Supporting Information for

tetra-n-Butylammonium Iodide Mediated Reaction of Indoles

with Bunte Salts: Efficient 3-Sulfenylation of Indoles under

Metal-free Conditions

Jian Li, Zhong-Jian Cai, Shun-Yi Wang* and Shun-Jun Ji*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China E-mail: shunyi@suda.edu.cn; shunjun@suda.edu.cn

Table of Contents

Experimental Section	-S2
Optimization of the Reaction Conditions	S 3
Control Experiment	S 4
Characterization Data of Compounds	S5-S14
Copies of ¹ H and ¹³ C NMR Spectra for Compounds	S15-S40

Experimental Section

General

All the solvents for routine isolation of products and chromatography were reagent grade. Flash chromatography was performed using silica gel (300–400 mesh) with the indicated solvents. Melting points were recorded on an electrothermal digital melting point apparatus and were uncorrected. IR spectra were recorded on a spectrophotometer using KBr optics. ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz (¹H NMR) and 100 MHz (¹³C NMR) spectrometer using CDCl₃ or DMSO-*d*6 as solvent and TMS as internal standard. The ¹H NMR data are reported as the chemical shift in parts per million, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant in hertz, and number of protons. High resolution mass spectra were obtained using a high resolution ESI-TOF mass spectrometer.

General Procedure for the construction of 3a

To a mixture of indole (0.5 mmol), sodium *S*-benzyl sulfothioate (0.7 mmol), TBAI (0.75 mmol) were added in 2.5 mL DCE to test tube. The test tube was closed. The reaction mixture was stirred at 85 °C. When the reactions were completed (checked by TLC), they were cooled to room temperature, washed with 10% $Na_2S_2O_3$ solution (3*15 mL) and extracted with ethyl acetate (3*15 mL). The combined organic layers were dried over Na_2SO_4 . Removal of solvent followed by flash column chromatographic purification using petroleum and ethyl acetate afforded products.

Table S1: Optimization of the reaction conditions ^{*a*}

	SO ₃ Na	<u>n-Bu</u> 4N	NI (1.5 equiv) → DCE, T	S N H
1a	2a			3a
entr	y catalyst	solvent	T (°C)	Yied ^{<i>b</i>} (%)
1	TBAI	DCE	80	72
2	I_2	DCE	80	0
3	NIS	DCE	80	0
4	NaI	DCE	80	0
5	PIDA	DCE	80	0
6	CuI	DCE	80	0
7	TBAI	H ₂ O	80	0
8	TBAI	MeCN	80	0
9	TBAI	EtOH	80	0
10	TBAI	DMF	80	0
11	TBAI	DMSO	80	49
12	TBAI	Dioxane	80	0
13	TBAI	CH ₂ Cl ₂	80	0
14	TBAI	DCE	r.t.	0
15	TBAI	DCE	40	0
16	TBAI	DCE	60	36
17	TBAI	DCE	80	72
18	TBAI	DCE	reflux	86

^{*a*} General conditions : **1a** (0.5mmol), **2a** (0.7 mmol), TBAI (0.75 mmol). ^{*b*} GC yield

Control Experiment:

Bunte salt 2 undergoes transformations to give disulfide 11 under reflux conditions, which can be detected by GC-MS.

Print Date: 01 Sep 2016 09:29:10

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

Characterization Data of Compounds:

3-(Benzylthio)-1*H*-indole (3a)

White solid, mp: 67.2-68.4 °C **IR** (neat, *v*, cm⁻¹): 3403, 3056, 3030, 2925, 1453, 704 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.35 (d, *J* = 7.8 Hz, 1H), 7.26 – 7.22 (m, 1H), 7.19 (qd, *J* = 4.7, 1.3 Hz, 5H), 7.07 (dd, *J* = 7.4, 1.9 Hz, 2H), 7.00 (d, *J* = 2.5 Hz, 1H), 3.86 (s, 2H).ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 139.2, 136.4, 130.0, 129.4, 129.2, 128.4, 126.9, 122.8, 120.7, 119.5, 111.6, 105.4, 41.2.ppm;

HRMS (ESI) *m/z*: calcd for C₁₅H₁₃NNaS: (M+Na)⁺ 262.0661, found: 262.0653.

