Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Temperature-ControlledRedox-NeutralRuthenium(II)-CatalyzedRegioselective Allylation of Benzamides with Allylic Acetates

Rajendran Manikandan and Masilamani Jeganmohan*

Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India

Email: mjeganmohan@iiserpune.ac.in

Supporting Information (SI)

Table of Contents

S2 - S3	Experimental Section
S4 - S5	Optimization Studies
S6 - S30	Spectral Data of all Compounds
S31 – S41 calculation)	Mechanistic Studies (deuterium studies, temperature studies and DFT
S42 - S114	Copies of ¹ H and ¹³ C NMR Spectra of All Compounds.

Experimental Section

General Procedure for the Allylation of Aromatic amides with Allylic Acetates Catalyzed by a Ruthenium Complex

A 15-mL pressure tube with septum containing amide **1** (100 mg), $[\{\text{RuCl}_2(p\text{-cymene})\}_2]$ (5.0 mol %) and AgSbF₆ (20 mol %) was evacuated and purged with nitrogen gas three times (AgSbF₆ was taken inside the glove box). To the tube, was then added 1,2-dichloroethane (1.0 mL) via syringe. After that, allylic acetate **2** (2.0-2.5 equiv) and 1,2-dichloroethane (2.0 mL) were added via syringes and again the reaction mixture was evacuated and purged with nitrogen gas three times. After that, the septum was taken out and immediately a screw cap was used to cover the tube. Then, the reaction mixture was allowed to stir at rt for 16-36 h. Then, the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and silica gel, and the filtrate was concentrated. The crude residue was purified through a silica gel column using petroleum ether and ethyl acetate (for some compounds CH₂Cl₂ and MeOH combination were used. It has been mentioned in the substrates below) as eluent to give pure **3**.

Note: Liquid amide reactants are added after adding 1.0 mL of solvent. For product **3aa**, 2.0 equiv of allyl acetate (**2a**) was used.

General Procedure for the Alkenylation of Aromatic amides with Allylic Acetates catalyzed by Ruthenium Complex.

A 15-mL pressure tube with septum containing amide **1** (100 mg), [{RuCl₂(*p*-cymene)}₂] (5.0 mol %) and AgSbF₆ (20 mol %) was evacuated and purged with nitrogen gas three times (AgSbF₆ was taken inside the glove box). To the tube, was then added 1,2-dichloroethane (1.0 mL) via syringe. After that, allylacetate **2a** (1.2-2.0 equiv) and 1,2-dichloroethane (2.0 mL) were added via syringes and again the reaction mixture was evacuated and purged with nitrogen gas three times. After that, the septum was taken out and immediately a screw cap was used to cover the tube. Then, the reaction mixture was allowed to stir at 100-120 °C for 12-20 h. Then, the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and silica gel, and the filtrate was concentrated. The crude residue was purified through a silica gel column using petroleum ether and ethyl acetate as eluent (for some compounds CH₂Cl₂ and MeOH combination were used. It has been mentioned in the substrates below) to give pure **4**.

Note: For products 4ba-4ga, 1.2 equiv of allylacetate (2a) and products 4ja-4qa, 2.0 equiv of allylacetate (2a) was used. Reaction temperature is 120 °C for products 4fa, 4ga, 4la, 4ma, 4na and 4pa.

General Procedure for the Synthesis of Isochromanone Derivatives.

ortho Allylated aromatic amides (**3**) (50 mg) was taken in a 10-mL sealed tube and dissolved with 0.5 mL of 1,4 dioxane and 2.0 mL of 6N HCl. Then, the reaction mixture heated at 110°C for 12 h. After cooling to ambient temperature, water was poured into the reaction mixture and extracted with ethyl acetate. The organic layer was washed with brine solution and dried over Na_2SO_4 . The solution was concentrated under the reduced pressure. The crude residue was purified through a silica gel column using petroleum ether and ethyl acetate as eluent to give pure **5**.

General Procedure for the Synthesis of Isobenzofuranone Derivatives.

ortho Vinylated aromatic amides (4) (50 mg) was taken in a 10-mL sealed tube and dissolved with 0.5 mL of 1,4-dioxane and 2.0 mL of 6N HCl. Then the reaction mixture heated at 120°C for 12 h. After cooling to ambient temperature, water was poured in to the reaction mixture and extracted with ethyl acetate. The organic layer was washed with brine solution and dried over Na_2SO_4 . The solution was concentrated under the reduced pressure. The crude residue was purified through a silica gel column using petroleum ether and ethyl acetate as eluent to give pure **6**.

Table S1. Optimization Studies^{*a*}

		OAc	[{RuCl ₂ (<i>p</i> -cymene)} ₂ (5 mol %)			
	1a	2a	AgSbF ₆ (20 mol %) CICH ₂ CH ₂ CI rt, 16 h		o 3aa	
Entry	Solvent	Allyl source		Additive	Yield of 3aa (%) ^b	
1	Iso-propanol	Allyl acetate (2.0equiv)		AgSbF ₆	38	
2	Methanol	Allyl acetate (2.0equiv)		AgSbF ₆	44	
3	THF	Allyl acetate (2.0equiv)		AgSbF ₆	68	
4	DME	Allyl acetate (2.0equiv)		AgSbF ₆	66	
5	DMF	Allyl acetate (2.0equiv)		AgSbF ₆	NR	
6	DMSO	Allyl acetate (2.0 equiv)		AgSbF ₆	NR	
4	Toluene	Allyl acetate (2.0 equiv)		AgSbF ₆	NR	
8	1,4 Dioxane	Allyl acetate (2.0 equiv)		AgSbF ₆	50	
9	CH ₃ CN	Allyl acetate (2.0 equiv)		AgSbF ₆	NR	
10	ClCH ₂ CH ₂ Cl	Allyl acet	ate (2.0 equiv)	AgSbF ₆	81	
11	ClCH ₂ CH ₂ Cl	Allyl acet	ate (2.0 equiv)	AgOTf	71	
12	ClCH ₂ CH ₂ Cl	Allyl acet	ate (2.0 equiv)	$AgBF_4$	69	
13	ClCH ₂ CH ₂ Cl	Allyl acetate (2.0 equiv)		KPF_6	NR	
14	ClCH ₂ CH ₂ Cl	Allyl bromide (2.0 equiv)		AgSbF ₆	NR	
15	ClCH ₂ CH ₂ Cl	Allyl carbonate (2.0 equiv)		AgSbF ₆	NR	
16	ClCH ₂ CH ₂ Cl	Allyl alcohol (2.0 equiv)		AgSbF ₆	NR	

^{*a*}All reactions were carried out under the following conditions: **1a** (100 mg), **2a** (2.0equiv), $[{RuCl_2(p-cymene)}_2]$ (5mol %), additive (20 mol %) and solvent (3.0 mL) at rt for 16 h under the N₂ atmosphere. ^{*b*} Isolated yield.

Note: The catalytic reaction was tried without ruthenium and AgSbF₆. No product **3aa** was observed in the reaction.

Initially, the allylation reaction was screened with various additives, solvents and allyl sources. The allylation reaction of **1a** with **2a** was tried in the presence of [{RuCl₂(p-cymene)}₂] (5.0 mol %) and AgSbF₆ (20 mol %) in various solvents such as *iso*-PrOH, MeOH, 1,4-dioxane, THF, DME, ClCH₂CH₂Cl, methanol, toluene, CH₃CN, DMSO, DMF and water at room temperature for 16 h (entries 1-10). Among them, ClCH₂CH₂Cl was very effective, yielding product **3aa** in 81% yield (entry 10). *iso*-PrOH, MeOH, THF, DME and 1,4-dioxane were partially effective, providing product **3aa** in 38%, 44%, 68%, 66% and 50% yields, respectively. Remaining solvents were not effective. Further, the allylation reaction

was examined with various additives such as $AgSbF_6$, $AgBF_4$, AgOTf, KPF_6 and $CuBF_4$ (entries 10-13) Among them, $AgSbF_6$ was effective, affording product **3aa** in 81% yield. $AgBF_4$ and AgOTf were partially effective, providing product **3aa** in 69% and 71% yields, respectively. KPF_6 and $CuBF_4$ were not effective. The catalytic reaction was also tested with other allyl sources such as allyl bromide, allyl alcohol and allyl carbonate. However, in these reactions, no allylated product **3aa** was observed (entries 14-16).

We have tried the *ortho* alkenylation of 4-methoxy-*N*-methylbenzamide (**1h**) with allyl acetate (**2a**) in the presence of a catalytic amount of $Ru(OAc)_2(p$ -cymene) (10 mol %), AgSbF₆ (20 mol %) in ClCH₂CH₂Cl at room temperature for 36 h. In the reaction, the expected *ortho* alkenylated benzamide **3ha** was observed in 52% yield. But, the same reaction does not proceed without AgSbF₆. This result clearly reveals that the AgSbF₆ is crucial for the reaction. In the reaction, AgSbF₆ acts as a halogen scavenger as well as forming the active cationic ruthenium species **8** for the catalytic reaction.

Spectral Data of All Compounds.

(4-Allylbenzo[d][1,3]dioxol-5-yl)(pyrrolidin-1-yl)methanone (3aa).

The representative general procedure was followed using **1a** (100 mg), **2a** (2.0 equiv) and the reaction was done at rt for 16 h. The desired product was isolated in 96 mg and yield is 81%. Colorless solid; eluent (30% ethylacetate in hexane).

¹H NMR (CDCl₃, 400 MHz): δ 6.66 (d, J = 8.0 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 5.91 (s, 2H), 5.89 – 5.77 (m, 1H), 4.98 (dq, J = 16.0, 4.0 Hz, 1H), 4.93 (dt, J = 12.0, 4.0 Hz, 1H), 3.53 (t, J = 8.0 Hz, 2H), 3.36 (d, J = 8.0 Hz, 2H), 3.12 (t, J = 8.0 Hz, 2H), 1.87 (p, J = 8.0 Hz, 2H), 1.75 (p, J = 8.0 Hz, 2H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.9, 147.3, 146.2, 135.2, 131.8, 119.7, 118.6, 115.5, 106.3, 100.9, 48.9, 45.4, 30.9, 25.9, 24.5.

