6 mL), (2*R*,35)-HyperBTM **17** (5 mg, 0.019 mmol), cyclic sulfonyl imine **14** (100 mg, 0.37 mmol), *i*-Pr<sub>2</sub>NEt (64 µL, 0.37 mmol) at -78 °C gave crude reaction mixture (>95:5 dr). Purification by Biotage<sup>®</sup> Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, hexane:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 1 CV)] gave the title compound (108 mg, 64%) as a white solid (>95:5 dr). mp 170–172 °C;  $[\alpha]_D^{20}$  +59.7 (*c* 0.1, CHCl<sub>3</sub>); Chiral HPLC analysis, Chiralpak IA (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C) t<sub>R</sub> (8*S*,95): 12.0 min, t<sub>R</sub> (8*R*,9*R*): 15.9 min; 97% ee; v<sub>max</sub> (ATR)/cm<sup>-1</sup> 3158 (C-H), 1707 (C=O); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{H}$ : 4.13 (1H, d, *J* 9.3, C(8)*H*), 4.19 (1H, dd, *J* 9.3, 3.7, C(9)*H*), 6.16 (1H, d, *J* 3.7, C(10)*H*), 7.08–7.12 (2H, m, Ar*H*), 7.25–7.32 (5H, m, Ar*H*), 7.53 (2H, d, *J* 8.2, Ar*H*), 7.69 (1H, ddd, *J* 8.1, 6.3, 2.1, Ar*H*), 7.76–7.80 (2H, m, Ar*H*), 7.90 (1H, d, *J* 8.1, Ar*H*); <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta_{F}$ :-62.7 (*CF*<sub>3</sub>); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta_{C}$ : 47.4 (*C*(8)H), 56.0 (*C*(9)H), 105.9 (*C*(10)H), 121.9 (Ar*C*H), 121.9 (Ar*C*H), 129.3 (Ar*C*H), 129.3 (Ar*C*H), 129.7 (Ar*C*), 130.1 (q, *J* 33.0, C(8)Ar*C*(4)), 131.4 (Ar*C*H), 132.7 (*C*(10a)), 134.4 (Ar*C*H), 140.0 (Ar*C*), 140.1 (Ar*C*(4a)), 165.8 (*C*(7)); HRMS (NSI<sup>+</sup>) C<sub>24</sub>H<sub>16</sub>F<sub>3</sub>NO<sub>3</sub>SNa [M+Na]<sup>+</sup>, found 478.0686, requires 478.0695 (–1.9 ppm).

(8*S*,9*S*)-9-Phenyl-8-(*m*-tolyl)-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3-*a*]pyridin-7-one 5,5dioxide



Following general procedure B, 3-methylphenyl acetic acid (56 mg, 0.37 mmol), pivaloyl chloride (69  $\mu$ L, 0.56 mmol) and *i*-Pr<sub>2</sub>NEt (98  $\mu$ L, 0.56 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6 mL), (2*R*,3*S*)-HyperBTM **17** (5 mg, 0.019 mmol), cyclic sulfonyl imine **14** (100 mg, 0.37 mmol), *i*-Pr<sub>2</sub>NEt (64  $\mu$ L, 0.37 mmol) at -78 °C gave crude reaction mixture (94:6 dr). Purification by Biotage® Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, hexane:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 1 CV)] gave the title compound (105 mg, 71%) as a white solid (>95:5 dr). mp 174–177 °C {Lit.<sup>[5]</sup> 177–180 °C};  $[\alpha]_D^{20}$  +166.0 (*c* 1.0, CHCl<sub>3</sub>) {Lit.<sup>[5]</sup>  $[\alpha]_D^{20}$  –185.0 (*c* 1.03, CHCl<sub>3</sub>) for 98% ee, 8*R*,9*R* isomer}; Chiral HPLC analysis, Chiralpak AD-H (70:30 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 14.6 min, t<sub>R</sub> (8*R*,9*R*): 27.3 min; >99% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta_{H}$ : (500 MHz, CDCl<sub>3</sub>) 2.31 (3H, s, CH<sub>3</sub>), 4.05 (1H, d, *J* 7.1, C(8)*H*), 4.19 (1H, dd, *J* 7.1, 4.5, C(9)*H*), 6.16 (1H, d, *J* 4.5, C(10)*H*), 6.95-7.01 (1H, m, Ar*H*), 7.01-7.05 (1H, m, Ar*H*), 7.06-7.11 (1H, m, Ar*H*), 7.14–7.22 (3H, m, Ar*H*), 7.23-7.38 (3H, m, Ar*H*), 7.65–7.72 (1H, m, Ar*H*), 7.72–7.81 (2H, m, Ar*H*), 7.93 (1H, d, *J* 7.8, Ar*H*). All data in accordance with literature.<sup>[5]</sup>

(8*S*,9*S*)-9-Phenyl-8-(thiophen-3-yl)-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3-*a*]pyridin-7-one 5,5-dioxide



