Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

The Bull-James Assembly as a Chiral Auxiliary and Shift Reagent in Kinetic Resolution of Alkyne Amines by the CuAAC Reaction

William D. G. Brittain,^{*a,b*} Brette M. Chapin,^{*a,b*} Wenlei Zhai,^{*a,b*} Vincent M. Lynch,^{*b*} Benjamin R. Buckley,^{*c*} Eric V. Anslyn^{*b*} and John S. Fossey^{*a*}

^aSchool of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK
 ^bDepartment of Chemistry, The University of Texas at Austin, Austin, Texas, 78712, USA
 ^cDepartment of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK

Contents

General	2
Synthesis	3
Catalysis	8
Chromatography	11
NMR	
Crystallographic Information	
References	48

General

Reagents were used as purchased from suppliers without further purification; in cases where anhydrous solvents were required they were dried using a solvent purification system (SPS) which is monitored by Karl-Fisher titrations for water levels. 2-Formylphenylboronic acid was recrystallised from dichloromethane and hexane before use. ¹H NMR spectra were recorded at 300 MHz and 400 MHz using Bruker AVIII 300 and Bruker AVIII 400 NMR, Varian DirectDrive 400 spectrometers. ¹³C NMR experiments were carried out on a Bruker AVIII 400 NMR and Varian DirectDrive 400 NMR spectrometer recorded at 101 MHz; in cases where it was required 2D NMR techniques were used to confirm compound identity. ¹H NMR chemical shifts are reported in ppm relative to TMS (δ 0.00) and ¹³C NMR relative to chloroform (δ 77.36). Reactions carried out at low temperatures were cooled using a Lab Plant Cryoprobe or dry ice / acetone bath on a case by case basis. Melting points were carried out in triplicate and an average of the values taken and reported as a range using Stuart SMP10 melting point apparatus. IR spectra were recorded on a PerkinElmer 100FT-IR spectrometer at room temperature using ATR. HPLC analysis was carried out using an Agilent 1260 Infinity and Chiralpak IA column, and traces were recorded at eight UV wavelengths 210, 214, 230, 250, 254, 260, 273 and 280 nm. Calculations were carried out using the supplied traces recorded at 254 nm. GC analysis was carried out on a Varian 430-GC using a Chiralsil-Dex CB chiral column using a UV detector. Column chromatography was carried out using a Combiflash Rf 200i, column traces were recorded at two UV wavelengths (254 nm and 280 nm).

Synthesis

Synthesis of 1-phenylprop-2-yn-1-ol (8)

Under an atmosphere of nitrogen, a solution of benzaldehyde (1.0 mL, 10.0 mmol) in THF (10 mL) was stirred at -78 °C using a dry ice and acetone bath. To this solution ethynylmagnesium bromide (24 mL, 0.5 M in THF) was added dropwise over a period of 10 minutes with stirring. This was then allowed to slowly warm to room temperature and stirred for a further 3 h. The reaction mixture was then quenched with sat. NH₄Cl solution, and extracted with DCM (3 x 50 mL). The combined organic fractions were washed with water (100 mL), dried with MgSO₄ and concentrated *in vacuo*. The resulting brown oil was purified by automated flash column chromatography combiflash Rf (0-100% EtOAc : hexane gradient, 20 mins) to yield the product as a yellow oil 1.2 g, 91% yield.

Characterisation was consistent with literature.¹ $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.58 – 7.51 (2 H, m), 7.41 – 7.31 (3 H, m), 5.45 (1 H, d, *J* 1.5), 2.66 (1 H, d, *J* 2.3), 2.44 (1 H, br s); $\delta_{\rm C}$ (101 MHz, CDCl₃) 140.05, 128.70, 128.58, 126.63, 83.52, 74.86, 64.43; IR v_{max} (ATR)/cm⁻¹ 3431, 3289, 3066, 3032, 1453, 1019, 947; MS AP⁻ *m*/*z* 131.0 [M-H]⁻; HRMS (AP⁻-TOF) Calculated for C₉H₇O⁻ = 131.0502 Found = 131.0494