HRMS (ESI): calc. for [(C₁₅H₁₇NO₃)H] (M+H) 260.1287, measured 260.1289.

IR (ATR)v (cm⁻¹): 3011, 2931, 2817, 1651, 1425, 1317, 1049, 918, 871, 668.

Rf (hexane/ethyl acetate = 70:30): 0.23.

(2-Allyl-4-methoxyphenyl)(pyrrolidin-1-yl)methanone (3ba).

The representative general procedure was followed using **1b** (100 mg), **2a** (2.5 equiv) and the reaction was done at rt for 36 h. The desired product was isolated in 85 mg and yield is 71%. Colorless solid; eluent (28% ethylacetate in hexane).

¹H NMR (CDCl₃, 400 MHz): δ 7.10 (d, *J* = 8.0Hz, 1H),6.74 (d, *J* = 4.0Hz, 1H),6.71 (dd, *J* = 8.0, 4.0 Hz, 1H),5.90 -5.80 (m, 1H), 5.06 – 4.97 (m, 2H), 3.76 (s, 3H), 3.57 (t, *J* = 8.0Hz,2H), 3.34 (d, *J* = 8.0Hz, 2H), 3.11 (d, *J* = 8.0Hz, 2H), 1.88 (p, *J* = 4.0Hz, 2H), 1.79 (p, *J* = 4.0Hz, 2H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.7, 159.8, 138.3, 136.5, 130.2, 127.4, 115.9, 115.3, 111.3, 55.2, 48.8, 45.4, 37.5, 25.9, 24.5.

HRMS (ESI): calc. for [(C₁₅H₁₉NO₂)H] (M+H) 246.1494, measured 246.1502.

IR (ATR)v (cm⁻¹): 2978, 2901, 1614, 1579, 1468, 1219, 1031, 858, 744, 598.

Rf (hexane/ethyl acetate = 70:30): 0.31.

(2-Allyl-4-methylphenyl)(pyrrolidin-1-yl)methanone (3ca).

The representative general procedure was followed using **1c** (100 mg), **2a** (2.5 equiv) and the reaction was done at rt for 36 h. The desired product was isolated in 76 mg and yield is 63%. Colorless solid; eluent (30% ethylacetate in hexane).

¹H NMR (CDCl₃, 400 MHz): δ 7.06 (d, J = 8.0 Hz, 1H), 7.02 (s, 1H), 6.99 (d, J = 8.0 Hz, 1H), 5.91 – 5.81 (m, 1H), 5.02 (dq, J = 16.0, 4.0 Hz, 1H), 4.98 (dq, J = 8.0, 4.0 Hz, 1H), 3.58 (t, J = 8.0 Hz, 2H), 3.37 (d, J = 8.0 Hz, 2H), 3.10 (t, J = 8.0 Hz, 2H), 2.29 (s, 3H), 1.90 (p, J = 8.0 Hz, 2H), 1.79 (p, J = 8.0 Hz, 2H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.8, 138.7, 136.9, 136.1, 134.8, 130.4, 126.8, 125.9, 115.7, 48.7, 45.3, 37.3, 25.9, 24.5, 21.2.

HRMS (ESI): calc. for [(C₁₅H₁₉NO)H] (M+H) 230.1545, measured 230.1553.

IR (ATR)v (cm⁻¹): 2931, 2817, 1727, 1637, 1435, 1312, 1041, 908, 875, 661.

Rf (hexane/ethyl acetate = 70:30): 0.38.

(2-Allylphenyl)(pyrrolidin-1-yl)methanone (3da).

The representative general procedure was followed using **1d** (100 mg), **2a** (2.5 equiv) and the reaction was done at rt for 36 h. The desired product was isolated in 85 mg and yield is 69%. Colorless solid; eluent (30% ethylacetate in hexane).

¹H NMR (CDCl₃, 400 MHz): δ 7.31 (td, *J* = 8.0, 4.0 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.21 (td, *J* = 8.0, 4.0 Hz, 2H), 5.94 -5.86 (m, 1H), 5.09 - 5.01 (m, 2H), 3.63 (t, *J* = 8.0Hz,2H), 3.44 (d, *J* = 8.0Hz,2H), 3.14 (t, *J* = 8.0Hz,2H), 1.94 (p, *J* = 4.0Hz,2H), 1.84 (p, *J* = 4.0Hz,2 H). ¹³C NMR (CDCl₃, 100 MHz): δ 168.6, 138.7, 136.4, 135.7, 132.8, 129.4, 127.5,122.9, 116.7,48.7, 45.5, 37.1, 25.9, 24.5.

HRMS (ESI): calc. for [(C₁₄H₁₇NO)H] (M+H) 216.1388, measured 216.1395.

IR (ATR)v (cm⁻¹): 2979, 1614, 1570, 1413, 1261, 1048, 879, 717, 628.

Rf (hexane/ethyl acetate = 70:30): 0.31.

(2-Allyl-4-bromophenyl)(pyrrolidin-1-yl)methanone (3ea).

The representative general procedure was followed using **1e** (100 mg), **2a** (2.5 equiv) and the reaction was done at rt for 36 h. The desired product was isolated in 77 mg and yield is 66%. Colorless solid; eluent (24% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.38 (d, J = 4.0Hz,1H),7.34 (dd, J = 8.0, 4.0 Hz,1H),7.05 (d, J = 8.0Hz,1H),5.88 -5.78 (m, 1H), 5.08 - 5.02 (m, 2H), 3.58 (t, J = 8.0Hz,2H), 3.37 (d, J = 8.0Hz,2H), 3.09 (t, J = 8.0Hz,2H), 1.90 (p, J = 4.0Hz,2H), 1.81 (p, J = 4.0Hz,2H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.6, 137.5, 136.7, 136.1, 129.8, 128.9, 126.2, 125.9, 115.8, 48.7, 45.3, 37.4, 25.9, 24.5.

HRMS (ESI): calc. for [(C₁₄H₁₆BrNO)H] (M+H) 294.0494, measured 294.0495.

IR (ATR)v (cm⁻¹): 3078, 2931, 1634, 1589, 1463, 1259, 1041, 874, 747, 668.

Rf (hexane/ethyl acetate = 70:30): 0.29.

(2-Allyl-4-chlorophenyl)(pyrrolidin-1-yl)methanone(3fa).

The representative general procedure was followed using 1f (100 mg), 2a (2.5 equiv) and the reaction was done at rt for 36 h. The desired product was isolated in 73 mg and yield is 61%. Colorless solid; eluent (30% ethylacetate in hexane).

¹H NMR (CDCl₃, 400 MHz): δ 7.21 (d, J = 4.0 Hz, 1H), 7.17 (dd, J = 8.0, 4.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 5.87 – 5.77 (m, 1H), 5.05 (dq, J = 12.0, 4.0 Hz, 1H), 5.02 (dq, J = 8.0, 4.0 Hz, 1H), 3.57 (t, J = 8.0 Hz, 2H), 3.37 (dd, J = 8.0, 4.0 Hz, 2H), 3.08 (t, J = 8.0 Hz, 2H), 1.90 (p, J = 8.0 Hz, 2H), 1.79 (p, J = 8.0 Hz, 2H).

¹³C NMR (CDCl₃, 100 MHz): δ168.5, 138.5, 135.9, 135.7, 134.6, 129.8, 127.3, 126.4, 116.7, 48.6, 45.4, 37.1, 25.9, 24.5.

HRMS (ESI): calc. for [(C₁₄H₁₆ClNO)H] (M+H) 250.0999, measured 250.1003.

Rf (hexane/ethyl acetate = 70:30): 0.31.

(2-Allyl-4-Fluorophenyl)(pyrrolidin-1-yl)methanone (3ga).

The representative general procedure was followed using **1g** (100 mg), **2a** (2.5 equiv) and the reaction was done at rt for 36 h. The desired product was isolated in 62 mg and yield is 52%. Colorless liquid; eluent (25% ethylacetate in hexane).

¹H NMR (CDCl₃, 400 MHz): δ 7.16 (dd, J = 8.0, 4.0 Hz, 1H), 6.93 (dd, J = 8.0, 4.0 Hz, 1H), 6.89 (td, J = 8.0, 4.0 Hz, 1H), 5.88 – 5.79 (m, 1H), 5.06 (dq, J = 8.0, 4.0 Hz, 1H), 5.03 (dq, J = 8.0, 4.0 Hz, 1H), 3.59 (t, J = 8.0 Hz, 2H), 3.39 (d, J = 8.0 Hz, 2H), 3.10 (t, J = 8.0 Hz, 2H), 1.91 (p, J = 8.0 Hz, 2H), 1.81 (p, J = 8.0 Hz, 2H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.9, 163.9, 161.5, 139.4 and 139.3 (F-coupling), 135.8, 133.6, 127.8 and 127.7 (F-coupling), 116.7 and 116.5(F-coupling), 113.3 and 113.1 (F-coupling), 48.7, 45.5, 37.2, 25.9, 24.4.

HRMS (ESI): calc. for [(C₁₄H₁₆FNO)H] (M+H) 234.1294, measured 234.1299.

Rf (hexane/ethyl acetate = 70:30): 0.33.

2-Allyl-4-methoxy-N-methylbenzamide (3ha).

