Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Total Synthesis of Mangiferin, Homomangiferin, and Neomangiferin

Xiong Wei,[†] Danlin Liang,[†] Qing Wang,[†] Xiangbao Meng,^{*,†} and Zhongjun Li^{*,†,‡}

[†]The State Key Laboratory of Natural and Biomimetic Drugs

Department of Chemical Biology, School of Pharmaceutical Sciences

Peking University, Beijing 100191, P R China

[‡]National Research Center for Carbohydrate Synthesis

Jiangxi Normal University, Nanchang 330022, China

Email: zjli@bjmu.edu.cn or xbmeng@bjmu.edu.cn

Contents	Page
General Information	S2
Experimental Section	S3~S4
NMR Spectrum of Compounds	S5~S79
Data for natural and synthetic Mangiferin xanthonoids	S80~S85

1. General Information:

Melting points were uncorrected. Nuclear magnetic resonance spectra (NMR spectra) were recorded using 400 MHz equipments (400 MHz for ¹H; 100 MHz for ¹³C). All spectra obtained in CDCl₃ were referenced to tetramethylsilane at 0.00 *ppm* for ¹H spectra and 77.16 *ppm* for 13C spectra. Spectra obtained in DMSO-*d*₆ were referenced to DMSO at 2.50 *ppm* for ¹H spectra and 39.52 *ppm* for 13C spectra. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br s: broad singlet, br d: broad doublet. High resolution mass spectra (HRMS) data were performed with an ionization mode of ESI (electron spray ionization). Optical rotations were measured using sodium D line. Analytical thin layer chromatography (TLC) was performed on Silica gel 60 F₂₅₄ precoated on aluminiumplates, with detection by fluorescence and (or) by staining with 5% concentrated sulfuric acid in ethanol. Flash column chromatography was performed using Silica gel (230~400 mesh) with solvents distilled prior to use.

Unless otherwise noted, all the reagents were obtained from commercial suppliers and used without further purification. The following abbreviations are used: **PE**: petroleum ether (*b.p.* 60~90°); **EtOAc**: ethyl acetate; **DCM**: dichloromethane; **THF**: tetrahydrofuran; **DMSO**: dimethyl sulfoxide; **DMF**: *N,N*-dimethylformamide; **NBS**: N-bromosuccinimide; **DIPEA**: N,N-diisopropyl ethyl amine; **TMSOTf**: trimethylsilyl trifluoromethanesulfonate; **TBAB**: tetrabutyl ammonium bromide.

2. Experimental Section

2,3,4,6-Tetra-*O*-benzyl-α/β-D-glucopyranoside (5).

Building block 5 was obtained from commercial suppliers or prepared following the above synthetic route.

1) Glucose pentaacetate (10.0 g, 25.6 mmol) and *p*-thiocresol (4.8 g, 38.4 mmol) were dissolved in anhydrous DCM (200 mL) under atmosphere of nitrogen, and BF₃·Et₂O (4.2 mL, 33.3 mmol) was added. After being stirred overnight at room temperature, the reaction mixture was diluted with DCM and washed with saturated NaHCO₃ (aq), 1N HCl (aq) and brine. The combined organic layers were dried over Na₂SO₄, concentrated, and purified by flash column chromatography (PE-EtOAc, 1:1), affording **S1** (10.4 g, 90%) as a white solid.

2) To a solution of thioglycoside S1 (10.4 g, 22.8 mmol) in methanol (100 ml) was added appropriate amount of sodium at room temperature, adjusting pH to $11\sim12$. After being stirred for 1 h, the reaction mixture was neutralized with DOWEX 50WX8-400 resin (H⁺ form), filtered, and evaporated in vacuo, affording S2 (6.6 g, quant) as a white solid without purification.