Synthesis of *N*-(1-phenylprop-2-yn-1-yl)acetamide (9)

To a mixture of 1-phenyl-2-propynyl-1-ol (**13**) (1.11 g, 8.4 mmol) and anhydrous sodium sulphate (1.2 g, 8.4 mmol) in acetonitrile (20 mL) at 0 °C was added a solution of 95% sulphuric acid (4.28 g, 42 mmol, 2.9 mL) in acetonitrile (10

mL). The mixture was allowed to warm to room temperature and stirred for 48h. The solution

was then concentrated in *vacuo* and the residue poured onto ice. This mixture was then extracted with EtOAc (3 x 50mL) and then DCM (50 mL). The combined organic fractions were dried with MgSO₄ and concentrated *in vacuo*. The crude mixture was subjected to automated flash column chromatography combiflash Rf (0-100% EtOAc : Hexane gradient, 20 mins) to yield the product as a cream coloured solid 0.87 g, 59% yield.

Characterisation was consistent with literature.² $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.51 – 7.49 (2 H, m), 7.40 – 7.30 (3 H, m), 6.03 (1 H, s), 2.51 – 2.48 (1 H, m), 2.02 (3 H, s); $\delta_{\rm C}$ (101 MHz, CDCl₃) 168.79, 138.27, 128.78, 128.29, 127.05, 81.70, 72.99, 44.53, 23.18; IR v_{max} (ATR)/cm⁻¹ 3280, 3038, 1648, 1532, 1452, 1371, 1309, 1092; MS AP+ *m/z* 174.1 [M+H]⁺; HRMS (AP⁺-TOF) Calculated for C₁₁H₁₂NO⁺ = 174.0913 Found = 174.0913; MP 89 – 90 °C

Synthesis of 1-phenylprop-2-yn-1-amine (1)

To a solution of *N*-(1-phenylprop-2-yn-1-yl)acetamide (14) (0.10 g, 0.76 mmol) in methanol (1 mL) was added 3.0 N aqueous HCl (20 mL) and the reaction mixture heated to 70°C for 18 h. The resulting solution was extracted with

EtOAc (50 mL). The aqueous phase was basified with aqueous 2.0 N NaOH solution to $pH \sim 10$. This was then extracted with EtOAc (3 x 50mL), the organic layers were combined, dried with MgSO₄ and concentrated *in vacuo* to afford sufficiently pure 1-phenylprop-2-yn-1-amine as a yellow oil 0.036 g 35% yield. It was found that this compound will degrade if stored in its pure form, material was stored as a solution in chloroform in the freezer.

Characterisation was consistent with literature.³ δ _H (300 MHz, CDCl₃) 7.58 – 7.50 (2 H, m), 7.40 – 7.29 (3 H, m), 4.78 (1 H, d, *J* 1.9), 2.49 (1 H, d, *J* 2.3), 1.91 (2 H, br s); δ _C (101 MHz, CDCl₃) 141.59, 128.67, 127.82, 126.67, 86.01, 72.30, 47.31; IR v_{max} (ATR)/cm⁻¹ 3666, 3288, 1492, 1451, 1275; MS AP⁺ *m*/*z* 132.1 [M+H]⁺; HRMS (AP⁺-TOF) Calculated for C₁₁H₁₂NO⁺ = 132.0913 Found = 132.0814

Synthesis of *N*-((1-benzyl-1*H*-1,2,3-triazol-4-yl)(phenyl)methyl)acetamide (10)

To a solution of *N*-(1-phenylprop-2-yn-1-yl)acetamide (14) (0.050 g, 0.30 mmol) and benzyl azide (0.044 g, 0.33 mmol) in methanol (20 mL) was added sodium L ascorbate (0.059 g, 0.30 mmol) and copper sulphate pentahydrate (0.008 g, 0.03 mmol). The mixture was

allowed to stir at 50 °C for 3 h. The reaction mixture was quenched with 5% aqueous ammonia solution (10 mL). The solution extracted with EtOAc (3 x 25 mL) the combined organic extracts were washed with water (100 mL) dried with MgSO₄ and concentrated *in vacuo*. To give the pure triazole as a cream coloured solid 0.081 g 87% yield.