The representative general procedure was followed using **1h** (100 mg), **2a** (2.5 equiv) and the reaction was done at rt for 36 h. The desired product was isolated in 63 mg and yield is 51%. Colorless solid; eluent (30% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.33(d, J = 8.0Hz, 1H), 6.73 – 6.69 (m, 2H), 6.02 – 5.92 (m, 1H), 5.87 (s, 1H), 5.05 (dq, J = 8.0, 4.0 Hz, 1H), 5.0 (dq, J = 12.0, 4.0 Hz, 1H), 3.78 (s, 3H), 3.53 (d, J = 8.0 Hz, 2H), 2.91 (d, J = 8.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 170.2, 160.7, 139.9, 137.5, 129.0, 128.9, 116.0, 115.9, 111.3, 55.2, 37.8, 26.6.

HRMS (ESI): calc. for [(C₁₂H₁₅NO₂)H] (M+H) 206.1181, measured 206.1187.

IR (ATR) \tilde{v} (cm⁻¹): 3289, 2922, 1630, 1536, 1403, 1157, 1041, 999.

2-Allyl-4-iodo-N-methylbenzamide(3ia).

The representative general procedure was followed using **1i** (100 mg), **2a** (2.5 equiv) and the reaction was done at rt for 36 h. The desired product was isolated in 49 mg and yield is 42%. Colorless solid; eluent (30% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.57 (d, *J* = 4.0Hz,1H), 7.54 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.06 (d, *J* = 8.0Hz,1H), 5.98 (s, 1H), 5.96 – 5.86 (m, 1H), 5.07 (dq, *J* = 8.0, 4.0 Hz, 1H), 4.99 (dq, *J* = 12.0, 4.0 Hz, 1H), 3.44 (d, *J* = 8.0Hz,2H), 2.91 (d, *J* = 4.0Hz,3H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.7, 139.8, 139.2, 136.7, 135.9, 135.4, 128.7, 116.7, 96.3 37.1, 26.6.

HRMS (ESI): calc. for [(C₁₁H₁₂INO)H] (M+H) 302.0042, measured 302.0049.

(4-(But-2-en-1-yl)benzo[d][1,3]dioxol-5-yl)(pyrrolidin-1-yl)methanone (3ab).

The representative general procedure was followed using **1a** (100 mg), **2b** (2.5 equiv) and the reaction was done at rt for 16 h. The desired product was isolated in 98 mg and yield is 78%. Colorless liquid; eluent (27% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): **E isomer:** δ 6.66 (d, *J* = 8.0 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 5.93 (s, 2H), 5.51 – 5.34 (m, 2H), 3.55 (t, *J* = 8.0 Hz, 2H), 3.37 (d, *J*= 8.0 Hz, 2H), 3.13 (t, *J* = 8.0 Hz, 2H), 1.89 (p, *J* = 8.0 Hz, 2H), 1.78 (p, *J* = 8.0 Hz, 2H), 1.64 (d, *J* = 8.0 Hz, 3H).

Z isomer: δ 6.66 (d, *J* = 8.0 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 5.93 (s, 2H), 5.51 – 5.34 (m, 2H), 3.55 (t, *J* = 8.0 Hz, 2H), 3.29 (d, *J* = 4.0 Hz, 1H), 3.13 (t, *J* = 8.0 Hz, 2H), 1.89 (p, *J* = 8.0 Hz, 2H), 1.78 (p, *J* = 8.0 Hz, 2H), 1.58 (d, *J* = 4.0 Hz, 1H).

¹³C NMR (CDCl₃, 100 MHz): **E isomer:** δ 169.2, 147.3, 146.1, 131.7, 127.7, 127.1, 126.3, 124.8, 106.2, 100.9, 48.9, 45.4, 29.8, 25.9, 24.6, 12.8. **Z isomer:** δ 169.1, 147.3, 146.1, 131.7, 127.7, 126.3, 119.8, 119.7, 106.2, 100.9, 48.9, 45.4, 29.6, 25.9, 24.6, 17.8.

HRMS (ESI): calc. for [(C₁₆H₁₉NO₃)H] (M+H) 274.1443, measured 274.1446.

IR (ATR)v (cm⁻¹): 2989, 2717, 1637, 1485, 1212, 1041, 908, 875, 652.

Rf (hexane/ethyl acetate = 70:30): 0.23.

(4-(Pent-2-en-1-yl)benzo[d][1,3]dioxol-5-yl)(pyrrolidin-1-yl)methanone (3ac).

The representative general procedure was followed using 1a (100 mg), 2c (2.5 equiv) and the reaction was done at rt for 16 h. The desired product was isolated in 101 mg and yield is 77%. Colorless liquid; eluent (30% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): **E isomer:** δ 6.66 (d, *J* = 8.0 Hz, 1H),6.63 (d, *J* = 8.0 Hz, 1H),5.93 (s, 2H), 5.38 – 5.32 (m, 2H), 3.55 (t, *J* = 8.0 Hz, 2H), 3.37 (d, *J* = 8.0 Hz, 2H), 3.14 (t, *J* = 8.0 Hz, 2H), 2.08 (p, *J* = 8.0 Hz, 2H), 1.89 (p, *J* = 8.0 Hz, 2H), 1.78 (p, *J* = 8.0 Hz, 2H), 0.93 (t, *J* = 8.0 Hz, 3H).**Z isomer:** δ 6.66 (d, *J* = 8.0 Hz, 1H),6.63 (d, *J* = 8.0 Hz, 1H), 5.93 (s, 2H), 5.48 – 5.43 (m, 2H), 3.55 (t, *J* = 8.0 Hz, 2H), 3.31 (d, *J* = 8.0 Hz, 2H), 3.14 (t, *J* = 8.0 Hz, 2H), 2.08 (p, *J* = 8.0 Hz, 2H), 1.89 (p, *J* = 8.0 Hz, 2H), 1.78 (p, *J* = 8.0 Hz, 2H), 0.93 (t, *J* = 8.0 Hz, 3H).**Z** isomer: δ 6.66 (d, *J* = 8.0 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 6.93 (s, 2H), 5.48 – 5.43 (m, 2H), 3.55 (t, *J* = 8.0 Hz, 2H), 3.31 (d, *J* = 8.0 Hz, 2H), 3.14 (t, *J* = 8.0 Hz, 2H), 2.08 (p, *J* = 8.0 Hz, 2H), 1.89 (p, *J* = 8.0 Hz, 2H), 1.78 (p, *J* = 8.0 Hz, 2H), 0.93 (t, *J* = 8.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): **E isomer:** δ 169.1, 147.3, 146.1, 133.4, 132.6, 131.7, 125.5, 119.9, 106.1, 100.9, 48.9, 45.4, 25.9, 24.8, 24.6, 20.5, 14.1. **Z isomer:** δ 170.7, 147.3, 146.1, 130.5, 125.4, 125.3, 119.7, 119.6, 106.1, 100.9, 48.9, 45.4, 39.0, 34.7, 29.8, 25.9, 25.4, 24.9, 24.8, 24.6, 20.5, 14.1, 13.5.

HRMS (ESI): calc. for [(C₁₇H₂₁NO₃)H] (M+H) 288.1600, measured 288.1610.

IR (ATR)v (cm⁻¹): 2948, 2811, 1616, 1435, 1212, 1021, 905, 875, 669.

Rf (hexane/ethyl acetate = 70:30): 0.23.

(4-(Hex-2-en-1-yl)benzo[d][1,3]dioxol-5-yl)(pyrrolidin-1-yl)methanone (3ad).

The representative general procedure was followed using **1a** (100 mg), **2d** (2.5 equiv) and the reaction was done at rt for 16 h. The desired product was isolated in 103 mg and yield is 76%. Colorless liquid; eluent (26% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): **E isomer:** δ 6.66 (d, *J* = 8.0 Hz, 1H), 6.62 (d, *J* = 8.0 Hz, 1H), 5.92 (s, 2H), 5.38 – 5.33 (m, 2H), 3.55 (t, *J* = 8.0 Hz, 2H), 3.36 (d, *J* = 4.0 Hz, 2H), 3.13 (t, *J* = 8.0 Hz, 2H), 2.05 (q, *J* = 8.0 Hz, 2H), 1.89 (p, *J* = 8.0 Hz, 2H), 1.77 (p, *J* = 8.0 Hz, 2H), 5.38 – 5.33 (m, 2H), 0.87 (t, *J* = 8.0 Hz, 3H).

Z isomer: δ 6.66 (d, *J* = 8.0 Hz, 1H), 6.62 (d, *J* = 8.0 Hz, 1H), 5.92 (s, 2H), 5.47 – 5.41 (m, 2H), 3.55 (t, *J* = 8.0 Hz, 2H), 3.31 (d, *J* = 4.0 Hz, 2H), 3.13 (t, *J* = 8.0 Hz, 2H), 2.05 (q, *J* = 8.0 Hz, 2H), 1.89 (p, *J* = 8.0 Hz, 2H), 1.77 (p, *J* = 8.0 Hz, 2H), 5.38 – 5.33 (m, 2H), 0.81 (t, *J* = 8.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): **E isomer:** δ 170.7, 147.2, 146.0, 131.7, 130.8, 126.2, 126.0, 119.7, 106.2, 100.9, 48.8, 45.4, 29.2, 25.8, 24.9, 24.5, 22.7, 13.7.

Z isomer: δ 169.1, 147.2, 146.0, 130.4, 126.5, 120.1, 119.9, 119.7, 106.2, 100.9, 48.8, 39.0, 34.7, 34.5, 29.9, 25.0, 22.4, 13.6.

HRMS (ESI): calc. for [(C₁₈H₂₃NO₃)H] (M+H) 302.1756, measured 302.1762.

IR (ATR)v (cm⁻¹): 2967, 2819, 1614, 1435, 1312, 1041, 908, 818, 695.

Rf (hexane/ethyl acetate = 70:30): 0.29.

(4-(Oct-2-en-1-yl)benzo[d][1,3]dioxol-5-yl)(pyrrolidin-1-yl)methanone (3ae).