Following general procedure B, 3-thiopheneacetic acid (53 mg, 0.37 mmol), pivaloyl chloride (69 µL, 0.56 mmol) and *i*-Pr<sub>2</sub>NEt (98 µL, 0.56 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6 mL), (2*R*,3*S*)-HyperBTM **17** (5 mg, 0.019 mmol), cyclic sulfonyl imine **14** (100 mg, 0.37 mmol), *i*-Pr<sub>2</sub>NEt (64 µL, 0.37 mmol) at -78 °C gave crude reaction mixture (93:7 dr). Purification by Biotage® Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, hexane:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 1 CV)] gave the title compound (112 mg, 77%) as a white solid (>95:5 dr). mp 198–200 °C;  $[\alpha]_D^{20}$  +79.3 (*c* 0.1, CH<sub>2</sub>Cl<sub>2</sub>); Chiral HPLC analysis, Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 21.7 min, t<sub>R</sub> (8*R*,9*R*): 44.1 min; >99% ee; v<sub>max</sub> (ATR)/cm<sup>-1</sup> 3001 (C-H), 1709 (C=O); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{H}$ : 4.16–4.20 (2H, m, C(8)*H* and C(9)*H*), 6.15 (1H, d, *J* 4.6, C(10)*H*), 7.04–7.08 (2H, m, Ar*H*), 7.16–7.17 (2H, m, Ar*H*) 7.27–7.33 (4H, m, Ar*H*), 7.65 (1H, m, Ar*H*), 7.72 (2H, m, Ar*H*), 7.84 (1H, d, *J* 7.8, Ar*H*); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta_{C}$ : 46.8 (*C*(9)H), 51.5 (*C*(8)H), 105.1 (*C*(10)H), 121.9 (Ar*C*H), 121.9 (Ar*C*H), 126.6 (Ar*C*H), 126.6 (Ar*C*(10b), 127.0 (Ar*C*H), 127.4 (Ar*C*H), 127.4 (Ar*C*H), 129.4 (Ar*C*H), 129.6 (Ar*C*), 131.3 (Ar*C*H), 132.8 (Ar*C*), 134.3 (Ar*C*H), 136.1 (*C*(10a)), 140.4 (Ar*C*(4a)), 165.9 (*C*(7)); HRMS (NSI<sup>+</sup>) C<sub>21</sub>H<sub>16</sub>NO<sub>3</sub>S<sub>2</sub> [M+H]<sup>+</sup>, found 394.0561, requires 394.0572, (–2.8 ppm).

(8*S*,9*S*)-8-(Naphthalen-1-yl)-9-phenyl-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3-*a*]pyridin-7-one 5,5-dioxide



Following general procedure B, acid (93 mg, 0.50 mmol), pivaloyl chloride (92 µL, 0.75 mmol) and *i*-Pr<sub>2</sub>NEt (131 µL, 0.75 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8.3 mL), (2*R*,3*S*)-HyperBTM **17** (7.7 mg, 0.025 mmol), cyclic sulfonyl imine **14** (135 mg, 0.50 mmol), *i*-Pr<sub>2</sub>NEt (87 µL, 0.50 mmol) at -78 °C for 6 h gave crude reaction mixture (90:10 dr). Purification by Biotage<sup>®</sup> Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, petrol:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 4 CV)] gave the title compound (180 mg, 82 %) as a white solid (90:10 dr). mp 128–131°C {Lit.<sup>[5]</sup> 232–233 °C};  $[\alpha]_D^{20}$  +20 (*c* 0.6, CHCl<sub>3</sub>) {Lit.<sup>[5]</sup>  $[\alpha]_D^{20}$  –69 (*c* 1.10 CHCl<sub>3</sub>) for 96% ee, 8*R*,9*R* isomer}; Chiral HPLC analysis, Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 211 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 11.1 min, t<sub>R</sub> (8*R*,9*R*): 40.2 min; 98% ee; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{\rm H}$  4.28 (1H, dd, *J* 5.9, 4.8, C(9)*H*), 4.78 (1H, d, *J* 5.9, C(8)*H*), 6.09 (1H, d, *J* 4.8, C(10)*H*), 7.14–7.21 (2H, m, Ar*H*), 7.22-7.38 (5H, m, Ar*H*), 7.44–7.55 (2H, m, Ar*H*), 7.65-7.70 (1H, m, Ar*H*), 7.72–7.84 (3H, m, Ar*H*), 7.87 (2H, d, *J* 8.4, Ar*H*), 7.94 (1H, d, *J* 7.8, Ar*H*). All data in accordance with literature.<sup>[5]</sup>

(8R,9S)-9-Phenyl-8-((E)-styryl)-8,9-dihydro-7H-benzo[4,5]isothiazolo[2,3-a]pyridin-7-one 5,5dioxide