3) The obtained **S2** was dissolved in DMF (200 mL) and cooled to 0 °C, and NaH (60%, 5.8 g) was added gradually in portions. When no gas generating, BnBr (16 mL, 136.6 mmol) was added dropwise with a funnel, and the suspension was then allowed to warm to room temperature. After being stirred overnight, appropriate amount of methanol was added to quench the reaction, and the solvent was

removed under reduced pressure. The residue was washed with brine and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, concentrated, and purified by flash column chromatography (PE-EtOAc, 15:1) to afford **S3** (13.2 g, 89%) as a yellow syrup: ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 6.95 (m, 24H), 5.02 – 4.67 (m, 5H), 4.67 – 4.48 (m, 4H), 3.85 – 3.57 (m, 4H), 3.49 (m, 2H), 2.29 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 138.4, 138.2, 138.1, 137.8, 132.8, 129.9, 129.8, 128.5, 128.4, 128.3, 128.0, 127.9, 127.8, 127.7, 127.6, 87.7, 86.9, 80.9, 79.2, 77.9, 75.9, 75.5, 75.1, 73.5, 69.1, 21.2 ppm.

4) To a solution of benzylated thioglycoside **S3** (1.0 g, 1.55 mmol) in acetone/H₂O (16 mL, 9:1 v/v) was added NBS (0.83 g, 4.66 mmol) under exclusion of light. After being stirred for 3 h at rt, the reaction mixture was neutralized with appropriate amount of Et₃N and evaporated under reduced pressure. The residue was washed with brine and extracted with DCM, and the combined organic layers were dried over Na₂SO₄, concentrated, and purified by flash column chromatography (PE-acetone, 5:1) to afford **5** (738 mg, 88%) as a white solid: ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.08 (m, 20H), 5.22 (t, *J* = 3.0 Hz, 0.8H), 4.98 – 4.43 (m, 8.2H), 4.07 – 3.49 (m, 6H), 3.44 – 3.34 (m, 0.2H), 3.10 (d, *J* = 2.4 Hz, 0.8H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 138.8/138.7, 138.5/138.4, 138.1/138.0, 137.9, 130.1, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 97.6/91.4, 84.7/83.3, 81.9/80.1, 78.0/77.9, 75.8, 75.1/74.8, 73.6, 73.3, 70.4, 69.1/68.8 ppm.

S5

1.031

1.042 1.041

2.982

 $\frac{2.000}{1.042}$

<u>1.057</u> <u>2.196</u> <u>3.143</u>

1.053

¹³C NMR spectrum of Synthetic Mangiferin 1 (DMSO-*d*₆, 100 MHz)

179.42	164.05	112.10	81.73	40.15
	162.08	108.44	79.25	39.94
	156.61	107.67	73.48	39.52
	154.19	103.00	70.93	39.31
	151.12	101.69	70.74	39.10
	143.91	93.81	61.80	38.89
	$\langle \rangle $	$\langle \langle \rangle \rangle $		

¹H NMR spectrum of Synthetic Homomangiferin 2 (DMSO-*d*₆, 400 MHz)

¹H-¹H COSY spectrum of Synthetic Homomangiferin 2 (DMSO-*d*₆+D₂O)

HSQC spectrum of Synthetic Homomangiferin 2 (DMSO-*d*₆+D₂O)

HMBC spectrum of Synthetic Homomangiferin 2 (DMSO-*d*₆+D₂O)

¹H-¹H COSY spectrum of Synthetic Neomangiferin 3 (DMSO-*d*₆+D₂O)

HSQC spectrum of Synthetic Neomangiferin 3 (DMSO-*d*₆+D₂O)

HMBC spectrum of Synthetic Neomangiferin 3 (DMSO-*d*₆+D₂O)

S22

¹H NMR spectrum of Compound 9c (CDCl₃, 400 MHz)

¹³C NMR spectrum of Compound 9c (CDCl₃, 100 MHz)

¹H NMR spectrum of Compound 10a (CDCl₃, 400 MHz)