The representative general procedure was followed using **1a** (100 mg), **2e** (2.5 equiv) and the reaction was done at rt for 16 h. The desired product was isolated in 102 mg and yield is 68%. Colorless liquid; eluent (28% ethylacetate in hexane).

¹H NMR (CDCl₃, 400 MHz): **E isomer:** δ 6.65 (d, *J* = 8.0 Hz, 1H), 6.61 (d, *J* = 8.0 Hz, 1H), 5.91 (s, 2H), 5.37 – 5.35 (m, 2H), 3.54 (t, *J* = 8.0 Hz, 2H), 3.35 (d, *J* = 4.0 Hz, 2H), 3.13 (t, *J* = 8.0 Hz, 2H), 2.06 (q, *J* = 8.0 Hz, 2H), 1.88 (p, *J* = 8.0 Hz, 2H), 1.77 (p, *J*= 8.0 Hz, 2H), 1.36 – 1.16 (m, 6H), 0.84 (t, *J* = 8.0 Hz, 3H). **Z isomer:** δ 6.65 (d, *J* = 8.0 Hz, 1H), 6.61 (d, *J* = 8.0 Hz, 1H), 5.91 (s, 2H), 5.43 – 5.40 (m, 1H), 3.54 (t, *J* = 8.0 Hz, 2H), 3.29 (d, *J* = 4.0 Hz, 2H), 3.13 (t, *J* = 8.0 Hz, 2H), 2.06 (q, *J* = 8.0 Hz, 2H), 1.88 (p, *J* = 8.0 Hz, 2H), 1.77 (p, *J*= 8.0 Hz, 2H), 3.13 (t, *J* = 8.0 Hz, 2H), 2.06 (q, *J* = 8.0 Hz, 2H), 1.88 (p, *J* = 8.0 Hz, 2H), 1.77 (p, *J*= 8.0 Hz, 2H), 1.36 – 1.16 (m, 6H), 0.84 (t, *J* = 8.0 Hz, 2H), 1.88 (p, *J* = 8.0 Hz, 2H), 1.77 (p, *J*= 8.0 Hz, 2H), 1.36 – 1.16 (m, 6H), 0.84 (t, *J* = 8.0 Hz, 2H), 1.88 (p, *J* = 8.0 Hz, 2H), 1.77 (p, *J*= 8.0 Hz, 2H), 1.36 – 1.16 (m, 6H), 0.84 (t, *J* = 8.0 Hz, 2H), 1.88 (p, *J* = 8.0 Hz, 2H), 1.77 (p, *J*= 8.0 Hz, 2H), 1.36 – 1.16 (m, 6H), 0.84 (t, *J* = 8.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): **E isomer:** δ 169.1, 147.2, 146.1, 131.7, 131.1, 125.9, 119.9, 119.7, 106.1, 100.9, 48.8, 45.4, 31.4, 29.2, 27.1, 25.9, 24.9, 24.5, 22.5, 13.9. **Z isomer:**δ 169.1, 147.2, 146.1, 131.9, 131.1, 126.2, 119.9, 119.7, 106.1, 100.9, 48.8, 36.5, 34.7, 32.4, 31.3, 29.9, 29.6, 28.9, 22.4, 13.9.

HRMS (ESI): calc. for [(C₂₀H₂₇NO₃)H] (M+H) 330.2069, measured 330.2077.

Rf (hexane/ethyl acetate = 70:30): 0.23.

(4-(3-Cyclohexylallyl)benzo[*d*][1,3]dioxol-5-yl)(pyrrolidin-1-yl)methanone (3af).

The representative general procedure was followed using 1a (100 mg), 2f (2.5 equiv) and the reaction was done at rt for 16 h. The desired product was isolated in 96 mg and yield is 62%. Colorless liquid; eluent (30% ethyl acetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): **E isomer:** δ 6.67 (d, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 5.93 (s, 2H), 5.31 – 5.18 (m, 2H), 3.57 (t, *J* = 8.0 Hz, 2H), 3.38 (d, *J* = 8.0 Hz, 2H), 3.16 (t, *J* = 8.0 Hz, 2H), 2.39 – 2.32 (m, 1H), 1.90 (p, *J* = 8.0 Hz, 2H), 1.79 (p, *J* = 8.0 Hz, 2H), 1.68 – 1.56 (m, 6H), 1.35 – 1.19 (m, 2H), 1.19 – 1.07 (m, 2H), 1.07 – 0.93 (m, 2H).

Z isomer: δ 6.67 (d, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 5.93 (s, 2H), 5.41 – 5.38 (m, 2H), 3.57 (t, *J* = 8.0 Hz, 2H), 3.30 (d, *J* = 8.0 Hz, 2H), 3.16 (t, *J* = 8.0 Hz, 2H), 2.39 – 2.32 (m, 1H), 1.90 (p, *J* = 8.0 Hz, 2H), 1.79 (p, *J* = 8.0 Hz, 2H), 1.68 – 1.56 (m, 6H), 1.35 – 1.19 (m, 2H), 1.19 – 1.07 (m, 2H), 1.07 – 0.93 (m, 2H).

¹³C NMR (CDCl₃, 100 MHz): **E isomer:** δ 169.1, 147.3, 146.1, 137.1, 131.7, 124.3, 120.2, 119.8, 106.2, 100.9, 48.9, 45.5, 36.2, 33.1, 26.0, 25.9, 25.8, 25.1, 24.6. **Z isomer:** δ 169.1, 137.9, 137.8, 137.1, 130.5, 124.1, 123.9, 119.8, 106.2, 100.9, 48.9, 45.5, 40.5, 39.1, 34.8, 32.9, 30.2, 29.6, 26.1.

HRMS (ESI): calc. for [(C₂₁H₂₇NO₃)H] (M+H) 342.2069, measured 342.2073.

Rf (hexane/ethyl acetate = 98:2): 0.63.

(4-(3-Phenylallyl)benzo[d][1,3]dioxol-5-yl)(pyrrolidin-1-yl)methanone (3ag).

The representative general procedure was followed using 1a (100 mg), 2g (2.5 equiv) and the reaction was done at rt for 16 h. The desired product was isolated in 113 mg and yield is 74%. Colorless liquid; eluent (27% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): **E isomer:** δ 7.35 – 7.17 (m, 6H), 6.67 (s, 2H), 6.43 (dt, *J* = 12.0, 4.0 Hz, 1H), 5.94 (s, 2H), 5.74 (dt, *J* = 12.0, 8.0 Hz, 1H), 3.68 (dd, *J* = 8.0, 4.0 Hz, 2H), 3.29 (t, *J* = 8.0 Hz, 2H), 3.05 (t, *J* = 8.0 Hz, 2H), 1.74 – 1.62 (m, 4H).

Z isomer: δ 7.35 – 7.17 (m, 6H), 6.67 (s, 2H), 6.43 (dt, J = 12.0, 4.0 Hz, 1H), 5.94 (s, 2H), 5.74 (dt, J = 12.0, 8.0 Hz, 1H), 3.56 (dd, J = 8.0, 4.0 Hz, 2H), 3.52 (t, J = 8.0 Hz, 2H), 3.11 (t, J = 8.0 Hz, 2H), 1.74 – 1.62 (m, 4H).

¹³C NMR (CDCl₃, 100 MHz): **E isomer:** δ 168.7, 147.3, 145.9, 136.8, 131.9, 129.4, 128.7, 128.1, 126.7, 119.6, 119.1, 106.6, 101.0, 48.6, 45.5, 26.5, 25.7, 24.3.

Z isomer: δ 168.9, 146.1, 137.1, 131.7, 131.1, 128.4, 127.1, 126.6, 125.9, 119.9, 118.8, 106.2, 101.0, 49.0, 45.1, 29.9, 29.6, 25.6.

HRMS (ESI): calc. for [(C₂₁H₂₁NO₃)H] (M+H) 336.1600, measured 336.1607.

Rf (hexane/ethyl acetate = 70:30): 0.27.

(*E*)-(4-(Prop-1-en-1-yl)benzo[*d*][1,3]dioxol-5-yl)(pyrrolidin-1-yl)methanone (4aa).

The representative general procedure was followed using **1a** (100 mg), **2a** (1.2 equiv) and the reaction was done at 100°C for12 h. The desired product was isolated in 89 mg and yield is 76%. Colorless solid; eluent (30% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 6.71 (d, *J* = 8.0 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 6.55 (dq, *J* = 16.0, 8.0 Hz, 1H), 6.22(dq, *J* = 16.0, 4.0 Hz, 1H), 5.98 (s, 2H), 3.61 (t, *J* = 8.0 Hz, 2H), 3.12 (t, *J* = 8.0 Hz, 2H), 1.91 (p, *J* = 8.0 Hz, 2H), 1.84 (dd, *J* = 8.0, 4.0 Hz, 3H), 1.84 – 1.78 (m, 2H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.1, 147.6, 144.8, 132.6, 130.7, 122.9, 119.9, 117.5, 106.6, 100.9, 48.4, 45.5, 25.9, 24.6, 19.4.

HRMS (ESI): calc. for [(C₁₅H₁₇NO₃)H] (M+H) 260.1287, measured 260.1289.

IR (ATR)v (cm⁻¹): 2881, 2797, 1647, 1435, 1312, 1041, 918, 874, 680.

Rf (hexane/ethyl acetate = 70:30): 0.22.

(E)-(4-Methoxy-2-(prop-1-en-1-yl)phenyl)(pyrrolidin-1-yl)methanone (4ba).