Following general procedure B, (*E*)-4-phenylbut-3-enoic acid (60 mg, 0.37 mmol), pivaloyl chloride (69  $\mu$ L, 0.56 mmol) and *i*-Pr<sub>2</sub>NEt (98  $\mu$ L, 0.56 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6 mL), (2*R*,3*S*)-HyperBTM **53** (5 mg, 0.019 mmol), cyclic sulfonyl imine **617** (100 mg, 0.37 mmol), *i*-Pr<sub>2</sub>NEt (64  $\mu$ L, 0.37 mmol) at –78 °C gave crude reaction mixture (95:5 dr). Purification by Biotage<sup>®</sup> Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, hexane:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 1 CV)] gave the title compound (98 mg, 64%) as a white solid (95:5 dr). mp 204-206 °C;  $[\alpha]_D^{20}$  +81.1 (*c* 1.0 CH<sub>2</sub>Cl<sub>2</sub>); Chiral HPLC analysis, Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C) t<sub>R</sub> (8*R*,9*S*): 15.6 min, t<sub>R</sub> (8*S*,9*R*): 25.8 min; 71% ee; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 3.66 (1H, t, *J* 6.6, C(8)*H*), 3.96 (1H, t, *J* 5.0, C(8)*H*), 6.10 (1H, d, *J* 4.5, C(8)C(1)*H*), 6.17 (1H, dd, *J* 7.6, 15.9, C(8)C(2)*H*), 6.42 (1H, d, *J* 15.9, C(10)*H*), 7.20-7.34 (10H, m, Ar*H*), 7.61-7.64 (1H, m, Ar*H*), 7.70-7.72 (2H, m, Ar*H*), 7.85 (1H, d, *J* 7.8, Ar*H*); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) 45.9 (*C*(9)H), 53.3 (*C*(8)H), 105.0 (C(8)*C*(1)H), 121.9 (Ar*C*H), 121.9 (Ar*C*H), 123.4 (C(8)*C*(2)H), 126.7 (Ar*C*H), 126.7 (Ar*C*H), 126.7 (Ar*C*H), 128.2 (Ar*C*), 128.7 (Ar*C*H), 129.4 (Ar*C*H), 129.6 (Ar*C*), 131.2 (Ar*C*H), 132.8 (Ar*C*), 134.2 (Ar*C*H), 135.3 (Ar*C*H), 136.3 (*C*(10a)), 140.3 (Ar*C*), 166.2 (*C*(7)); HRMS (NSI<sup>+</sup>) C<sub>25</sub>H<sub>20</sub>NO<sub>3</sub>S [M+H]<sup>+</sup>, found 414.1139, requires 414.1158 (-4.5 ppm).

(8*R*,9*S*)-9-Phenyl-8-((*E*)-prop-1-en-1-yl)-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3-*a*]pyridin-7-one 5,5-dioxide



Following general procedure B, (*E*)-pent-3-enoic acid (50 mg, 0.50 mmol), pivaloyl chloride (92 µL, 0.75 mmol) and *i*-Pr<sub>2</sub>NEt (131 µL, 0.75 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8.3 mL), (2*R*,3*S*)-HyperBTM **17** (7.7 mg, 0.025 mmol), cyclic sulfonyl imine **14** (135 mg, 0.50 mmol), *i*-Pr<sub>2</sub>NEt (87 µL, 0.50 mmol) at –78 °C for 7 h gave crude reaction mixture (96:4 dr). Purification by Biotage® Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, petrol:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 4 CV)] gave the title compound (135 mg, 77 %) as a white solid (>95:5 dr). mp 152–154 °C;  $[\alpha]_D^{20}$  +215.8 (*c* 1.0, CHCl<sub>3</sub>); Chiral HPLC analysis, Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 211 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 9.5 min, t<sub>R</sub> (8*R*,9*R*): 16.1 min; 99% ee; v<sub>max</sub> (ATR)/cm<sup>-1</sup> 3028 (C-H), 2916 (C=C), 1709 (C=O); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{H}$ : 1.65 (3H, *d*, *J* 6.3, *CH*<sub>3</sub>), 3.47 (1H, t, *J* 6.7, C(8)*H*), 3.84 (1H, app. t, *J* 5.3, C(9)*H*), 5.45–5.53 (1H, m, CH=CHCH<sub>3</sub>), 5.55–5.65 (1H, m, CH=CHCH<sub>3</sub>), 6.07 (1H, *d*, *J* 5.0, C(10)*H*), 7.15–7.20 (2H, m, Ph*H*), 7.25–7.30 (1H, m, Ph*H*), 7.30–7.36 (2H, m, Ph*H*), 7.65 (1H, ddd, *J* 8.2, 5.4, 3.0, Ar*H*), 7.70–7.76 (2H, m, Ar*H*), 7.88 (1H, dt, *J* 7.9, 1.0, Ar*H*); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta_{C}$ : 18.3 (*C*(10b)), 127.6 (Ph*H*), 127.9 (Ph*H*), 129.3 (Ph*H*), 129.4 (PhC), 131.1 (Ar*C*H), 131.7 (CH=CHCH<sub>3</sub>), 132.8 (Ar*C*(10a)), 134.2 (Ar*C*H), 140.5 (Ar*C*(4a)), 166.7 (*C*(7)).

(8*S*,9*S*)-8-(1-Methyl-1*H*-indol-3-yl)-9-phenyl-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3*a*]pyridin-7-one 5,5-dioxide