Characterisation was consistent with literature.⁴ $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.39 – 7.21 (11 H, m), 6.95 (1 H, d, *J* 7.7), 6.27 (1 H, d, *J* 7.9), 5.47 (2 H, q, *J* 14.8), 2.01 (3 H, s); $\delta_{\rm C}$ (101 MHz, CDCl₃) 169.26, 147.98, 140.88, 134.30, 129.17, 128.86, 128.71, 128.11, 127.73, 127.26, 121.53, 54.25, 49.56, 23.27; IR v_{max} (ATR)/cm⁻¹ 1721, 1653, 1489, 1345, 1278, 1154; MS ESI *m/z* 329.1 [M+Na]; MP 155 – 156 °C

Synthesis of (1-benzyl-1*H*-1,2,3-triazol-4-yl)(phenyl)methanamine (6)

To a solution of *N*-((1-benzyl-1*H*-1,2,3-triazol-4yl)(phenyl)methyl)acetamide (15) (0.25 g, 3.24 mmol) in methanol (2 mL) was added 3.0 N aqueous HCl (20 mL). The mixture heated to

70 °C for 18 h, after which the reaction mixture was extracted with EtOAc (50 mL), the aqueous

phase basified to pH \sim 10 with 2.0 N aqueous NaOH, extracted with EtOAc (3 x 50 mL) dried with MgSO₄ and concentrated *in vacuo*. To give the product as a cream coloured solid 0.48g 56% yield.

 $δ_{\rm H}$ (400 MHz, CDCl₃) 7.44 – 7.13 (11 H, m), 5.45 (2 H, s), 5.36 (1 H, s) $δ_{\rm C}$ (101 MHz, CDCl₃) 152.76, 143.79, 134.64, 129.07, 128.66, 128.05, 127.50, 126.86, 120.73, 54.15, 52.54. IR $ν_{\rm max}$ (ATR)/cm⁻¹ 3366, 3122, 3064, 2925, 2853, 1494, 1454, 1216; MS ESI *m/z* 287.1 [M+Na]⁻; HRMS (ESI-TOF) Calculated for C₁₆H₁₆N₄Na⁻ = 287.1278 Found = 287.1274.; MP 86 - 88°C

Synthesis of N-(1-phenylprop-2-yn-1-yl)benzamide (11)

To a solution of 1-phenylprop-2-yn-1-amine (8) (10 mg, 0.08 mmol) in DCM (10 mL) cooled in an ice bath was added benzoyl chloride (11 mg, 8.8 μ L, 0.08 mmol) and TEA (8.0 mg, 10 μ L, 0.08 mmol). The reaction was allowed to warm to room temperature and stirred for 2 h. The reaction was then quenched with water (10 mL) and extracted with EtOAc (3 x 25 mL) the organic fractions combined, dried over MgSO4 and concentrated *in vacuo*. The crude mixture was purified by automated flash column chromatography combiflash Rf (0-100% EtOAc : Hexane gradient, 20 mins) to yield the product as a white solid 15 mg, 84% yield.

 $δ_{\rm H}$ (400 MHz, CDCl₃) 7.83 – 7.77 (2 H, m), 7.62 – 7.57 (2 H, m), 7.55 – 7.49 (1 H, m), 7.47 – 7.31 (5 H, m), 6.57 (1 H, d, *J* 7.9), 6.25 (1 H, dd, *J* 8.4, 2.4), 2.55 (1 H, d, *J* 2.4); $δ_{\rm C}$ (101 MHz, CDCl₃) 166.20, 138.21, 133.67, 131.92, 128.85, 128.66, 128.36, 127.11, 81.64, 73.33, 44.99; IR $v_{\rm max}$ (ATR)/cm⁻¹ 3291, 3034, 1639, 1522, 1488, 1331; MS AP⁺ *m/z* 236.1 [M+H]⁺; HRMS (AP⁺-TOF) Calculated for C₁₆H₁₄NO⁺ = 236.1070 Found = 236.1073; MP 131 – 132 °C; HPLC (IA) Hexane/IPA 80:20, 1.0 mL/min, λ = 254 nm, t_{major} = 7.9 min, t_{minor} = 8.8 min.