The representative general procedure was followed using **1b** (100 mg), **2a** (1.2 equiv) and the reaction was done at 100° C for 12 h. The desired product was isolated in 88 mg and yield is 74%. Colorless solid; eluent (28% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.13 (d, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 4.0 Hz, 1H), 6.74 (dd, *J* = 8.0, 4.0 Hz, 1H), 6.39 (d, *J* = 16.0 Hz, 1H), 6.25 – 6.16 (m, 1H), 3.79 (s, 3H), 3.62 (t, *J* = 8.0 Hz, 2H), 3.09 (t, *J* = 8.0 Hz, 2H), 1.91 (p, *J* = 8.0 Hz, 2H), 1.83 (dd, *J* = 8.0, 4.0 Hz, 2H), 1.82 – 1.77 (m, 2H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.7, 159.8, 135.9, 129.1, 128.5, 127.8, 127.6, 112.6, 110.4, 55.2, 48.3, 45.5, 25.9, 24.6, 18.7.

HRMS (ESI): calc. for [(C₁₅H₁₉NO₂)H] (M+H) 246.1494, measured 246.1502.

IR (ATR)v (cm⁻¹): 2931, 2817, 1727, 1637, 1435, 1312, 1041, 908, 875, 661.

Rf (hexane/ethyl acetate = 70:30): 0.32.

(*E*)-(4-Methyl-2-(prop-1-en-1-yl)phenyl)(pyrrolidin-1-yl)methanone (4ca).

The representative general procedure was followed using **1c** (100 mg), **2a** (1.2 equiv) and the reaction was done at 100°C for12 h. The desired product was isolated in 98 mg and yield is 81%. Colorless solid; eluent (28% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.25 (s, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.36 (d, *J* = 16.0 Hz, 1H), 6.23- 6.15 (m, 1H), 3.61 (t, *J* = 8.0 Hz, 2H), 3.06 (t, *J* = 8.0 Hz, 2H), 2.29 (s, 3H), 1.90 (p, *J* = 8.0 Hz, 2H), 1.81 (dd, *J* = 8.0, 4.0 Hz, 3H), 1.81 – 1.75(m, 2 H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.9, 138.5, 133.9, 133.3, 127.9, 127.6, 127.5, 126.0, 125.9, 48.2, 45.4, 25.8, 24.5, 21.3, 18.7.

HRMS (ESI): calc. for [(C₁₅H₁₉NO)H] (M+H) 230.1545, measured 230.1553.

IR (ATR)v (cm⁻¹): 2942, 2617, 1647, 1415, 1317, 1047, 918, 875, 598.

Rf (hexane/ethyl acetate = 70:30): 0.29.

(E)-(2-(Prop-1-en-1-yl)phenyl)(pyrrolidin-1-yl)methanone (4da).

The representative general procedure was followed using **1d** (100 mg), **2a** (1.2 equiv) and the reaction was done at 100 $^{\circ}$ C for 12 h. The desired product was isolated in 92 mg and yield is 75%. Colorless solid; eluent (27% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.40 (d, J = 8.0Hz,1H),7.24 -7.18 (m, 1H), 7.12 (t, J = 4.0Hz,2H),6.33 (d, J = 16.0Hz,1H),6.20 -6.13(m, 1H), 3.57 (t, J = 8.0Hz,2 H), 3.00 (t, J = 8.0Hz,2 H), 1.85 (p, J = 4.0Hz,2 H), 1.77(dt, J = 8.0, 4.0Hz,3 H), 1.76 – 1.72 (m, 2 H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.5, 135.8, 133.8, 128.7, 128.2, 127.4, 126.7, 125.8, 125.2, 48.0, 45.2, 25.7, 24.4, 18.6.

HRMS (ESI): calc. for [(C₁₄H₁₇NO)H] (M+H) 216.1388, measured 216.1395.

Rf (hexane/ethyl acetate = 70:30): 0.33.

(E)-(4-Chloro-2-(prop-1-en-1-yl)phenyl)(pyrrolidin-1-yl)methanone (4fa).

The representative general procedure was followed using **1f** (100 mg), **2a** (1.2 equiv) and the reaction was done at 120° C for 12 h. The desired product was isolated in 86 mg and yield is 73%. Colorless solid; eluent (28% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.45 (d, J = 4.0 Hz, 1H), 7.17 (dd, J = 8.0, 4.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 6.35 (d, J = 16.0 Hz, 1H), 6.29 – 6.21 (m, 1H), 3.63 (t, J = 8.0 Hz, 2H), 3.07 (t, J = 8.0 Hz, 2H), 1.93 (p, J = 6.5 Hz, 2H), 1.85 (dd, J = 8.0, 2.0 Hz, 3H), 1.84 – 1.78 (m, 2H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.7, 136.1, 134.8, 134.5, 129.3, 127.6, 126.9, 126.6, 125.5, 48.2, 45.5, 25.9, 24.6, 18.7.

HRMS (ESI): calc. for [(C₁₄H₁₆ClNO)H] (M+H) 250.0999, measured 250.1003.

Rf (hexane/ethyl acetate = 70:30): 0.29.

(E)-(4-Fluoro-2-(Prop-1-en-1-yl)phenyl)(pyrrolidin-1-yl)methanone (4ga).

The representative general procedure was followed using 1g (100 mg), 2a (1.2 equiv) and the reaction was done at 120°C for12 h. The desired product was isolated in 75 mg and yield is 62%. Colorless solid; eluent (28% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.17 (d, J = 8.0Hz,1H),7.13 (dd, J = 8.0, 4.0Hz,1H),6.88(dt, J = 8.0, 4.0 Hz,1H),6.35 (d, J = 16.0Hz,1H),6.27 -6.18(m, 1H), 3.61 (t, J = 8.0Hz,2H), 3.06 (t, J = 8.0Hz,2H), 1.91 (p, J = 4.0Hz,2H), 1.83(dd, J = 8.0, 4.0Hz,3H), 1.81 – 1.77(m, 2H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.9, 164.1 and 161.6 (F-coupling), 136.8 and 136.7 (F-coupling), 132.1, 129.8, 128.1 and 127.9 (F-coupling), 126.7, 114.0 and 113.8 (F-coupling), 111.9 and 111.7 (F-coupling), 48.3, 45.5, 25.9, 24.5, 18.7.

HRMS (ESI): calc. for [(C₁₄H₁₆FNO)H] (M+H) 234.1294, measured 234.1299.

Rf (hexane/ethyl acetate = 98:2): 0.63.

(E)-N,4-Dimethyl-2-(prop-1-en-1-yl)benzamide (4ja).

The representative general procedure was followed using 1j (100 mg), 2a (2.0 equiv) and the reaction was done at 100°C for 16 h. The desired product was isolated in 79 mg and yield is 63%. White Colour solid; eluent (0.3% methanol in DCM).

¹H NMR (CDCl₃, 400 MHz): δ 7.29 (d, *J* = 4.0Hz, 1H), 7.25 (d, *J* = 4.0 Hz, 1H), 7.00 (d, *J* = 8.0Hz, 1H), 6.67 (dd, *J* = 16.0, 4.0 Hz, 1H), 6.20-6.11 (m, 1H), 5.81 (s, 1H), 2.95 (d, *J* = 4.0 Hz, 3 H), 2.32 (s, 3 H), 1.86 (dd, *J* = 8.0, 4.0Hz, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 170.3, 139.9, 135.9, 132.0, 128.6, 128.4, 127.5, 127.4, 126.9, 26.7, 21.3, 18.7.

HRMS (ESI): calc. for [(C₁₂H₁₅NO)H] (M+H) 190.1232, measured 190.1236.

IR (ATR)v (cm⁻¹): 3289, 2922, 1630, 1536, 1403, 1157, 1041, 999.

Rf (hexane/ethyl acetate = 70:30): 0.27.

(E)-N-Methyl-2-(prop-1-en-1-yl)benzamide(4ka).

The representative general procedure was followed using 1k (100 mg), 2a (2.0 equiv) and the reaction was done at 100°C for 16 h. The desired product was isolated in 84 mg and yield is 65%. White Colour solid; eluent (0.3% methanol in DCM).

¹H NMR (CDCl₃, 400 MHz): δ 7.44 (d, *J* = 4.0Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.16 (t, *J* = 8.0 Hz, 1H), 6.65 (d, *J* = 12.0Hz, 1H), 6.20-6.11 (m, 1H), 5.92 (s, 1 H), 2.93(d, *J* = 4.0 Hz, 3 H), 1.85 (dd, *J* = 8.0, 4.0Hz, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 170.3, 135.8, 134.8, 129.8, 128.6, 128.3, 127.3, 126.6, 126.1, 26.6, 18.6.

HRMS (ESI): calc. for [(C₁₁H₁₃NO)H] (M+H) 176.1075, measured 176.1073.

IR (ATR) \tilde{v} (cm⁻¹): 3294, 2935, 1635, 1546, 1444, 1319, 1005, 954, 687.

Rf (hexane/ethyl acetate = 70:30): 0.21.

(E)-4-Bromo-N-methyl-2-(prop-1-en-1-yl)benzamide (4la).

The representative general procedure was followed using **11** (100 mg), **2a** (2.0 equiv) and the reaction was done at 120° C for 20 h. The desired product was isolated in 66 mg and yield is 56%. Colorless solid; eluent (0.3% methanol in DCM).

¹H NMR (CDCl₃, 400 MHz): δ 7.59 (d, *J* = 4.0Hz, 1 H), 7.31 (dd, *J* = 8.0, 4.0 Hz, 1 H), 7.24 (d, *J* = 8.0 Hz, 1 H), 6.60 (dd, *J* = 16.0, 4.0 Hz, 1 H), 6.23-6.14 (m, 1 H), 5.83 (s, 1 H), 2.96(d, *J* = 4.0 Hz, 3 H), 1.87 (dd, *J* = 8.0, 4.0Hz, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.4, 137.9, 133.5, 130.3, 129.6, 129.2, 128.9, 127.2, 124.3, 26.7, 18.7.

HRMS (ESI): calc. for [(C₁₁H₁₂BrNO)H] (M+H) 254.0181, measured 254.0188.

IR (ATR) \tilde{v} (cm⁻¹): 3282, 2945, 2817, 1635, 1547, 1441, 1312, 1041, 935, 875, 661.