Following general procedure B, 1-methyl-3-indoleacetic acid (70 mg, 0.37 mmol), pivaloyl chloride (69  $\mu$ L, 0.56 mmol) and *i*-Pr<sub>2</sub>NEt (98  $\mu$ L, 0.56 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6 mL), (2*R*,3*S*)-HyperBTM **17** (5 mg, 0.019 mmol), cyclic sulfonyl imine **14** (100 mg, 0.37 mmol), *i*-Pr<sub>2</sub>NEt (64  $\mu$ L, 0.37 mmol) at -78 °C gave crude reaction mixture (80:20 dr). Purification by Biotage® Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, hexane:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 1 CV)] gave the title compound (97 mg, 60%) as a white solid (89:11 dr). mp 236–238 °C;  $[\alpha]_D^{20}$  +69.7 (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); Chiral HPLC analysis, Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 20.5 min, t<sub>R</sub> (8*R*,9*R*): 50.8 min; >99% ee; v<sub>max</sub> (ATR)/cm<sup>-1</sup> 3155 (C-H), 1705; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta_{H}$ : 3.69 (3H, s, NCH<sub>3</sub>), 4.33 (1H, dd, *J* 5.6, 3.7, C(9)*H*), 4.42 (1H, d, *J* 3.7, C(8)*H*), 6.15 (1H, d, *J* 5.6, C(10)*H*), 6.94 (1H, s, indolyl(2)*H*), 7.16–7.20 (1H, m, Ar*H*), 7.24–7.27 (1H, m, Ar*H*), 7.25–7.39 (6H, m, Ar*H*), 7.67–7.70 (2H, m, Ar*H*), 7.75–7.78 (2H, m, Ar*H*), 7.92 (1H, d, *J* 7.8, Ar*H*); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta_C$ : 33.0 (NCH<sub>3</sub>), 46.7 (*C*(9)H), 48.0 (*C*(8)H), 105.2 (*C*(10)H), 109.8 (indolylC(7)H), 110.3 (indolylC(3)H), 119.0 (indolylC(4)H), 119.8 (indolylC(5)H),

121.9 (ArCH), 121.9 (ArCH), 122.3 (ArCH), 126.3 (indolylC(2)H), 126.6 (ArC(10b)), 126.8 (ArC), 127.4 (ArCH), 128.0 (ArC), 129.5 (ArCH), 131.1 (ArCH), 132.8 (ArC), 134.2 (ArCH), 137.1 (C(10a)), 141.0 (ArC(4a)), 166.4 (C(7)); HRMS (NSI<sup>+</sup>) C<sub>26</sub>H<sub>20</sub>N<sub>2</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup>, found 463.1078, requires 463.1087 (-1.9 ppm).

(8*S*,9*S*)-9-(Naphthalen-1-yl)-8-phenyl-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3-*a*]pyridin-7-one 5,5-dioxide



Following general procedure B, phenylacetic acid (68 mg, 0.50 mmol), pivaloyl chloride (92  $\mu$ L, 0.75 mmol) and *i*-Pr<sub>2</sub>NEt (131  $\mu$ L, 0.75 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8.3 mL), (2*R*,3*S*)-HyperBTM **17** (7.7 mg, 0.025 mmol), cyclic sulfonyl imine **39** (160 mg, 0.50 mmol), *i*-Pr<sub>2</sub>NEt (87  $\mu$ L, 0.50 mmol) at -78 °C for 6 h gave crude reaction mixture (90:10 dr). Purification by Biotage® Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, petrol:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 4 CV)] gave the title compound (216 mg, 99%) as yellow solid (91:9 dr). mp 130–132 °C;  $[\alpha]_D^{20}$  +99.6 (*c* 1.0, CHCl<sub>3</sub>); Chiral HPLC analysis, Chiralpak AD-H (80:20 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 211 nm, 30 °C), t<sub>R</sub> (8*R*,9*R*): 35.3 min, t<sub>R</sub> (8*S*,9*S*): 39.7 min; >99% ee; v<sub>max</sub> (ATR)/cm<sup>-1</sup> 3061 (C-H), 1705 (C=O); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta_{\text{H}}$ : 4.32 (1H, d, *J* 4.8, C(8)*H*), 4.97 (1H, app. t, *J* 5.1, C(9)*H*), 6.26 (1H, d, *J* 5.1, C(10)*H*), 7.26–7.36 (6H, m, Ar*H*), 7.39 (1H, d, *J* 7.6, Ar*H*), 7.50–7.56 (2H, m, Ar*H*), 7.65–7.71 (1H, m, Ar*H*), 7.72–7.82 (3H, m, Ar*H*), 7.87–7.98 (3H, m, Ar*H*); 1<sup>3</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta_{\text{C}}$ : 42.7 (*C*(9)H), 54.7 (*C*(8)H), 105.0 (*C*(10)H), 121.9 (ArCH), 122.0 (ArCH), 122.6 (ArCH), 125.1 (ArCH), 125.8 (ArCH), 126.1 (ArC(1)b)), 126.6 (ArCH), 126.9 (ArCH), 128.0 (ArCH), 128.2 (ArCH), 128.7 (ArCH), 134.5 (ArCH), 129.6 (ArCH), 130.2 (ArC), 130.6 (ArC), 131.3 (ArCH), 132.8 (C(10a)), 134.3 (ArCH), 134.5 (ArC), 135.7 (PhC), 137.1 (ArC(4a)), 166.4 (*C*(7)), HRMS (ASAP) C<sub>27</sub>H<sub>20</sub>NO<sub>3</sub>S<sub>2</sub> [M+H]<sup>+</sup>, found 438.1169, requires 438.1158, (+2.5 ppm).