3-(Benzylthio)-2-methyl-1*H*-indole (3b)

Brown solid, mp: 62.8-63.2 °C **IR** (neat, v, cm⁻¹): 3320, 3026, 1453, 743 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.69 – 7.62 (m, 1H), 7.30 – 7.26 (m, 1H), 7.20 – 7.12 (m, 5H), 6.95 (dd, J = 6.4, 3.0 Hz, 2H), 3.75 (s, 2H), 1.98 (s, 3H).ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 141.4, 139.4, 135.5, 130.6, 129.2, 128.3, 126.8, 122.0, 120.5, 118.8, 110.7, 101.5, 40.5, 11.7.ppm; **HRMS (ESI)** m/z: calcd for C₁₆H₁₅NNaS: (M+Na)⁺ 276.0817, found: 276.0802.

3-(Benzylthio)-4-methyl-1*H*-indole (3c)

Black solid, mp: 46.6-47.1 ℃

IR (neat, *v*, cm⁻¹): 3433, 2919, 700 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.24 – 7.15 (m, 4H), 7.09 (dd, *J* = 15.4, 7.5 Hz, 3H), 6.96 – 6.80 (m, 2H), 3.84 (s, 2H), 2.91 (s, 3H).ppm;

¹³C NMR (101 MHz, CDCl₃) δ 138.7, 136.8, 132.0, 131.0, 129.3, 128.4, 128.3, 126.9, 122.8, 122.4, 109.5, 105.5, 100.1, 43.6, 19.3.ppm;

HRMS (ESI) *m/z*: calcd for C₁₆H₁₅NNaS: (M+Na)⁺ 276.0817, found: 276.0807.

3-(Benzylthio)-5-methyl-1*H*-indole (3d)

Light yellow solid, mp: 97.7-98.8 °C

IR (neat, *v*, cm⁻¹): 3387, 3117, 3026, 2914, 2856, 796 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.44 (s, 1H), 7.21 (dd, *J* = 13.3, 7.4 Hz, 4H), 7.11 – 7.02 (m, 3H), 6.94 (d, *J* = 2.4 Hz, 1H), 3.84 (s, 2H), 2.46 (s, 3H).ppm;

7.02 (III, 5H), 0.94 (u, J = 2.4 HZ, 1H), 5.84 (s, 2H), 2.40 (s, 5H).ppIII;

¹³**C NMR** (101 MHz, CDCl₃) *δ* 139.4, 134.7, 130.2, 130.0, 129.7, 129.2, 128.4, 126.9, 124.4, 119.1, 111.3, 104.75, 41.2, 21.7.ppm;

HRMS (ESI) *m/z*: calcd for C₁₆H₁₅NNaS: (M+Na)⁺ 276.0817, found: 276.0809.

3-(Benzylthio)-7-methyl-1*H***-indole (3e)**

Light yellow solid, mp: 69.6-71.4 °C **IR** (neat, *v*, cm⁻¹): 3303, 1417, 697 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.23 – 7.15 (m, 3H), 7.09 (dt, *J* = 6.8, 4.4 Hz, 3H), 7.02 (d, *J* = 7.1 Hz, 1H), 6.97 (d, *J* = 2.6 Hz, 1H), 3.85 (s, 2H), 2.44 (s, 3H).ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 139.3, 136.0, 129.7, 129.2, 129.0, 128.4, 126.9, 123.4, 120.8,

120.8, 117.2, 106.0, 41.2, 16.6.ppm;

HRMS (ESI) *m*/*z*: calcd for C₁₆H₅NNaS: (M+Na)⁺ 276.0817, found: 276.0815.

3-(Benzylthio)-1-methyl-1*H***-indole (3f)**

Red oil

IR (neat, *v*, cm⁻¹): 2977, 2929, 1720, 1288, 1123, 739 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.9 Hz, 1H), 7.29 (dd, *J* = 19.0, 7.5 Hz, 2H), 7.19 (dd, *J* = 19.1, 7.5 Hz, 4H), 7.13 – 7.05 (m, 2H), 6.89 (s, 1H), 3.85 (s, 2H), 3.71 (s, 3H).ppm;

¹³**C NMR** (101 MHz, CDCl₃) *δ* 139.3, 137.4, 134.5, 130.1, 129.2, 128.4, 126.9, 122.4, 120.2, 119.6, 109.7, 103.5, 41.7, 33.1.ppm;

HRMS (ESI) *m/z*: calcd for C₁₆H₁₅NNaS: (M+Na)⁺ 276.0817, found: 276.0808.