Synthesis of *N*-((1-benzyl-1*H*-1,2,3-triazol-4-yl)(phenyl)methyl)benzamide (12)

To a solution of (1-benzyl-1H-1,2,3-triazol-4-yl)(phenyl)methanamine (11) (0.079 g, 0.3 mmol) in DCM (10 mL) cooled in an ice bath was added benzoyl chloride (0.042 g, 35 µL, 0.3 mmol) and TEA (0.030 g, 42 µL, 0.3 mmol). The reaction allowed to

warm to room temperature and stirred for 2 h. The reaction was then quenched with water (10 mL) and extracted with EtOAc (3 x 25 mL) the organic fractions combined, dried over MgSO₄ and concentrated in vacuo. The crude mixture was purified by automated flash column chromatography combiflash Rf (0-100% EtOAc : Hexane gradient, 20 mins) to yield the product as a white solid 0.102 g, 93% yield.

 $δ_{\rm H}$ (400 MHz, CDCl₃) 7.83 (2 H, dd, *J* 5.2, 3.3), 7.58 (1 H, d, *J* 7.4), 7.52 – 7.21 (13 H, m), 6.46 (1 H, d, *J* 7.5), 5.49 (2 H, ABq, *J* 14.8); $δ_{\rm C}$ (101 MHz, CDCl₃) 166.51, 147.97, 140.93, 134.29, 134.03, 131.68, 129.18, 128.87, 128.77, 128.55, 128.13, 127.79, 127.30, 127.18, 121.58, 54.30, 50.12; IR v_{max} (ATR)/cm⁻¹ 3378, 3116, 1639, 1515, 1487, 1354; MS ESI *m/z* 391.2 [M+Na]⁻; HRMS (ESI⁻TOF) Calculated for C₂₃H₂₀N₄ONa⁻ = 391.1540 Found = 391.1541; MP 207 – 209 °C; HPLC (IA) Hexane/IPA 80:20, 1.0 mL/min, λ = 214 nm, t_{major} = 16.7 min, t_{minor} = 18.3 min.

Catalysis

Representative assembly based reaction

A mixture of FPBA (5.7 mg, 0.038 mmol, 1 equiv.) and R-BINOL (10.9 mg, 0.038 mmol, 1 equiv.) were placed in a vial and dried under high vacuum for 2 hours, the mixture was removed from high vacuum and a solution of amine 8 (5.0 mg, 0.038 mmol, 1 equiv.) in CDCl₃ (0.5 mL) and dried over 4A MS was added. A small number of 4A MS were added to the vial and the contents stirred at rt for 20 mins. To this 0.1 mL of benzyl azide stock solution (24 μ L per 1 mL, 0.5 equiv.) was added along with CuCl (0.19 mg, 0.0019 mmol, 5 mol%), the reaction was allowed to stir at rt for 24 h. After this time a ¹H NMR was taken of the reaction mixture to give the conversion and enantiomeric excess of **1** and **6**. To recover the alkyne **1** and triazole **6** after the reaction was left to stir vigorously for 30 minutes. The mixture was then extracted with EtOAc (25 mL) and water (25 mL). The aqueous phase was then basified to pH ~ 10 using 2.0 N NaOH. The basified solution was then extracted with EtOAc (3 x 25 mL) the combined organic fractions were dried with MgSO₄ and concentrated *in vacuo* to give amine **1** and triazole **6** with minimal amounts of the other assembly components. Selected examples *e.e.* were verified *via* either chiral GC or chiral HPLC methodology. For HPLC determination benzoylation of the recovered mixture of components was carried out as detailed above.

