Design, Synthesis, and Biological Evaluation of Novel CXCR4 Inverse Agonists

Supporting Information

Christine E. Mona,^[a,d] Élie Besserer-Offroy,^[a,d] Jérôme Cabana,^[a,d] Richard Leduc,^[a,d] Pierre Lavigne,^[b,d] Nikolaus Heveker,^[c] Éric Marsault,^[a,d]* Emanuel Escher,^[a,d]*

^[a]Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada; ^[b]Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada; ^[c]Department of Biochemistry and Molecular Medicine, Centre de Recherche Hôpital Sainte-Justine, Université de Montréal, Montreal, QC, Canada; ^[d]Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.

* Corresponding Authors

Supporting information

Table of contents:

Table of HRMS and Purity	S3
Supplementary figures	S4
NMR spectra	S13
LC/MS spectra	S30

#	Structure	MW	Calculated (M+H ⁺)	Found (M+H ⁺)	HPLC Purity
IT1t		406.6515	407.2297	407.2296	95%
MEX4		421.6661	422.2407	422.2409	95%
GEX4	N HN HN HN HN HN HN HN HN HN HN HN HN HN	463.7061	464.2625	464.2630	95%
#	Structure	MW	Calculated (M+2H ⁺)/2	Found (M+2H ⁺)/2	HPLC Purity
16	$(\mathbf{A}_{12} \mathbf{N}_{12} N$	1510.9110	755.9229	755.9256	95%
17	$ \begin{array}{c} & H \\ & & H \\ $	1510.9110	755.9229	755.9259	95%
18	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1342.6749	671.8598	671.8612	95%

Table S1. Table of HRMS and Purity

Fig. S1 Effect of CXCl12, IT1t, MEX4, and GEX4 on HEK293 cells expressing the human HA-tagged CXCR4 receptor. A. Concentration-response curves for the G α i pathway and B. Concentration-response curves for β -arrestin-2 recruitment.

Fig. S2 Competition binding assay with ¹²⁵I-CXCL12 of CXCL12, compound **16**, and compound **17** on HEK293 cells stably expressing the human HA-tagged CXCR4 receptor.

Fig. S3 Concentration-response curves for the Gαi pathway. Effect of CXCL12, compound **16**, and compound **17** on HEK293 cells expressing the human HA-tagged CXCR4 receptor.

[Analog], nM

Fig. S4 Chemotaxis assay. Effect of CXCL12, compound **16**, and compound **17** on migration of pre-B lymphocytes using Transwell migration assays.

Fig. S5 Competition binding assay with ¹²⁵I-CXCL12 of CXCL12 and compound **18** on HEK293 cells stably expressing the human HA-tagged CXCR4 receptor.

Fig. S6 Concentration-response curves for the Gαi pathway. Effect of CXCL12 and compound **18** on HEK293 cells expressing the human HA-tagged CXCR4 receptor.

Fig. S7 Chemotaxis assay. Effect of CXCL12 and compound **18** on migration of pre-B lymphocytes using Transwell migration assays.

Fig. S8 Concentration-response curves for the G α i pathway in the pA2 experimental paradigm. Effect of fixed concentrations of compound 18 on concentration-response curves of CXCL12 on HEK293 cells expressing the human HA-tagged CXCR4 receptor.

Fig. S9 Concentration-response curves for the $G\alpha_i$ pathway. Effect of CXCL12, T140 and, compounds 16, 17, and 18, on HEK293 cells expressing the constitutively active mutant of the human HA-tagged CXCR4 receptor CXCR4-N119S).

IT1t¹H NMR

IT1t ¹³C NMR

Compound 1¹³C NMR

Compound 2¹³C NMR

Compound 3¹³C NMR

Compound 4¹H NMR

Compound 4¹³C NMR

Compound 6¹³C NMR

Compound 8¹³C NMR

Compound 9¹³C NMR

Compound **10**¹³C NMR

Compound **11** ¹³C NMR

Compound 11 2D COSY NMR

Compound **12** ¹H NMR

Compound **12**¹³C NMR

Compound **13** ¹H NMR

Compound 13 ¹³C NMR

Compound 14¹³C NMR

Compound **15**¹³C NMR

IT1t - LC/MS

Compound 8 – LC/MS

Compound 9 – LC/MS

Compound 10 – LC/MS

Compound 12 – LC/MS

S45