Rf (hexane/ethyl acetate = 70:30): 0.29.

(E)-4-Chloro-N-methyl-2-(prop-1-en-1-yl)benzamide (4ma).

N^{-Me}

The representative general procedure was followed using 1m (100 mg), 2a (2.0 equiv) and the reaction was done at 120 °C for 20 h. The desired product was isolated in 66 mg and yield is 54%. Colorless solid; eluent (0.3% methanol in DCM).

¹H NMR (CDCl₃, 400 MHz): δ 7.42 (d, *J* = 4.0Hz, 1 H), 7.29 (dd, *J* = 8.0, 4.0 Hz, 1 H), 7.14 (dt, *J* = 8.0, 4.0 Hz, 1 H), 6.60 (d, *J* = 16.0Hz, 1 H), 6.23-6.14 (m, 1 H), 5.89 (s, 1 H), 2.94 (dd, *J* = 8.0, 4.0 Hz, 3 H), 1.87 (d, *J* = 4.0Hz, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.4, 137.8, 135.9, 133.1, 130.2, 128.8, 127.3, 126.7, 126.2, 26.7, 18.7.

HRMS (ESI): calc. for [(C₁₁H₁₂ClNO)H] (M+H) 210.0686, measured 210.0691.

IR (ATR)v (cm⁻¹): 3078, 2931, 1634, 1589, 1463, 1259, 1041, 874, 747, 668.

Rf(hexane/ethyl acetate = 70:30): 0.30.

(E)-4-Fluoro-N-methyl-2-(prop-1-en-1-yl)benzamide (4na).

The representative general procedure was followed using 1n (100 mg), 2a (2.0 equiv) and the reaction was done at 120°C for 20 h. The desired product was isolated in 47 mg and yield is 42%. Colorless solid; eluent (0.3% methanol in DCM).

¹H NMR (CDCl₃, 400 MHz): δ 7.38 (dd, J = 8.0, 4.0 Hz, 1H), 7.14 (dd, J = 8.0, 4.0 Hz, 1H), 6.88 (td, J = 8.0, 4.0 Hz, 1H), 6.67 (dt, J = 16.0, 4.0 Hz, 1H), 6.20 (dq, J = 12.0, 4.0 Hz, 1H), 5.78(s, 1H), 2.97 (d, J = 4.0Hz, 3H), 1.88(dd, J = 8.0, 4.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.5, 164.8, 162.3, 138.7 and 138.6 (F-coupling), 130.9, 130.1, 129.6 and 129.5 (F-coupling), 127.5, 113.8 and 113.6 (F-coupling), 112.8 and 112.6 (F-coupling), 26.8, 18.7.

HRMS (ESI): calc. for [(C₁₁H₁₂FNO)H] (M+H) 194.0981, measured 194.0988.

Rf(hexane/ethyl acetate = 70:30): 0.31.

(E)-N,2-Dimethyl-6-(prop-1-en-1-yl)benzamide (40a).

The representative general procedure was followed using **1o** (100 mg), **2a** (2.0 equiv) and the reaction was done at 100° C for 16 h. The desired product was isolated in 104 mg and yield is 83%. Colorless solid; eluent (0.3% methanol in DCM).

¹H NMR (CDCl₃, 400 MHz): δ 7.27 (d, *J* = 8.0Hz, 1 H), 7.14 (t, *J* = 8.0 Hz, 1 H), 6.99 (d, *J* = 4.0 Hz, 1 H), 6.36 (d, *J* = 16.0,Hz, 1 H), 6.19-6.13 (m, 1 H), 5.75 (s, 1 H), 2.95 (d, *J* = 8.0 Hz, 3 H), 2.25 (s, 3 H), 1.82 (dd, *J* = 8.0, 4.0Hz, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 170.8, 135.7, 134.7, 134.5, 128.7, 128.4, 128.2, 127.8, 122.5, 26.4, 19.1, 18.7.

HRMS (ESI): calc. for [(C₁₂H₁₅NO)H] (M+H) 190.1232, measured 190.1236.

Rf (hexane/ethyl acetate = 70:30): 0.28.

(E)-5-Chloro-N-methyl-2-(prop-1-en-1-yl)benzamide (4pa).

The representative general procedure was followed using 1m (100 mg), 2a (2.0 equiv) and the reaction was done at 120°C for 20 h. The desired product was isolated in 64 mg and yield is 51%. Colorless solid; eluent (0.3% methanol in DCM).

¹H NMR (CDCl₃, 400 MHz): δ 7.39 (d, *J* = 8.0Hz, 1 H), 7.35 (d, *J* = 4.0 Hz, 1 H), 7.27 (dd, *J* = 8.0, 4.0 Hz, 1 H), 6.59 (d, *J* = 16.0Hz, 1 H), 6.21-6.12 (m, 1 H), 5.86 (s, 1 H), 2.96 (d, *J* = 8.0 Hz, 3 H), 1.86 (dd, *J* = 8.0, 4.0Hz, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 168.9, 136.0, 134.4, 132.4, 130.0, 129.5, 127.6, 127.4, 127.3, 26.7, 18.7.

HRMS (ESI): calc. for [(C₁₁H₁₂ClNO)H] (M+H) 210.0686, measured 210.0685.

Rf (hexane/ethyl acetate = 70:30): 0.21.

(E)-N-Methyl-3-(prop-1-en-1-yl)-2-naphthamide (4qa).

The representative general procedure was followed using **1i** (100 mg), **2a** (2.0 equiv) and the reaction was done at 100°C for 16 h. The desired product was isolated in 93 mg and yield is 77%. Colorless solid; eluent (0.3% methanol in DCM).

¹H NMR (CDCl₃, 400 MHz): δ 7.88 (s, 1 H), 7.86 (s, 1 H), 7.76 (t, *J* = 8.0 Hz, 2 H), 7.47 (t, *J* = 8.0 Hz, 1 H), 7.41 (t, *J* = 8.0 Hz, 1 H), 6.76 (d, *J* = 16.0Hz, 1 H), 6.31-6.22 (m, 1 H), 5.99 (s, 1 H), 3.01 (d, *J* = 8.0 Hz, 3 H), 1.91 (dd, *J* = 8.0, 4.0Hz, 3 H).

¹³C NMR (CDCl₃, 100 MHz): δ 170.3, 133.9, 133.5, 133.5, 131.6, 128.8, 128.6, 127.9, 127.6, 127.3, 127.2, 126.1, 125.2, 26.8, 18.8.

HRMS (ESI): calc. for [(C₁₅H₁₅NO)H] (M+H) 226.1232, measured 226.1236.

Rf (hexane/ethyl acetate = 98:2): 0.63.

8-Methyl-8,9-dihydro-6*H*-[1,3]dioxolo[4,5-*f*]isochromen-6-one (5a).

The representative general procedure was followed using **3aa** (50 mg) and the reaction was done at 110° C for 12 h. The desired product was isolated in 25 mg and yield is 64%. Colorless solid; eluent (11% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.45 (d, J = 8.0 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.12 (d, J = 4.0 Hz, 1H), 6.09 (d, J = 4.0 Hz, 1H), 5.42 (dd, J = 8.0, 4.0 Hz, 1H), 2.16 – 2.08 (m, 1H), 1.88 – 1.78 (m, 1H), 0.99 (t, J = 8.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 165.1, 151.6, 143.8, 126.3, 119.8, 118.8, 107.6, 102.3, 74.6, 28.6, 20.9.

HRMS (ESI): calc. for [(C₁₁H₁₀O₄)H] (M+H) 207.0657, measured 207.0659.

IR (ATR)v (cm⁻¹): 2927, 2854, 1707, 1589, 1232, 1116, 1041, 908, 845, 664.

Rf (hexane/ethyl acetate = 80:20): 0.38.

6-Methoxy-3-methylisochroman-1-one (5b).

The representative general procedure was followed using **3ba** (50 mg) and the reaction was done at 110° C for 12 h. The desired product was isolated in 27 mg and yield is 61%. Colorless solid; eluent (10% ethyl acetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 8.02 (d, *J* = 8.0 Hz, 1H), 6.86 (dd, *J* = 8.0, 4.0 Hz, 1H), 6.67 (d, *J* = 4.0 Hz, 1H), 4.67 - 4.59 (m, 1H), 3.84 (s, 3H), 2.92 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.84 (dd, *J* = 16.0, 4.0 Hz, 1H), 1.48 (d, *J* = 8.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 165.5, 163.7, 141.4, 132.6, 117.5, 113.4, 112.1, 74.7, 55.5, 35.2, 20.9.

HRMS (ESI): calc. for [(C₁₁H₁₂O₃)H] (M+H) 193.0865, measured 193.0874.

IR (ATR)v (cm⁻¹): 2980, 2935, 1713, 1607, 1458, 1117, 1041, 908, 741, 691.

Rf (hexane/ethyl acetate = 80:20): 0.48.

3,6-Dimethylisochroman-1-one (5c).

The representative general procedure was followed using **3ca** (50 mg) and the reaction was done at 110°C for12 h. The desired product was isolated in 24 mg and yield is 62%. Colorless solid; eluent (10% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.95 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.01 (s, 1H), 4.67 -4.58 (m, 1 H), 2.90 (dd, J = 16.0, 8.0 Hz, 1H), 2.83 (dd, J = 16.0, 8.0 Hz, 1H), 2.37 (s, 3H), 1.48 (d, J = 8.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 165.8, 144.6, 139.1, 130.3, 128.5, 127.8, 122.3, 74.9, 34.9, 21.7, 20.9.

HRMS (ESI): calc. for [(C₁₁H₁₂O₂)H] (M+H) 177.0916, measured 177.0923.

Rf (hexane/ethyl acetate = 80:20): 0.43.

3-Methylisochroman-1-one (5d).