3-(Benzylthio)-5-methoxy-1*H*-indole (3g)

Grown oil

IR (neat, v, cm⁻¹): 3410, 2941, 2829, 1481, 1203, 1166, 797, 698 cm⁻¹; **¹H NMR** (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.23 – 7.14 (m, 4H), 7.05 (dd, J = 8.8, 7.0 Hz, 3H), 6.96 (s, 1H), 6.85 (d, J = 8.8 Hz, 1H), 3.82 (s, 5H).ppm;

¹³**C NMR** (101 MHz, CDCl₃) δ 155.0, 139.4, 131.2, 130.8, 130.2, 129.2, 128.4, 126.9, 113.3, 112.4, 104.8, 100.7, 55.9, 41.4.ppm;

HRMS (ESI) *m/z*: calcd for C₁₆H₁₅NONaS: (M+Na)⁺ 292.0767, found: 292.0756.

3-(Benzylthio)-2-phenyl-1*H*-indole (3h)

Grown oil

IR (neat, *v*, cm⁻¹): 3404, 3057, 3027, 1453, 741, 692 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.51 (dt, *J* = 4.0, 2.2 Hz, 2H), 7.41 – 7.28 (m, 4H), 7.27 – 7.16 (m, 2H), 7.12 – 7.02 (m, 3H), 6.95 (dd, *J* = 6.7, 2.7 Hz, 2H),

3.84 (s, 2H).ppm; ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 138.5, 135.8, 131.9, 131.5, 129.1, 128.6, 128.4, 128.4, 128.3, 126.9, 123.6, 120.9, 119.9, 111.3, 102.6, 40.8.ppm; HRMS (ESI) *m/z*: calcd for C₂₁H₁₇NNaS: (M+Na)⁺ 338.0974, found: 338.0968.

3-(Benzylthio)-5-bromo-1*H*-indole (3i)

Light yellow solid, mp: 112.8-113.8 °C

IR (neat, v, cm⁻¹): 3301, 1452, 975 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.72 (d, *J* = 1.3 Hz, 1H), 7.28 (d, *J* = 8.6 Hz, 1H), 7.22 – 7.17 (m, 4H), 7.04 (dd, *J* = 6.4, 2.8 Hz, 2H), 6.97 (d, *J* = 2.6 Hz, 1H), 3.81 (s, 2H).ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 139.0, 134.9, 131.3, 131.2, 129.2, 128.4, 127.1, 125.8, 122.2, 114.2, 113.1, 105.2, 41.2.ppm;

HRMS (ESI) *m/z*: calcd for C₁₅H₁₂B_rNNaS: (M+Na)⁺ 339.9766, found: 339.9755.

3-((2-Chlorobenzyl)thio)-1*H*-indole (5a)

Yellow solid, mp: 76.6-77.4 °C **IR** (neat, *v*, cm⁻¹): 3298, 1412, 1234, 1051, 738 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.34 (t, *J* = 8.1 Hz, 2H), 7.24 – 7.08 (m, 3H), 7.08 – 6.95 (m, 2H), 6.80 (d, *J* = 7.6 Hz, 1H), 3.97 (s, 2H).ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 136.7, 136.4, 134.1, 131.2, 130.4, 129.7, 129.6, 128.4, 126.5, 122.9, 120.7, 119.5, 111.6, 105.1, 38.9.ppm; **HRMS** (**ESI**) *m/z*: calcd for C₁₅H₁₂ClNNaS: (M+Na)⁺ 296.0271, found: 296.0266.

3-((3-Chlorobenzyl)thio)-1*H*-indole (5b)

Grown solid, mp: 70.7-71.3 ℃

IR (neat, *v*, cm⁻¹): 3404, 3377, 798, 742 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 7.9 Hz, 1H), 7.25 - 7.22 (m, 1H), 7.22 - 7.17 (m, 1H), 7.17 - 7.13 (m, 1H), 7.10 (t, *J* = 7.7 Hz, 1H), 7.05 (s, 1H), 7.02 (d, *J* = 2.6 Hz, 1H), 6.91 (d, *J* = 7.4 Hz, 1H), 3.80 (s, 2H).ppm;

¹³**C NMR** (101 MHz, CDCl₃) *δ* 141.3, 136.4, 134.1, 130.2, 129.6, 129.3, 129.2, 127.3, 127.1, 123.0, 120.8, 119.4, 111.7, 104.9, 40.6.ppm;

HRMS (ESI) *m/z*: calcd for C₁₅H₁₂ClNNaS: (M+Na)⁺ 296.0271, found: 296.0268.