¹³C NMR spectrum of Compound 10a (CDCl₃, 100 MHz)

	-	-		
149.03 147.25 142.73	121.54	106.71 104.54 96.02 95.80 95.56	77.48 77.16 76.84	56.21 56.11 56.02
		\backslash / \lor		\bigvee

¹H NMR spectrum of Compound 11a (DMSO-*d*₆, 400 MHz)

¹³C NMR spectrum of Compound 11b (DMSO-*d*₆, 100 MHz)

¹³C NMR spectrum of Compound 12 (CDCl₃, 100 MHz)

152.76	148.05	142.03	118.06	109.04 106.24	96.00 95.21 94.75	77.48 77.16 76.84	55.86 55.75 55.55
							\bigvee

¹³C NMR spectrum of Compound 14b (CDCl₃, 100 MHz)

¹H NMR spectrum of Compound 15a (DMSO-*d*₆, 400 MHz)

¹H NMR spectrum of Compound 15b (DMSO-*d*₆, 400 MHz)

¹³C NMR spectrum of Compound 15b (DMSO-*d*₆, 100 MHz)

DEPT spectrum of Compound 16a (CDCl₃, 100 MHz)

S52

¹³C NMR spectrum of Compound 16b (CDCl₃, 100 MHz)

S58

S61

¹H NMR spectrum of Compound 17b (CDCl₃, 400 MHz)

¹³C NMR spectrum of Compound 17b (CDCl₃, 100 MHz)

¹H NMR spectrum of Compound 18b (CDCl₃, 400 MHz)

¹³C NMR spectrum of Compound 18b (CDCl₃, 100 MHz)

¹H NMR spectrum of Compound 19 (CDCl₃, 400 MHz)

¹³C NMR spectrum of Compound 19 (CDCl₃, 100 MHz)

¹H NMR spectrum of Compound 23 (CDCl₃, 400 MHz)

¹³C NMR spectrum of Compound 23 (CDCl₃, 100 MHz)

¹H NMR spectrum of Compound 24 (CDCl₃, 400 MHz)

¹³C NMR spectrum of Compound 24 (CDCl₃, 100 MHz)

S79

	Natural	Synthetic	
. • .	Mangiferin	Mangiferin	
Assignments	DMSO-d ₆	DMSO-d6	
	400 MHz	400 MHz	
HO-1	13.70(s)	13.75 (s, 1H)	
НО-6	10.70(s)		
НО-3	10.60(s)	10.53 (br s, 3H)	
НО-7	9.78(s)		
H-8	7.35(s)	7.38(s, 1H)	
H-5	6.83(s)	6.86 (s, 1H)	
H-4	6.34(s)	6.37 (s, 1H)	
H-1'	4.60(4.1-0.6 Hz)	4.59 (d, <i>J</i> = 9.6 Hz,	
	4.00(u, J - 9.0 HZ)	1H)	

¹ H NMR spectrum	n data for natura	l and synthetic	Mangifein
-----------------------------	-------------------	-----------------	-----------

		Natural	Synthetic		Natural	Synthetic
Å a		Mangiferin	Mangiferin	A ani array anta	Mangiferin	Mangiferin
AS	signments	DMSO-d ₆	DMSO-d6	Assignments	DMSO-d6	DMSO-d6
		100 MHz	100 MHz		100 MHz	100 MHz
	1	162.5	162.1	C-1'	73.8	73.5
	2	108.3	107.7	C-2'	71.3	70.9
	3	164.5	164.1	C-3'	79.7	79.3
	4	94.0	93.8	C-4'	70.9	70.7
	4a	156.9	156.6	C-5'	82.3	81.7
	5	103.3	103.0	C-6'	62.2	61.8
	6	154.7	154.2			
	7	144.4	143.9			
	8	112.4	112.1			
	8a	108.7	108.4			
	9	179.8	179.4			
	9a	102.0	101.7			
	10a	151.4	151.1			