The representative general procedure was followed using **3da** (50 mg) and the reaction was done at 110° Cfor 12 h. The desired product was isolated in 22 mg and yield is 58%. Colorless solid; eluent (10% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 8.07 (d, *J* = 8.0 Hz, 1H), 7.51 (td, *J* = 8.0, 4.0 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 1H), 4.69 -4.64(m, 1 H), 2.96 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.90 (dd, *J* = 16.0, 4.0 Hz, 1H), 1.50 (d, *J* = 8.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 165.6, 139.1, 133.6, 130.2, 127.6, 127.2, 124.9, 75.1, 34.9, 20.9.

HRMS (ESI): calc. for $[(C_{10}H_{10}O_2)H]$ (M+H) 163.0759, measured 163.0770.

Rf (hexane/ethyl acetate = 80:20): 0.43.

6-Chloro-3-methylisochroman-1-one (5ea).

The representative general procedure was followed using **3fa** (50 mg) and the reaction was done at 110° C for 12 h. The desired product was isolated in 20 mg and yield is 51%. Colorless solid; eluent (10% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.99 (d, J = 8.0 Hz, 1H), 7.33 (dd, J = 8.0, 4.0 Hz, 1H), 7.22 (d, J = 4.0 Hz, 1H), 4.69 -4.61 (m, 1 H), 2.94 (dd, J = 16.0, 8.0 Hz, 1H), 2.87 (dd, J = 16.0, 4.0 Hz, 1H), 1.49 (d, J = 6.3 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 164.7, 140.7, 139.9, 131.8, 128.1, 127.4, 123.4, 74.9, 34.6, 20.8.

Rf (hexane/ethyl acetate = 98:2): 0.63.

8-Ethyl-[1,3]dioxolo[4,5-*e*]isobenzofuran-6(8*H*)-one (6a).

The representative general procedure was followed using **4aa** (50 mg) and the reaction was done at 120 $^{\circ}$ C for 12 h. The desired product was isolated in 25 mg and yield is 61%. Colorless solid; eluent (10% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.45 (d, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.12 (d, *J* = 4.0 Hz, 1H), 6.09 (d, *J* = 4.0 Hz, 1H), 5.42 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.16 -2.08(m, 1 H), 1.83 (dq, *J* = 12.0, 4.0 Hz, 1H), 0.99 (t, *J* = 8.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 169.7, 152.4, 141.1, 129.2, 121.3, 120.8, 109.9, 102.6, 79.6, 26.7, 8.8.

HRMS (ESI): calc. for [(C₁₁H₁₀O₄)H] (M+H) 207.0657, measured 207.0666.

IR (ATR) \tilde{v} (cm⁻¹): 2931, 2817, 1727, 1637, 1435, 1312, 1041, 908, 875, 661.

Rf (hexane/ethyl acetate = 80:20): 0.33.

3-Ethyl-5-methoxyisobenzofuran-1(3H)-one (6b).

The representative general procedure was followed using **4ba** (50 mg) and the reaction was done at 120 °C for 12 h. The desired product was isolated in 22 mg and yield is 56%. Colorless solid; eluent (12% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.78 (d, J = 8.0 Hz, 1H), 7.00 (dd, J = 8.0, 4.0 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 5.35 (dd, J = 8.0, 4.0 Hz, 1H), 3.88 (s, 3H), 2.15 – 2.04 (m, 1H), 1.84 – 1.73 (m, 1H), 0.98 (t, J = 8.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 170.4, 164.6, 152.5, 127.2, 118.7, 116.1, 105.8, 81.5, 55.8, 27.6, 8.7.

HRMS (ESI): calc. for [(C₁₁H₁₂O₃)H] (M+H) 193.0865, measured 193.0874.

IR (ATR) \tilde{v} (cm⁻¹): 2972, 2933, 1702, 1604, 1495, 1255, 1083, 1019, 689.

Rf (hexane/ethyl acetate = 80:20): 0.31.

3-Ethyl-5-methylisobenzofuran-1(3H)-one (6ca).

The representative general procedure was followed using **4ca** (50 mg) and the reaction was done at 120 $^{\circ}$ C for 12 h. The desired product was isolated in 19 mg and yield is 51%. Colorless solid; eluent (12% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 7.74 (d, *J* = 8.0 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.21 – 7.17 (m, 1H), 5.36 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.46 (s, 3H), 2.13 – 2.02 (m, 1H), 1.81 – 1.74 (m, 1H), 0.96 (t, *J* = 8.0 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 170.7, 150.3, 145.1, 130.2, 125.4, 123.7, 122.0, 82.0, 27.7, 22.1, 8.8.

HRMS (ESI): calc. for [(C₁₁H₁₂O₂)H] (M+H) 177.0916, measured 177.0923.

Rf (hexane/ethyl acetate = 80:20): 0.30.

(6-Methyl-1-oxo-1,2,3,4-tetrahydroisoquinolin-3-yl)methyl acetate (11a).

The representative general procedure was followed using **10a** (100 mg), **2a** (2.5 equiv) and the reaction was done at rt for 36 h. The desired product was isolated in 58 mg and yield is 41%. Colorless solid; eluent (32% ethylacetate in hexanes).

¹H NMR (DMSO d_6 , 400 MHz): δ 7.96 (s, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.10 (s, 1H), 4.08 (dd, J = 12.0, 4.0 Hz, 1H), 3.92 (dd, J = 12.0, 4.0 Hz, 1H), 3.82 – 3.78 (m, 1H), 3.02 (dd, J = 16.0, 4.0 Hz, 1H), 2.81 (dd, J = 16.0, 8.0 Hz, 1H), 2.33 (s, 3H), 1.97 (s, 3H).

¹³C NMR (DMSO *d*₆, 100 MHz): δ 170.3, 164.3, 142.0, 137.2, 128.3, 127.5, 127.0, 126.1, 65.1, 48.7, 29.5, 21.1, 20.6.

HRMS (ESI): calc. for [(C₁₃H₁₅NO₃)H] (M+H) 234.1130, measured 234.1141.

IR (ATR) \tilde{v} (cm⁻¹): 3300 (broad), 2926, 2315, 1649, 1615, 1454, 1337, 1080, 657.

Rf (hexane/ethyl acetate = 60:40): 0.23.

(1-Oxo-1,2,3,4-tetrahydroisoquinolin-3-yl)methyl acetate (11b).

The representative general procedure was followed using **10b** (100 mg), **2a** (2.5 equiv) and the reaction was done at rt for 36 h. The desired product was isolated in 55 mg and yield is 38%. Colorless solid; eluent (32% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 8.0 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 6.42 (s, 1H), 4.24 (dd, *J* = 12.0, 4.0 Hz, 1H), 4.05 (dd, *J* = 12.0, 8.0 Hz, 1H), 4.02 – 3.91 (m, 1H), 3.02 (dd, *J* = 16.0, 4.0 Hz, 1H), 2.89 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.06 (s, 3H). IR (ATR) \tilde{v} (cm⁻¹): 2931, 2817, 1727, 1637, 1435, 1312, 1041, 908, 875, 661.

Rf (hexane/ethyl acetate = 60:40): 0.24.

(1-Oxo-1,2,3,4-tetrahydrobenzo[g]isoquinolin-3-yl)methyl acetate (11c).

The representative general procedure was followed using **10c** (100 mg), **2a** (2.5 equiv) and the reaction was done at rt for 36 h. The desired product was isolated in 63 mg and yield is 47%. Colorless solid; eluent (32% ethylacetate in hexanes).

¹H NMR (CDCl₃, 400 MHz): δ 8.62 (s, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.63 (s, 1H), 7.53 (d, *J* = 8.20 Hz, 1H), 7.48 (t, *J* = 8.0 Hz, 1H), 6.47 (s, 1H), 4.27 (dd, *J* = 12.0, 4.0 Hz, 1H), 4.07 (dd, *J* = 12.0, 4.0 Hz, 1H), 4.02 – 3.98 (m, 1H), 3.20 (dd, *J* = 16.0, 4.0 Hz, 1H), 3.04 (dd, *J* = 16.0, 4.0 Hz, 1H), 2.06 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 170.7, 166.3, 135.4, 132.3, 132.1, 129.6, 129.4, 128.7, 128.5, 127.1, 126.3, 126.2, 65.9, 50.2, 30.6, 20.7.

HRMS (ESI): calc. for [(C₁₆H₁₆NO₃)H] (M+H) 270.1130, measured 270.1140.

IR (ATR)v (cm⁻¹): 3267 (broad), 1734, 1727, 1656, 1413, 1229, 1042, 730.

Rf (hexane/ethyl acetate = 60:40): 0.28.

Deuterium Studies

To know the feasibility of C-H bond activation of N-methyl benzamide and N,N-disubstituted benzamide at room temperature, the following deuterium labelling experiment was done. Treatment of **1k**with CD₃COOD in the presence of $[{RuCl_2(p-cymene)}_2]$ (5.0 mol %) and AgSbF₆ (20 mol %) in 1,2-dichloroethane at room temperature for 4 h gave product 1k' in 96% yield with 72% and 73% of deuterium incorporation at the both ortho carbons. But, N,Ndisubstituted benzamide 1d under similar reaction conditions provided product 1d' in 97% yield with 12% and 16% of deuterium incorporation at the both ortho carbons. The maximum deuterium incorporation at the both ortho carbons of product 1d' in 78% and 79% were observed at room temperature for 28 h. Based on these dueterium studies, we concluded that the C-H bond of N-methyl benzamides can be activated at room temperature within 4 h. But, the allylation step needs a longer reaction time or the higher reaction temperature. In the case of weak directing group such as N,N-disubstituted benzamide, the C-H bond activation can also be done at room temperature, but the process is slow and needs a longer reaction time. In addition when N,N-disubstituted benzamide1b was treated with allyl acetate (2a) in the presence of $[{RuCl_2(p-cymene)}_2]$ (5.0 mol %), AgSbF₆ (20 mol %) and CD₃COOD (2.0 equiv)in 1,2-dichloroethane (DCE) at room temperature for 36 h, ortho allylated benzamide **3ba** was observed in 69% yield along with 33% deuterium incorporation at the *ortho* carbon. This results clearly indicates that the ortho C-H bond cleavage of aromatic amide in intermediate 8 is a reversible process.