Copper Source Screening table

NH ₂	$+ \underbrace{\begin{array}{c} & HO_B \\ & OH \\ & OH \\ & OH \\ & HOH \\ & HOH$	CDCl ₃ 4 AMS +	Ph N N N N N N Cor Cor Cor Cor Cor Cor Cor Cor	a (0.5 equiv.) oper Source 10 mol%) rt, 24 h	Ph Ph N Ph
Entry	Copper Source	Conversion	eeSM	eeP	S
		(%) ^a	(%) ^b	(%) ^b	
1	CuCl	30	23	39	4.1
2	CuBr	34	25	48	3.7
3	Culc	39	21	13	2.4
2	Cu(OAc)	0	5	NA	NA
3	Cu(OAc) ₂	11	6	19	3.1
4	Cu(MeCN)₄●BF₄	54	25	15	1.9
5	CuSO ₄	0	0	NA	NA
6	Cu(OTf) ₂	22	10	28	2.3
7	Cu(OTf) •0.5Toluene ^c	31	18	31	2.8
10	CuCl + TBTA 1:1 ^d	68	30	13	1.7
11	Cu powder	0	0	NA	NA
12	Cu turnings	36	25	23	3.3
13	Copper acetylacetonate	0	0	NA	NA
14	Copper carbonate basic	0	0	NA	NA

15	[Cu(CH ₃ CN) ₄]PF ₆	50	36	16	3.0
16	$Cu(NO_3)_2$ *xH ₂ O	0	0	NA	NA

^aConversion was determined by integration of ¹H NMR of the assembly comparing the imine proton of the starting material and triaolic product. ^bee was determined via comparison of the integration values of the imine region diastereomers in the ¹H NMR of the assembly. ^creaction was slow thus reaction time was increased to 48 h. ^dTBTA = Tris[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]amine

Diol Screening Table

	NH ₂ + Diol +	4A MS	BnN ₃ (0.4 Cu (5 mo rt, 2	5 equiv.) Cl J%) 4 h	
Entry	Diol	Conversion	eeSM	eeP	S
		(%) ^a	(%) ^b	(%) ^b	
1	Dimethyl-L-tartrate	25	15	5	3.0
3	(S)-1,2-propane diol	40	3	2	1.1
2	2S, 3S-butanediol	3	NA	NA	NA
3	<i>R</i> -1,1,2-triphenyl- 1,2-ethanediol	40	29	19	3.3
4	<i>R</i> , <i>R</i> - 1,2 dicyclohexyl-1,2- ethanediol	82	2	9	1.0
7	(S)-(+)-1-phenyl- 1,2-ethanediol	0	NA	NA	NA

^aConversion was determined via HPLC using the formula C = eeSM/(eeSM+eeP) where C = conversion, eeSM = ee of recovered starting material, eeP = ee of product. ^bee was determined via chiral HPLC

Chromatography

Gas Chromatography

GC analysis was run on a Varian 430-GC using a Varian WCOT fused silica 25M x 0.25 mm, Chirasil-DEX CB DF = 0.25 column. The injector was given a setpoint of 200 °C, split state was on with a split ratio of 500. The column stabilisation time was set at 0.50 min. The column oven program was set to an initial temperature of 50 °C, which was then ramped at 3.7 °C per min until 200 °C was reached, and the oven held at 200 °C for 10 minutes to give an overall run length of 50.54 mins.

Chiral GC Trace of Racemic 1-phenylprop-2-yn-1-amine (1)

Rac Amine

Vial- 3 Method- GB METHOD.METH Acq time- 04/11/2015 10:58:36 Injection volume- 5.000 μL Sampelname- N.A.

Peak results :

WB-Rac Amine Dil2.DATA [FID]

Index	Time [Min]	Area [uV.Min]	Area % [%]
1	21.55	1742.3	49.858
2	21.78	1752.2	50.142

Rac Amine

Vial- 3 Method- GB METHOD.METH Acq time- 04/11/2015 10:58:36 Injection volume- 5.000 μL Sampelname- N.A.