¹³C NMR spectrum data for natural and synthetic Mangifein

	Natural	Synthetic	
A - ,	Homomangiferin	Homomangiferin	
Assignments	DMSO-d6	$DMSO-d_6 + D_2O$	
	400 MHz	400 MHz	
HO-1	13.66(s)	13.66/13.65(s)	
H-8	7.39(s)	7.39/7.38(s)	
H-5	6.88(s)	6.89(s)	
H-4	6.66(s)	6.62/6.61(s)	
H-1'	4.57(d)	4.61/4.56(d)	
H-3'	3.98(m)	4.19/3.98(t)	
H-6'	3.70/3.33(m)	3.35(m)	
H-5'	3.16(m)		
H-2'	3.10(m)	3.23-3.02(m)	
H-4'	3.07(m)		
CH ₃ O	3.88(s)	3.86/3.84(s)	

¹H NMR spectrum data for natural and synthetic Homomangifein

	Natural	Synthetic		Natural	Synthetic
. · ,	Homomangiferin	Homomangiferin		Homomangiferin	Homomangiferin
Assignments	DMSO-d ₆	$DMSO-d_6 + D_2O$	Assignments	DMSO-d ₆	DMSO- d_6 + D ₂ O
	100 MHz	100 MHz		100 MHz	100 MHz
1	161.8	161.3/160.6	C-1'	73.1	73.1/72.9
2	108.9	108.3	C-2'	82.2	82.0/81.8
3	164.7	165.7/164.5	C-3'	70.8	70.5/69.9
4	90.2	91.0/90.2	C-4'	71.4	71.0
4a	157.3	157.2/157.1	C-5'	79.6	79.1
5	103.0	102.9	C-6'	62.2	61.8
6	154.7	154.4	CH ₃ O	56.7	56.8/56.5
7	144.4	144.1			
8	108.5	108.6			
8a	112.3	112.2			
9	179.6	179.7/179.4			
9a	102.3	102.6/102.2			
10a	151.4	151.2			

¹³ C NMR sp	ectrum data for	r natural and s	vnthetic Homo	mangifein
			J	

	Natural	Synthetic
Assignments	Neomangiferin	Neomangiferin
Assignments	DMSO-d ₆	$DMSO-d_6 + D_2O$
	400 MHz	400 MHz
H-4	6.37(s)	6.41(s)
H-5	6.93(s)	6.96(s)
H-8	7.69(s)	7.70(s)
2-Glc, H-1'	4.57(d)	4.59(d)
7-Glc, H-1"	4.87(d)	4.91(d)

¹ H NMR spectrum	ı data for	• natural and	synthetic Ne	omangifein
-----------------------------	------------	---------------	--------------	------------

	Natural	Synthetic		Natural	Synthetic
Assistants	Neomangiferin	Neomangiferin		Neomangiferin	Neomangiferin
Assignments	DMSO-d ₆	DMSO-d ₆	Assignments	DMSO-d6	DMSO-d6
	100 MHz	100 MHz		100 MHz	100 MHz
1	162.5	161.7	2-Glc		
2	108.3	107.9	C-1'	73.8	73.4
3	164.5	164.2	C-2'	71.3	70.7
4	94.0	93.8	C-3'	79.7	79.0
4a	154.7	155.0	C-4'	71.0	70.4
5	103.3	102.1	C-5'	82.2	81.7
6	156.9	156.5	C-6'	61.4	61.6
7	144.4	143.7	(7-Glc)C-1"	103.4	103.4
8	112.4	112.0	C-2"	73.5	73.3
8a	108.8	110.5	C-3"	76.1	75.9
9	179.8	179.2	C-4"	69.6	69.7
9a	102.0	101.5	C-5"	77.3	77.3
10a	151.5	152.8	C-6"	60.7	60.7

¹³ C NMR	spectrum	data for	r natural	and	synthetic	Neoma	ngifein
	-						