(8S,9S)-8-Phenyl-9-(4-(trifluoromethyl)phenyl)-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3a]pyridin-7-one 5,5-dioxide



Following general procedure B, phenylacetic acid (68 mg, 0.50 mmol), pivaloyl chloride (92 µL, 0.75 mmol) and *i*-Pr<sub>2</sub>NEt (131 µL, 0.75 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8.3 mL), (2*R*,3*S*)-HyperBTM **17** (7.7 mg, 0.025 mmol), cyclic sulfonyl imine **40** (169 mg, 0.50 mmol), *i*-Pr<sub>2</sub>NEt (87 µL, 0.50 mmol) at -78 °C for 4 h gave crude reaction mixture (88:12 dr). Purification by Biotage<sup>®</sup> Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, petrol:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 4 CV)] gave the title compound (190 mg, 84%) as white solid (>95:5: dr). mp 208–212 °C;  $[\alpha]_D^{20}$  +132.2 (*c* 1.0, CHCl<sub>3</sub>); Chiral HPLC analysis, Chiralpak ID (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 220 nm, 30 °C), t<sub>R</sub> (8*R*,9*R*): 16.9 min, t<sub>R</sub> (8*S*,9*S*): 27.8 min; 95% ee; v<sub>max</sub> (ATR)/cm<sup>-1</sup> 1707 (C=O);  $\delta_H$  (400 MHz, CDCl<sub>3</sub>) 4.03 (1H, d, *J* 8.4, C(8)*H*), 4.27 (1H, dd, *J* 8.4, 4.0, C(9)*H*), 6.13 (1H, d, *J* 4.1, C(10)*H*), 7.16 (2H, dd, *J* 7.5, 2.0, Ph*H*), 7.25 (2H, d, *J* 8.1, C(9)ArC(2,6)*H*), 7.29–7.33 (3H, m, Ph*H*), 7.55 (2H, d, *J* 8.1, C(9)ArC(3,5)*H*), 7.63–7.73 (1H, m, Ar*H*), 7.72–7.82 (2H, m, Ar*H*), 7.88 (1H, dt, *J* 8.0, 0.7, Ar*H*); <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta_{F}$ : –62.61 (CF<sub>3</sub>); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta_{C}$ : 47.2 (*C*(9)Ar*C*(3,5)H), 126.3 (Ar*C*(4a)), 128.2 (C(9)Ar*C*(2,6)H), 128.2 (Ph*C*H), 128.6 (Ph*C*H), 129.0 (Ph*C*H), 130.1 (q, *J* 32.4, *C*CF<sub>3</sub>), 130.2 (C(9)Ar*C*(1)), 131.5 (Ar*C*H), 132.8 (*C*(10a)), 134.4 (Ar*C*H), 135.6 (Ph*C*), 144.7 (Ar*C*(4a)), 166.0 (*C*(7)).

(8*S*,9*S*)-9-(4-Methoxyphenyl)-8-phenyl-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3-*a*]pyridin-7one 5,5-dioxide



Following general procedure B, phenylacetic acid (68 mg, 0.50 mmol), pivaloyl chloride (92  $\mu$ L, 0.75 mmol) and *i*-Pr<sub>2</sub>NEt (131  $\mu$ L, 0.75 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8.3 mL), (2*R*,3*S*)-HyperBTM **17** (7.7 mg, 0.025 mmol), cyclic sulfonyl imine **41** (150 mg, 0.50 mmol), *i*-Pr<sub>2</sub>NEt (87  $\mu$ L, 0.50 mmol) at –78 °C for 6 h gave crude reaction mixture (94:6 dr). Purification by Biotage<sup>®</sup> Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, petrol:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 4 CV)] gave the title compound (107 mg, 51%) as a yellow solid (>95:5 dr). mp 130–132 °C;  $[\alpha]_D^{20}$  +175.0 (*c* 1.0, CHCl<sub>3</sub>); Chiral HPLC analysis, Chiralpak AD-H (80:20 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 220 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 56.7 min, t<sub>R</sub> (8*R*,9*R*): 83.3 min; 99% ee; v<sub>max</sub> (ATR)/cm<sup>-1</sup> 1707 (C=O), 1510; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta_{H}$ : 3.77 (3H, s, OCH<sub>3</sub>), 4.02 (1H, d, *J* 7.4, C(8)*H*), 4.12 (1H, dd, *J* 7.4, 4.4, C(9)*H*), 6.12 (1H, d, *J* 4.4, C(10)*H*), 6.81 (2H, d, *J* 8.7, C(9)ArC(3,5)*H*), 7.02 (2H, d, *J* 8.7, C(9)Ar(2,6)*H*), 7.16 (2H, dd, *J* 7.9, 1.7, Ph*H*), 7.21–7.30 (3H, m, Ph*H*), 7.66 (1H, ddd, *J* 8.2, 6.0, 2.4, Ar*H*), 7.70–7.77 (2H, m, Ar*H*), 7.89 (1H, d, *J* 7.9, Ar*H*); <sup>13</sup>C (126 MHz, CDCl<sub>3</sub>)  $\delta_{c}$ : 46.7 (*C*(9)), 55.4 (ArOCH<sub>3</sub>), 56.3 (*C*(8)), 106.1 (*C*(10)), 114.6 (C(9)ArC(3,5)H), 121.8 (ArCH), 121.9 (ArCH), 126.7

(ArC(10b)), 127.9 (PhCH), 128.5 (PhCH), 128.7 (C(9)ArC(2,6)H), 128.9 (PhCH), 129.4 (ArC(10a)), 131.2 (ArCH), 132.7 (C(9)ArC(1)), 132.8 (C(4a)), 134.2 (ArCH), 136.5 (PhC), 159.1 (C(9)ArC(4)), 166.5 (C(7)); HRMS (pNSI) C<sub>24</sub>H<sub>20</sub>NO<sub>4</sub>S [M+H]<sup>+</sup> found 418.1105, requires 418.1108 (-0.7 ppm).