Index	Time	Area	Area %
	[Min]	[uV.Min]	[%]
Total		3494.5	100.000

Chiral GC Trace of 1-phenylprop-2-yn-1-amine (1) After Kinetic Resolution

CuCl Assembly

Vial- 15 Method- GB METHOD.METH Acq time- 16/11/2015 15:30:42 Injection volume- 8.000 µL Sampelname- N.A.

Peak results :

CuCl Assembly1_16_11_2015 15_21_53.DATA [FID]

Index	Time	Area	Area %
	[Min]	[uV.Min]	[%]
1	21.35	37.6	30.707
2	21.73	85.0	69.293

CuCl Assembly

Vial- 15 Method- GB METHOD.METH Acq time- 16/11/2015 15:30:42 Injection volume- 8.000 μL Sampelname- N.A.

Index	Time [Min]	Area	Area %
Total	[lviii i]	122.6	100.000

Comparison of NMR and Chiral GC

i)

Highlighted peaks at 8.87ppm and 8.74 corresponding to the imine proton of the mixture of diastereoisomers of complex **4** after kinetic resolution. Integration gives 1.34 and 2.31 and thus an inferred *ee* of 37%

benzamide (12)

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime Ty	pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	olo
1	16.697 BB	0.5409	525.99249	14.65044	49.7732
2	18.521 BB	0.5775	530.78601	13.77542	50.2268
Total	s:		1056.77850	28.42586	

HPLC Trace of Racemic *N*-(1-phenylprop-2-yn-1-yl)benzamide (11)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
						I
1	7.939	BV	0.2637	683.91754	39.56554	49.6011
2	8.863	VB	0.2838	694.91681	37.22253	50.3989
Total	s:			1378.83435	76.78807	

Representative HPLC Trace and NMR after Reaction

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	4.205	BV	0.1619	28.00682	2.77047	0.7608
2	4.521	VB	0.1889	55.45269	4.65666	1.5064
3	5.013	BB	0.2212	23.97193	1.57793	0.6512
4	5.977	BV	0.2339	18.17609	1.26267	0.4937
5	6.385	VB	0.2033	560.42828	43.78338	15.2239
6	6.913	BB	0.2135	21.79398	1.67842	0.5920
7	8.027	BB	0.2982	332.82602	17.96015	9.0411
8	8.984	BB	0.4726	773.41614	23.21893	21.0097
9	10.996	BB	0.3039	135.17021	7.04374	3.6719
10	12.470	BB	0.3146	815.18677	40.53689	22.1444
11	13.363	BB	0.2802	18.35928	1.06970	0.4987
12	16.081	BB	0.3835	40.36820	1.64978	1.0966
13	17.189	BB	0.5187	483.66547	14.36969	13.1387
14	18.966	BB	0.5327	263.20996	7.66274	7.1500
15	23.271	BB	0.4996	111.20368	3.51008	3.0208
Total	s:			3681.23552	172.75122	

NMR

Representative assembly NMR after reaction

¹H NMR of 1-phenylprop-2-yn-1-ol (8)

¹³C NMR of 1-phenylprop-2-yn-1-ol (8)

WB-alkynealcohol

¹H NMR of *N*-(1-phenylprop-2-yn-1-yl)acetamide (9)

¹³C NMR of *N*-(1-phenylprop-2-yn-1-yl)acetamide (9)

¹H NMR of 1-phenylprop-2-yn-1-amine (1)

¹³C NMR of 1-phenylprop-2-yn-1-amine (1)

¹H NMR of (1-benzyl-1*H*-1,2,3-triazol-4-yl)(phenyl)methanamine (6)

WB-NH2 Triazole 1D 1H spectrum before longer 1D 13C spectrum Not spinning CSLD on AV400 - 2015/12/17

11.00

¹H NMR of (1-benzyl-1*H*-1,2,3-triazol-4-yl)(phenyl)methanamine (6)