3-((4-Chlorobenzyl)thio)-1H-indole (5c)

Yellow solid, mp: 44.2-45.0℃

IR (neat, *v*, cm⁻¹): 3376, 3322, 3110, 1657, 762 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.28 – 7.10 (m, 4H), 6.96 (dd, J = 12.0, 5.5 Hz, 3H), 3.80 (s, 2H).ppm;

¹³**C NMR** (101 MHz, CDCl₃) *δ* 137.8, 136.4, 132.7, 130.5, 130.2, 129.3, 128.5, 123.0, 120.8, 119.4, 111.7, 104.9, 40.3.ppm;

HRMS (ESI) *m/z*: calcd for C₁₅H₁₂ClNNaS: (M+H)⁺296.0271, found: 296.0275.

3-((4-Bromobenzyl)thio)-1*H*-indole (5d)

Light yellow Solid, mp: 114.2-115.3 °C

IR (neat, *v*, cm⁻¹): 3272, 1651, 1595, 1474 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.36 (d, *J* = 7.8 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.25 – 7.17 (m, 2H), 6.97 (d, *J* = 2.6 Hz, 1H), 6.88 (d, *J* = 8.3 Hz, 2H), 3.78 (s, 2H).ppm;

¹³**C NMR** (101 MHz, CDCl₃) δ 138.4, 136.4, 131.4, 130.9, 130.3, 129.3, 122.9, 120.8, 119.4, 111.7, 104.7, 40.3.ppm;

HRMS (ESI) *m/z*: calcd for C₁₅H₁₂BrNNaS: (M+Na)⁺ 339.9766, found: 339.9757.

3-((4-Nitrobenzyl)thio)-1*H*-indole (5e)

Yellow solid, mp: 112.0-112.9 °C **IR** (neat, v, cm⁻¹): 3424, 2929, 149, 1348, 1095, 743 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (s, 1H), 8.02 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 7.9 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.24 (d, J = 8.1 Hz, 1H), 7.18 (t, J = 7.4 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 6.97 (d, J = 2.6 Hz, 1H), 3.89 (s, 2H).ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 147.2, 146.9, 136.4, 130.5, 129.9, 129.2 123.6, 123.2, 121.0,

¹³**C NMR** (101 MHz, CDCl₃) δ 147.2, 146.9, 136.4, 130.5, 129.9, 129.2 123.6, 123.2, 121.0, 119.2, 111.9, 104.0, 40.2.ppm;

HRMS (ESI) *m/z*: calcd for C₁₅H₁₂N₂NaO₂S: (M+Na)⁺ 307.0512, found: 307.0502.

4-(((1H-Indol-3-yl)thio)methyl)benzonitrile (5f)

Grown oil

IR (neat, *v*, cm⁻¹): 3309, 3065, 2913, 2226, 1414, 737 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.41 (dd, *J* = 26.0, 8.1 Hz, 3H), 7.26 – 7.16 (m, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 6.97 (d, *J* = 2.6 Hz, 1H), 3.84 (s, 2H).ppm; ¹³**C** NMR (101 MHz, CDCl₃) δ 145.0, 136.4, 132.1, 130.4, 129.8, 129.2, 123.1, 120.9, 119.2, 111.8, 110.5, 104.1, 40.6.ppm;

HRMS (ESI) *m/z*: calcd for C₁₆H₁₂N₂NaS: (M+Na)⁺ 287.0613, found: 287.0613.

3-((4-Chlorophenyl)thio)-1*H*-indole (5g)

White solid, mp: 137.0-137.7 $^\circ\!\mathrm{C}$

IR (neat, *v*, cm⁻¹): 3405, 1474, 1090, 748 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.50 (d, *J* = 2.6 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 1H), 7.40 – 7.27 (m, 1H), 7.20 – 7.15 (m, 1H), 7.15 – 7.06 (m, 2H), 7.06 – 6.97 (m, 2H).ppm;

¹³C NMR (101 MHz, CDCl₃) δ 138.0, 136.7, 130.9, 130.8, 129.0, 129.0, 127.3, 123.4, 121.3, 119.7, 111.9.ppm;

HRMS (ESI) *m*/*z*: calcd for C₁₄H₁₀ClNNaS: (M+Na)⁺ 282.0115, found:282.0117.