(8*S*,9*S*)-9-(4-Bromophenyl)-8-phenyl-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3-*a*]pyridin-7-one 5,5-dioxide



Following general procedure B, phenylacetic acid (68 mg, 0.50 mmol), pivaloyl chloride (92 µL, 0.75 mmol) and *i*-Pr<sub>2</sub>NEt (131 µL, 0.75 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8.3 mL), (2*R*,3*S*)-HyperBTM **17** (7.7 mg, 0.025 mmol), cyclic sulfonyl imine **42** (174 mg, 0.50 mmol), *i*-Pr<sub>2</sub>NEt (87 µL, 0.50 mmol) at -78 °C for 6 h gave crude reaction mixture (94:6: dr). Purification by Biotage<sup>®</sup> Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, petrol:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 4 CV)] gave the title compound (160 mg, 69%) as a white solid (>95:5 dr). mp 130–132 °C;  $[\alpha]_D^{20}$ +130.0 (*c* 1.0, CHCl<sub>3</sub>) {Lit.<sup>[5]</sup>  $[\alpha]_D^{20}$  -159 (*c* 1.03, CHCl<sub>3</sub>) for 99% ee, 8*R*,9*R* isomer}; Chiral HPLC analysis, Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 211 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 17.2 min, t<sub>R</sub> (8*R*,9*R*): 21.4 min; 99% ee; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta_{\text{H}}$ : 3.97 (1H, d, *J* 8.3, C(8)*H*), 4.14 (1H, dd, *J* 8.3, 4.1, C(9)*H*), 6.08 (1H, d, *J* 4.1, C(10)*H*), 6.92–6.98 (2H, m, Ar*H*), 7.12 (2H, dd, *J* 7.4, 2.1, Ar*H*), 7.22–7.33 (3H, m, Ar*H*), 7.36–7.46 (2H, m, Ar*H*), 7.62–7.69 (1H, m, Ar*H*), 7.71–7.79 (2H, m, Ar*H*), 7.88 (1H, d, *J* 7.8, Ar*H*). All data in accordance with literature.<sup>[5]</sup>

(8*S*,9*S*)-9-(Furan-2-yl)-8-phenyl-8,9-dihydro-7*H*-benzo[4,5]isothiazolo[2,3-*a*]pyridin-7-one 5,5dioxide



Following general procedure B, phenylacetic acid (68 mg, 0.50 mmol), pivaloyl chloride (92 µL, 0.75 mmol) and *i*-Pr<sub>2</sub>NEt (131 µL, 0.75 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8.3 mL), (2*R*,3*S*)-HyperBTM **17** (7.7 mg, 0.025 mmol), cyclic sulfonyl imine **43** (129 mg, 0.50 mmol), *i*-Pr<sub>2</sub>NEt (87 µL, 0.50 mmol) at -78 °C for 6 h gave crude reaction mixture (93:7 dr). Purification by Biotage<sup>®</sup> Isolera<sup>TM</sup> 4 [SNAP 25 g, 75 mL<sup>-1</sup>, petrol:EtOAc (97:3 4 CV, 97:3 to 50:50 10 CV, 50:50 4 CV)] gave the title compound (174 mg, 92 %) as an off-white solid (>95:5: dr). mp 130–132 °C;  $[\alpha]_D^{20}$  +119.4 (*c* 1.0 CHCl<sub>3</sub>); Chiral HPLC analysis, Chiralpak AD-H (60:40

hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 211 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 13.1 min, t<sub>R</sub> (8*R*,9*R*): 23.8 min; 90% ee; v<sub>max</sub> (ATR)/cm<sup>-1</sup> 3601 (C-H), 1707 (C=O); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) 4.26–4.32 (2H, m, *J* 2.8, C(8)*H* + C(9)*H*), 6.09 (1H, d, *J* 3.2, FurC(3)*H*), 6.09–6.16 (1H, m, C(10)*H*), 6.29 (1H, dd, *J* 3.3, 1.9, FurC(4)*H*), 7.25–7.35 (5H, m, Ph*H*), 7.39 (1H, dd, *J* 1.9, 0.7, FurC(5)*H*), 7.68 (1H, ddd, *J* 8.2, 6.3, 2.2, Ar*H*), 7.73–7.81 (2H, m, Ar*H*), 7.90 (1H, dt, *J* 7.8, 0.8, Ar*H*); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta_c$ : 40.5 (C(9)), 52.6 (C(8)), 102.3 (FurC(3)H), 107.1 (*C*(10)), 110.6 (Fur*C*(4)H), 121.9 (Ar*C*H), 122.0 (Ar*C*H), 126.5 (Ar*C*(10b)), 128.0 (Ph*C*H), 128.2 (Ph*C*H), 129.1 (Ph*C*H), 130.1 (*C*(10a)), 131.4 (Ar*C*H), 132.9 (Ar*C*(4a)), 134.3 (Ar*C*H), 136.1 (Ph*C*), 142.8 (Fur*C*(5)H), 152.3 (Fur*C*(2)), 166.2 (*C*(7)).



