¹H NMR of *N*-((1-benzyl-1*H*-1,2,3-triazol-4-yl)(phenyl)methyl)acetamide (10)

¹³C NMR of *N*-((1-benzyl-1*H*-1,2,3-triazol-4-yl)(phenyl)methyl)acetamide (10)

¹H NMR of *N*-(1-phenylprop-2-yn-1-yl)benzamide (11) WB-PhAlkyne BRUKER 0 Current Data Parameters NAME 12-15-Fossey-30 Ph ÌΝΗ EXPNO PROCNO F2 - Acquisition Parameters Date_ Time 20151215 11.50 spect INSTRUM PROBHD 5 mm PADUL 13C PULPROG zg30 32768 TD SOLVENT CDC13 NS DS 8223.685 Hz 0.250967 Hz SWH FIDRES AQ 1.9922944 sec RG DW 60.800 used DE 16.98 used TE 294.3 K D1 1.50000000 sec TDO ====== CHANNEL f1 ======= SF01 400.1324008 MHz NUC1 P1 PLW1 24.29199982 W F2 - Processing parameters SI 32768 400.1300096 MHz SF WDW SSB LB 0 0 GB PC *** 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 ppm 0.95 0.89 000 1.02 5.03

10

1

32

456

1

1H

EM

0.30 Hz

1.00

9.50 usec

¹³C NMR of *N*-(1-phenylprop-2-yn-1-yl)benzamide (11)

¹H NMR of *N*-((1-benzyl-1*H*-1,2,3-triazol-4-yl)(phenyl)methyl)benzamide (12)

¹³C NMR of *N*-((1-benzyl-1*H*-1,2,3-triazol-4-yl)(phenyl)methyl)benzamide (12)

Crystallographic Information

General - CCDC deposit number 1477891

X-Ray Experimental for $C_{43}H_{31}N_{3}O_{2}B$: Crystals grew as colorless triangular prisms by slow evaporation from acetonitrile. The data crystal had approximate dimensions; 0.15 x 0.10 x 0.07 mm. The data were collected on an Agilent Technologies SuperNova Dual Source diffractometer using a μ -focus Cu K α radiation source ($\lambda = 1.5418$ Å) with collimating mirror monochromators. A total of 1688 frames of data were collected using \Box -scans with a scan range of 1° and a counting time of 9 seconds per frame for frames collected with a detector offset of +/- 40.8° and 28 seconds per frame with frames collected with a detector offset of +/- 108.3°. The data were collected at 100 K using an Oxford Cryostream low temperature device. Details of crystal data, data collection and structure refinement are listed in Table 1. Data collection, unit cell refinement and data reduction were performed using Agilent Technologies CrysAlisPro V 1.171.37.31.⁵ The structure was solved by direct methods using SuperFlip⁶ and refined by full-matrix least-squares on F² with anisotropic displacement parameters for the non-H atoms using SHELXL-2014/7.⁷ Structure analysis was aided by use of the programs PLATON98⁸ and WinGX.⁹ The hydrogen atoms were calculated in ideal positions with isotropic displacement parameters set to 1.2xUeq of the attached atom (1.5xUeq for methyl hydrogen atoms). The absolute configuration was determined by internal comparison to the known configuration of the binapthalene group.

The function, $\Sigma w(|F_0|^2 - |F_c|^2)^2$, was minimized, where $w = 1/[(\Box(F_0))^2 + (0.0505*P)^2 + (0.4821*P)]$ and $P = (|F_0|^2 + 2|F_c|^2)/3$. $R_w(F^2)$ refined to 0.0831, with R(F) equal to 0.0313 and a goodness of fit, S, = 1.03. Definitions used for calculating R(F), $R_w(F^2)$ and the goodness of fit, S, are given below.¹⁰ The data were checked for secondary extinction effects but no correction was necessary. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992).¹¹ All figures were generated using SHELXTL/PC.¹² Tables of positional and thermal parameters, bond lengths and angles, torsion angles and figures are found below.