3-((4-Nitrophenyl)thio)-1*H*-indole (5h)

Yellow solid, mp: 126.5-126.9 ℃

IR (neat, *v*, cm⁻¹): 3419, 3101, 1325, 1088, 739 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) *δ* 8.60 (s, 1H), 8.07 – 7.94 (m, 2H), 7.61 – 7.43 (m, 3H), 7.34 – 7.29 (m, 1H), 7.23 – 7.17 (m, 1H), 7.16 – 7.07 (m, 2H).ppm;

¹³**C NMR** (101 MHz, CDCl₃) δ 150.0, 136.8, 131.4, 128.6, 125.3, 124.1, 123.8, 121.7, 119.4, 112.2, 100.5.ppm;

HRMS (ESI) *m/z*: calcd for C₁₄H₁₀N₂NaO₂S: (M+Na)⁺ 293.0355, found: 293.0352.

3-((2-(Trifluoromethyl)phenyl)thio)-1*H*-indole (5i)

Light yellow solid, mp: 120.4-121.9 °C **IR** (neat, v, cm⁻¹): 2919, 2852, 1313, 1109, 732 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.54 (m, 2H), 7.40 (d, J = 8.3 Hz, 1H), 7.35 (s, 1H), 7.33 – 7.28 (m, 1H), 7.20 – 7.06 (m, 3H), 6.93 (d, J = 7.4 Hz, 1H), 3.85 (s, 3H).ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 139.9, 137.9, 136.0, 132.0, 130.0, 128.9 (J_{C-F} = 272Hz), 127.84, 126.6 (J_{C-F} = 31Hz), 126.6 (J_{C-F} = 4Hz), 124.4, 123.0, 121.0, 119.8, 110.1, 99.3 (J_{C-F} = 2Hz), 33.5.ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -61.28; **HRMS (ESI)** m/z: calcd for C₁₆H₁₂F₃NNaS: (M+Na)⁺ 330.0535, found: 330.0524.

3-((4-(Trifluoromethyl)benzyl)thio)-1H-indole (5j)

White solid, mp: 84.0-86.4 °C **IR** (neat, *v*, cm⁻¹): 3409, 2926, 1615, 1115, 749 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.40 (dd, *J* = 21.5, 8.0 Hz, 3H), 7.23 – 7.08 (m, 4H), 6.99 (d, *J* = 2.6 Hz, 1H), 3.87 (s, 2H).ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 143.5, 136.4, 130.3, 129.4, 129.3, 129.1 (*J*_{C-F} = 33Hz), 125.3 (*J*_{C-F} = 4Hz), 124.4 (*J*_{C-F} = 270Hz) 123.0, 120.9, 119.3, 111.7, 104.6, 40.5.ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.35; **HRMS (ESI)** *m*/*z*: calcd for C₁₆H₁₂F₃NNaS: (M+Na)⁺ 330.0535, found: 330.0529.

3-((2-Bromobenzyl)thio)-1*H*-indole (5k)

Yellow solid, mp: 69.7-71.2 ℃

IR (neat, *v*, cm⁻¹): 3304, 3055, 2962, 1024, 737, 707 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.57 – 7.47 (m, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.25 – 7.14 (m, 2H), 7.09 – 6.97 (m, 3H), 6.80 (dd, *J* = 4.0, 2.5 Hz, 1H), 3.98 (s, 2H).ppm;

¹³**C NMR** (101 MHz, CDCl₃) δ 138.4, 136.4, 133.1, 131.2, 130.4, 129.6, 128.6, 127.1, 124.7, 122.9, 120.7, 119.5, 111.6, 105.1, 41.5.ppm;

HRMS (ESI) calcd for C₁₅H₁₂BrNNaS: (M+Na)⁺ 339.9766, *m/z*: found: 339.9756.

tert-Butyl 2-((1-methyl-1H-indol-3-yl)thio)acetate (5l)

Yellow oil.