 $| \square$ 



f1 (ppm)







4.132 4.124 4.114 4.116 4.106 4.011













4.204 4.196 4.185 4.178 4.178 4.141







<sup>1</sup>H NMR, 500 MHz, CDCl<sub>3</sub>



4.198 4.187 4.179 4.169 4.158









 $\int_{-3.504}^{-3.904} 3.617$   $\int_{-3.588}^{-3.602} 3.588$ 



f1 (ppm)

| 887<br>885<br>885<br>885<br>887<br>887<br>887<br>887<br>887<br>887 | 645<br>347<br>335<br>335<br>335<br>335<br>335<br>335<br>335<br>335<br>335<br>33 | 170<br>077<br>067<br>592<br>5590<br>5579<br>5579<br>5573<br>513<br>513<br>513<br>848<br>837 | 827<br>472<br>472<br>470<br>470<br>470<br>655<br>655<br>655<br>645<br>645<br>645<br>642<br>640<br>640 |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                    |                                                                                 |                                                                                             | $\overset{\circ}{\longrightarrow}$                                                                    |





S38











<sup>1</sup>H NMR, 400 MHz, CDCl<sub>3</sub>





f1 (ppm)







4.282

 $\checkmark$ 



f1 (ppm)

















# HPLC Data

HPLC data for **15**: Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 13.1 min, t<sub>R</sub> (8*R*,9*R*): 23.0 min; 95% ee.



S50

HPLC data for **19**: Chiralpak AD-H (80:20 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C)  $t_R$  (8*S*,9*S*): 44.6 min,  $t_R$  (8*R*,9*R*): 51.5 min; 97% ee.

Br

![](_page_50_Figure_1.jpeg)

Detector A Channel 2 254nm

| Peak# | Ret. Lime | Area%   |
|-------|-----------|---------|
| 1     | 44.570    | 98.802  |
| 2     | 51.468    | 1.198   |
| Total |           | 100.000 |

HPLC data for **20**: Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C)  $t_R$  (8*S*,9*S*): 19.3 min,  $t_R$  (8*R*,9*R*): 26.6 min; >99% ee.

![](_page_51_Figure_1.jpeg)

S52

HPLC data for **21**: Chiralpak IA (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 12.0 min, t<sub>R</sub> (8*R*,9*R*): 15.9 min; 97% ee.

![](_page_52_Figure_1.jpeg)

HPLC data for **22**: Chiralpak AD-H (70:30 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C)  $t_R$  (8*S*,9*S*): 14.6 min,  $t_R$  (8*R*,9*R*): 27.3 min; >99% ee

![](_page_53_Figure_1.jpeg)

# <Peak Table>

| PDA C | h1 254nm  |         |
|-------|-----------|---------|
| Peak# | Ret. Time | Area%   |
| 1     | 14.412    | 50.230  |
| 2     | 26.817    | 49.770  |
| Total |           | 100.000 |

0.130

mAU

2

Total

27.337

![](_page_53_Figure_5.jpeg)

HPLC data for 23: Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C)  $t_R$  (8*S*,9*S*): 21.7 min,  $t_R$  (8*R*,9*R*): 44.0 min; >99% ee.

![](_page_54_Figure_1.jpeg)

![](_page_54_Figure_2.jpeg)

S55

HPLC data for **24**: Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 211 nm, 30 °C)  $t_R$  (8*S*,9*S*): 11.1 min,  $t_R$  (8*R*,9*R*): 40.2 min; 98% ee

![](_page_55_Figure_1.jpeg)

![](_page_55_Figure_2.jpeg)

<Peak Table>

| PDA C | h1 211nm  |         |
|-------|-----------|---------|
| Peak# | Ret. Time | Area%   |
| 1     | 11.111    | 50.377  |
| 2     | 40.129    | 49.623  |
| Total |           | 100.000 |

mAU

![](_page_55_Figure_6.jpeg)

| PDA Ch1 211nm |           |         |  |
|---------------|-----------|---------|--|
| Peak#         | Ret. Time | Area%   |  |
| 1             | 11.122    | 98.965  |  |
| 2             | 40.213    | 1.035   |  |
| Total         |           | 100.000 |  |

HPLC data for **25**: Chiral HPLC analysis, Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C)  $t_R$  (8*R*,9*S*): 15.6 min,  $t_R$  (8*S*,9*R*): 25.8 min; 71% ee

![](_page_56_Figure_1.jpeg)

![](_page_56_Figure_2.jpeg)

#### <Peak Table>

| PDA Ch1 254nm |           |         |
|---------------|-----------|---------|
| Peak#         | Ret. Time | Area%   |
| 1             | 15.566    | 50.619  |
| 2             | 25.999    | 49.381  |
| Total         |           | 100.000 |

### <Chromatogram>

mAU

![](_page_56_Figure_7.jpeg)

| PDA Ch1 254nm |           |         |  |
|---------------|-----------|---------|--|
| Peak#         | Ret. Time | Area%   |  |
| 1             | 15.557    | 85.946  |  |
| 2             | 25.761    | 14.054  |  |
| Total         |           | 100.000 |  |

HPLC data for **26**: Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 211 nm, 30 °C);  $t_R$  (8*S*,9*S*): 9.5 min,  $t_R$  (8*R*,9*R*): 16.1 min; 99% ee

![](_page_57_Figure_1.jpeg)

![](_page_57_Figure_2.jpeg)

#### <Peak Table>

| PDA Ch1 211nm |           |         |
|---------------|-----------|---------|
| Peak#         | Ret. Time | Area%   |
| 1             | 9.610     | 50.280  |
| 2             | 16.114    | 49.720  |
| Total         |           | 100.000 |

mAU

![](_page_57_Figure_6.jpeg)

| PDA C | h1 211nm  |         |
|-------|-----------|---------|
| Peak# | Ret. Time | Area%   |
| 1     | 9.479     | 99.665  |
| 2     | 16.115    | 0.335   |
| Total |           | 100.000 |

HPLC data for **27**: Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 254 nm, 30 °C)  $t_R$  (8*S*,9*S*): 12.0 min,  $t_R$  (8*R*,9*R*): 15.9 min; >99% ee.