¹H NMR Spectra of Compound **1k'.**

Mechanistic Studies for Double Bond Isomerization Reaction.

When *ortho* allylated benzamide **3ba** was treated with CD₃COOD (2.0 equiv) in the presence of [{RuCl₂(*p*-cymene)}₂] (5.0 mol %), AgSbF₆ (20 mol %) in 1,2-dichloroethane (DCE) at 100°C for 12 h, *ortho* vinylated benzamide **4ba** was observed in 92% yield along with 96% deuterium incorporation at the CH₃ group attached with the vinyl carbon and 31% deuterium incorporation was observed at the α position of the vinylic carbon.

¹H and ¹³C NMR Spectra of Compound **3ba'.**

Mechanistic Studies for Double Bond Isomerization Reaction.

The reaction temperature is crucial for the isomerization reaction so the temperature effect for the conversion of **3ad** to **4ad** was studied completely. The reaction was carried out at different temperature such as 50 °C, 60 °C, 70 °C, 80 °C, 90 °C and 100 °C at standard reaction condition. Benzamide **1d** was treated with allyl acetate **(2a)** in the presence of $[{RuCl_2(p-cymene)}_2]$ (5.0 mol %) and AgSbF₆ (20 mol %) in 1,2-dichloroethane (DCE) at mentioned temperature for 36 h, Then, the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and the filtrate was concentrated. The crude residue was purified by column chromatography to find out the yield. Later, ¹H NMR analysis was done and the percentage of the product **3da** and **4da** was determined by using ¹H NMR integration method. The characteristic proton for the both of the compounds **3da** and **4da** was analyzed in the crude ¹H NMR data and the ratio of the products were calculated based on the integration. The product yields are isolated yields.

 H_{a} , H_{b} 5.09 – 5.01 (m, 2H); H_{c} 5.94 -5.86 (m, 1H); H_{d} 6.20 -6.13 (m, 1H); H_{e} 6.33 (d, J = 16.0 Hz, 1H).

Sl.no	Reaction temperature	Ratio of the products in ¹ H	Percentage of the products
	(°C)	NMR	(3da : 4da)
		(3da : 4da)	
1	50 °C	1:0	100 : 0
2	60 °C	1:0.7	59:41
3	70 °C	1:0.75	57:43
4	80 °C	1:2	33:77
5	90 °C	1:3.5	22:88
6	100 °C	0:1	0:100

 ^1H NMR Spectra of Crude reaction mixture **3d** at 50 °C.

 ^1H NMR Spectra of Crude reaction mixture **3d** at 60 °C.

 ^1H NMR Spectra of Crude reaction mixture **3d** at 70 °C.

 ^1H NMR Spectra of Crude reaction mixture **3d** at 80 °C.

¹H NMR Spectra of Crude reaction mixture **3d** at 90°C.

¹H NMR Spectra of compound **4ad** at 100°C.

The energy of the molecules calculated by using DFT calculations.

Figure X. B3LYP/6-31G

(a) Optimized structure of compound 3da (b) Optimized structure of compound 4da

Molecule	Energy	
Compound 3da	-673.69625741a.u	-18332.2 eV
Compound 4da	-673.70553985a.u	-18332.4 eV

 $\Delta E = 0.2 \text{ eV} = 19.29706 \text{ kJ/mol}$

Compound **4da** is 19.2 kJ/mol is stabilized than Compound **3da**.

Computational Details:

The ground state geometries were optimized without symmetry constraints using the B3LYP functional² in combination with the 6-31G(d) basis set² with the program package Gaussian 09 Revision C. $01.^3$ The optimized geometries were confirmed to be local minima by performing vibrational frequency calculations and obtaining only positive (real) frequencies.

References:

- (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785; (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.
- (a) G. A. Petersson and M. A. Al-Laham, *J. Chem. Phys.*, 1991, **94**, 6081; (b) G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley and J. Mantzaris, *J. Chem. Phys.*, 1988, **89**, 2193.
- Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

¹H and ¹³C NMR Spectra of Compound **3aa.**

DEPT (135) NMR Spectrum of Compound 3aa.

¹H and ¹³C NMR Spectra of Compound **3ba.**

¹H and ¹³C NMR Spectra of Compound **3ca.**

45

DEPT (135) NMR Spectrum of Compound 3ca.

¹H and ¹³C NMR Spectra of Compound **3da.**

¹H and ¹³C NMR Spectra of Compound **3ea.**

¹H and ¹³C NMR Spectra of Compound **3fa.**

DEPT (135) NMR Spectrum of Compound 3fa.

DEPT (135) NMR Spectrum of Compound 3ga.

¹H and ¹³C NMR Spectra of Compound **3ha.**

¹H and ¹³C NMR Spectra of Compound **3ia.**

¹H and ¹³C NMR Spectra of Compound **3ab.**

55

DEPT (135) NMR Spectrum of Compound 3ab.

¹H and ¹³C NMR Spectra of Compound **3ac.**

DEPT (135) NMR Spectrum of Compound 3ac.

¹H and ¹³C NMR Spectra of Compound **3ad.**

59

DEPT (135) NMR Spectrum of Compound 3ad.

¹H and ¹³C NMR Spectra of Compound **3ae.**

61

DEPT (135) NMR Spectrum of Compound 3ae.

¹H and ¹³C NMR Spectra of Compound **3af.**

DEPT (135) NMR Spectrum of Compound 3af.

¹H and ¹³C NMR Spectra of Compound **3ag.**

DEPT (135) NMR Spectrum of Compound 3ag.

¹H and ¹³C NMR Spectra of Compound **4aa.**

67

DEPT (135) NMR Spectrum of Compound 4aa.

DEPT (135) NMR Spectrum of Compound 4ca.

¹H and ¹³C NMR Spectra of Compound **4da.**

DEPT (135) NMR Spectrum of Compound 4da.

¹H and ¹³C NMR Spectra of Compound **4ea.**

DEPT (135) NMR Spectrum of Compound 4ea.

¹H and ¹³C NMR Spectra of Compound **4fa.**

DEPT (135) NMR Spectrum of Compound 4fa.

¹H and ¹³C NMR Spectra of Compound **4ga.**

DEPT (135) NMR Spectrum of Compound 4ga.

¹H and ¹³C NMR Spectra of Compound **4ja.**

DEPT (135) NMR Spectrum of Compound 4ja.

¹H and ¹³C NMR Spectra of Compound 4ka.

81

DEPT (135) NMR Spectrum of Compound 4ka.

¹H and ¹³C NMR Spectra of Compound **4la.**

DEPT (135) NMR Spectrum of Compound 4la.

¹H and ¹³C NMR Spectra of Compound **4ma.**

DEPT (135) NMR Spectrum of Compound 4ma.

¹H and ¹³C NMR Spectra of Compound **4na.**

DEPT (135) NMR Spectrum of Compound 4na.

¹H and ¹³C NMR Spectra of Compound **40a.**

DEPT (135) NMR Spectrum of Compound 40a.

¹H and ¹³C NMR Spectra of Compound **4pa.**

DEPT (135) NMR Spectrum of Compound 4pa.

¹H and ¹³C NMR Spectra of Compound **4qa.**

DEPT (135) NMR Spectrum of Compound 4qa.

¹H and ¹³C NMR Spectra of Compound **5a.**

DEPT (135) NMR Spectrum of Compound 5a.

¹H and ¹³C NMR Spectra of Compound **5b.**

DEPT (135) NMR Spectrum of Compound 5b.

₹7.96 7.94 7.17 7.15 7.15 7.15 $<_{1.49}^{1.49}$ _ 55000 50000 45000 O 40000 _ 35000 Me . 30000 _ 25000 20000 . 15000 _ 10000 _ 5000 _ 0 1.05 <u>–</u> 1.02 <u>–</u> 1.04] 1:09 1:04 $1.00 \pm$ 3.13 🚅 3.05 🚤 _ -5000 8.0 1.5 9.0 7.0 3.5 2.5 2.0 8.5 7.5 6.5 6.0 5.5 4.5 f1 (ppm) 4.0 3.0 1.0 0.5 0.0 5.0 **⊢**0.34 ____165.78 ____144.62 139.11 $\lesssim \frac{21.73}{20.93}$ 34.88 0.32 . 0.30 0.28 0.26 \cap 0.24 0.22 0.20 Me 0.18 0.16 _ 0.14 0.12 0.10 0.08 0.06 0.04 0.02 . 0.00 -0.02 170 90 80 f1 (ppm) 30 160 150 140 130 120 110 100 70 60 50 40 20 10 ΰ

¹H and ¹³C NMR Spectra of Compound **5c.**

DEPT (135) NMR Spectrum of Compound 5c.

¹H and ¹³C NMR Spectra of Compound **5d.**

DEPT (135) NMR Spectrum of Compound 5d.

¹H and ¹³C NMR Spectra of Compound **5e.**

DEPT (135) NMR Spectrum of Compound 5e.

¹H and ¹³C NMR Spectra of Compound **6a.**

DEPT (135) NMR Spectrum of Compound 6a.

¹H and ¹³C NMR Spectra of Compound 6**b.**

107

DEPT (135) NMR Spectrum of Compound 6c.

¹H and ¹³C NMR Spectra of Compound **11a.**

DEPT (135) NMR Spectrum of Compound 11a.

¹H and ¹³C NMR Spectra of Compound **11b.**

¹H and ¹³C NMR Spectra of Compound **11c.**

DEPT (135) NMR Spectrum of Compound 11c.