IR (neat, v, cm⁻¹): 2977, 2929, 1720, 1123, 740 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.28 (dd, J = 6.9, 1.0 Hz, 1H), 7.25 (s, 1H), 7.23 – 7.17 (m, 1H), 3.78 (s, 3H), 3.31 (s, 2H), 1.37 (s, 9H), ppm; ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 137.4, 134.8, 129.9, 122.5, 120.4, 119.6, 109.8, 103.1, 81.4, 40.4, 33.2, 28.1.ppm;

HRMS (ESI) m/z: calcd for C₁₅H₁₉NNaO₂S: (M+Na)⁺300.1029, found: 300.1040.

2-((1H-Indol-3-vl)thio)acetonitrile (5m)

Grown solid, mp: 49.6-51.2 ℃

IR (neat, v, cm⁻¹): 3379, 3305, 2973, 2926, 2854, 2244, 1234, 745 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.76 (d, J = 7.3 Hz, 1H), 7.54 (d, J = 2.5 Hz, 1H),

7.41 (d, J = 7.4 Hz, 1H), 7.31 – 7.23 (m, 2H), 3.38 (s, 2H).ppm;

¹³C NMR (101 MHz, CDCl₃) δ 131.8, 128.7, 123.5, 121.4, 119.0, 117.5, 112.1, 102.4, 22.71.ppm;

HRMS (ESI) m/z: calcd for C₁₀H₈N₂NaS: (M+Na)⁺ 211.0300, found: 211.0300.

1, 4-Bis(((1*H*-indol-3-yl)thio)methyl)benzene (7)

White solid, mp: 145-146 $^{\circ}$ C

IR (neat, v, cm⁻¹): 3386, 2365, 2160, 1453, 741 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (s, 2H), 7.71 (d, J = 7.6 Hz, 3H), 7.35 (d, J = 7.9 Hz, 3H), 7.24 – 7.16 (m, 6H), 6.96 – 6.79 (m, 6H), 3.80 (s, 4H).ppm;

¹³C NMR (101 MHz, CDCl₃) δ 137.6, 136.3, 130.2, 129.5, 129.0, 122.8, 120.7, 119.5, 111.6, 105.2, 40.7.ppm;

HRMS (ESI) m/z: calcd for C₂₄H₂₀N₂NaS₂: (M+Na)⁺ 423.0960, found: 423.0961.

3-(Benzylsulfonyl)-1*H*-indole (8)

Yellow solid, mp: 49.6-51.2 ℃ **IR** (neat, v, cm⁻¹): 3256, 2969, 2919, 2363, 1689, 1289, 719 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 9.19 (s, 1H), 8.17 – 7.94 (m, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 6.9 Hz, 1H), 7.37 (d, J = 3.1 Hz, 1H), 7.31 – 7.16 (m, 5H), 7.09 – 7.01 (m, 2H), 4.41 (s, 2H).ppm; ¹³C NMR (101 MHz, CDCl₃) δ 136.1, 131.3, 131.0, 129.1, 128.8, 128.6, 124.2, 122.8, 119.6, 113.2, 112.4, 63.4.ppm; **HRMS (ESI)** *m/z*: calcd for C₁₅H₁₃NNaO₂S: (M+Na)⁺ 294.0559, found: 294.0556.

5, 11-Dihydroisothiochromeno[4,3-b]indole (9)

White solid, mp: 145-146 $^{\circ}$ C. **IR** (neat, v, cm⁻¹): 3272, 1651, 1595, 1474 cm⁻¹. ¹**H NMR** (400 MHz, CDCl3) δ 8.35 (s, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.46 – 7.33 (m, 3H), 7.29 (dd, J = 12.7, 5.1 Hz, 2H), 7.24 – 7.18 (m, 1H), 7.14 (t, J = 7.5 Hz, 1H), 4.02 (s, 2H).ppm; ¹³C NMR (101 MHz, CDCl₃) δ 136.8, 132.3, 130.9, 128.2, 128.1, 127.9, 126.9, 123.7, 121.7, 120.5, 119.7, 111.5, 107.0, 32.9.ppm;

HRMS (ESI) *m/z*: calcd for C₁₅H₁₁NNaS: (M+Na)⁺ 260.0504, found: 260.0509.

Copies of ¹H and ¹³C NMR Spectra for Compounds

-0.00