![](_page_58_Figure_1.jpeg)

![](_page_58_Figure_2.jpeg)

HPLC data for **28**: Chiralpak AD-H (80:20 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 211 nm, 30 °C),  $t_R$  (8*R*,9*R*): 35.5 min,  $t_R$  (8*S*,9*S*): 39.7 min; >99% ee

![](_page_59_Figure_1.jpeg)

### <Peak Table>

| PDA Ch1 211nm |           |         |
|---------------|-----------|---------|
| Peak#         | Ret. Time | Area%   |
| 1             | 25.695    | 3.737   |
| 2             | 31.666    | 3.743   |
| 3             | 35.594    | 46.148  |
| 4             | 39.915    | 46.372  |
| Total         |           | 100.000 |

## <Chromatogram>

mAU

![](_page_59_Figure_6.jpeg)

| PDA C | h1 211nm  |         |
|-------|-----------|---------|
| Peak# | Ret. Time | Area%   |
| 1     | 25.705    | 0.459   |
| 2     | 31.661    | 7.709   |
| 3     | 35.519    | 0.128   |
| 4     | 39.687    | 91.704  |
| Total |           | 100.000 |

HPLC data for **29**: Chiralpak ID (80:20 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 220 nm, 30 °C), t<sub>R</sub> (8*R*,9*R*): 16.9 min, t<sub>R</sub> (8*S*,9*S*): 27.8 min; 95% ee

![](_page_60_Figure_1.jpeg)

![](_page_60_Figure_2.jpeg)

| Detector A Channel 1 220nm |           |         |
|----------------------------|-----------|---------|
| Peak#                      | Ret. Time | Area%   |
| 1                          | 16.975    | 49.817  |
| 2                          | 28.744    | 50.183  |
| Total                      |           | 100.000 |

![](_page_60_Figure_4.jpeg)

| Detector A Channel 1 220nm |           |         |
|----------------------------|-----------|---------|
| Peak#                      | Ret. Time | Area%   |
| 1                          | 16.857    | 2.378   |
| 2                          | 27.819    | 97.622  |
| Total                      |           | 100.000 |

HPLC data for **30**: Chiralpak AD-H (80:20 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 220 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 56.7 min, t<sub>R</sub> (8*R*,9*R*): 83.3 min; 99% ee

![](_page_61_Figure_1.jpeg)

| Detector A Channel 1 220nm |           |         |
|----------------------------|-----------|---------|
| Peak#                      | Ret. Time | Area%   |
| 1                          | 56.695    | 99.455  |
| 2                          | 83.314    | 0.545   |
| Total                      |           | 100.000 |

HPLC data for **31**: Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 211 nm, 30 °C) t<sub>R</sub> (8*S*,9*S*): 17.2 min, t<sub>R</sub> (8*R*,9*R*): 21.4 min; 99% ee

![](_page_62_Figure_1.jpeg)

# <Chromatogram>

![](_page_62_Figure_3.jpeg)

### <Peak Table>

| PDA C | h1 211nm  |         |
|-------|-----------|---------|
| Peak# | Ret. Time | Area%   |
| 1     | 17.466    | 48.564  |
| 2     | 21.303    | 51.436  |
| Total |           | 100.000 |

mAU

![](_page_62_Figure_7.jpeg)

| PDA C | h1 211nm  |         |
|-------|-----------|---------|
| Peak# | Ret. Time | Area%   |
| 1     | 17.151    | 99.451  |
| 2     | 21.439    | 0.549   |
| Total |           | 100.000 |

HPLC data for **32**: Chiralpak AD-H (60:40 hexane:IPA, flow rate 1 mLmin<sup>-1</sup>, 211 nm, 30 °C)  $t_R$  (8*S*,9*S*): 13.1 min,  $t_R$  (8*R*,9*R*): 23.8 min; 95% ee

Ö

Ρ

0, ,0

![](_page_63_Figure_1.jpeg)

| PDA C | ni 211nm  |         |
|-------|-----------|---------|
| Peak# | Ret. Time | Area%   |
| 1     | 13.138    | 94.976  |
| 2     | 23.836    | 5.024   |
| Total |           | 100.000 |

# **References and Notes**

- [1] Q. -R. Zhang, J.-R. Huang, W. Zhang, L. Dong, *Org. Lett.* **2014**, *16*, 1684-1687.
- [2] M. Rommel, T. Fukuzumi, J. W. Bode, J. Am. Chem. Soc. **2008**, 130, 17266-17267.
- [3] X. Feng, Z. Zhou, C. Ma, X. Yin, R. Li, L. Dong, Y.-C. Chen, *Angew. Chem. Int. Ed.* 2013, 52, 14173-14176.

[4] R. A. Abramovitch, I. Shinkai, B. J. Mavunkel, K. M. More, S. O'Connor, G. H. Ooi, W. T. Pennington, P. C. Srinivasan, J. R. Stowers, *Tetrahedron* **1996**, *52*, 3339-3354.

[5] J. Izquierdo, M. A. Pericàs, *ACS Catalysis* **2016**, *6*, 348-356.