Figure

Unit cell dimensions

a = 9.4858(12) Å

 $\alpha = 90^{\circ}$.

	b = 16.647(2) Å	β= 90°.
	c = 20.977(2) Å	$\gamma = 90^{\circ}$.
Volume	3312.5(7) Å ³	
Ζ	4	
Density (calculated)	1.296 Mg/m ³	
Absorption coefficient	0.631 mm ⁻¹	
F(000)	1352	
Crystal size	$0.150 \text{ x } 0.100 \text{ x } 0.070 \text{ mm}^3$	
Theta range for data collection	3.389 to 74.310°.	
Index ranges	-11<=h<=11, -20<=k<=20, -26	5<=l<=26
Reflections collected	32887	
Independent reflections	6697 [R(int) = 0.0342]	
Completeness to theta = 67.684°	99.9 %	
Absorption correction	Semi-empirical from equivaler	its
Max. and min. transmission	1.00 and 0.940	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6697 / 0 / 452	
Goodness-of-fit on F ²	1.034	
Final R indices [I>2sigma(I)]	R1 = 0.0313, wR2 = 0.0819	
R indices (all data)	R1 = 0.0326, wR2 = 0.0831	
Absolute structure parameter	-0.2(2)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.173 and -0.199 e.Å ⁻³	

	Х	У	Z	U(eq)
C1	3973(2)	791(1)	9489(1)	18(1)
C2	2555(2)	911(1)	9613(1)	21(1)
C3	2145(2)	1441(1)	10098(1)	23(1)
C4	3142(2)	1864(1)	10453(1)	24(1)
C5	4571(2)	1768(1)	10329(1)	21(1)
C6	4962(2)	1227(1)	9856(1)	18(1)
C7	6387(2)	988(1)	9676(1)	19(1)
C8	7680(2)	21(1)	9011(1)	20(1)
С9	8780(2)	575(1)	8744(1)	19(1)
C10	9647(2)	444(1)	8234(1)	21(1)
C11	11585(2)	1292(1)	7745(1)	23(1)
C12	11129(2)	1146(1)	7063(1)	23(1)
C13	9823(2)	1408(1)	6846(1)	27(1)
C14	9419(2)	1283(2)	6218(1)	34(1)
C15	10303(3)	877(2)	5803(1)	39(1)
C16	11602(3)	609(2)	6016(1)	40(1)
C17	12023(2)	750(1)	6643(1)	31(1)
C18	8200(2)	-536(1)	9538(1)	25(1)
C19	7670(2)	-1316(1)	9566(1)	34(1)
C20	8128(3)	-1842(2)	10033(1)	49(1)
C21	9107(3)	-1590(2)	10484(1)	54(1)
C22	9607(3)	-809(2)	10470(1)	47(1)
C23	9165(2)	-280(2)	9995(1)	32(1)
C24	5057(2)	79(1)	7831(1)	18(1)
C25	6095(2)	411(1)	7427(1)	23(1)
C26	6568(2)	-13(1)	6911(1)	24(1)
C27	6052(2)	-796(1)	6786(1)	22(1)
C28	6605(2)	-1268(1)	6280(1)	28(1)
C29	6186(2)	-2042(1)	6187(1)	30(1)
C30	5184(2)	-2389(1)	6600(1)	29(1)
C31	4601(2)	-1945(1)	7087(1)	25(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C32	5007(2)	-1132(1)	7193(1)	21(1)
C33	4449(2)	-661(1)	7710(1)	19(1)
C34	3304(2)	-956(1)	8133(1)	19(1)
C35	3514(2)	-942(1)	8786(1)	18(1)
C36	2506(2)	-1242(1)	9217(1)	21(1)
C37	1249(2)	-1527(1)	8998(1)	22(1)
C38	914(2)	-1491(1)	8340(1)	22(1)
C39	-452(2)	-1693(1)	8119(1)	25(1)
C40	-816(2)	-1592(1)	7491(1)	28(1)
C41	200(2)	-1307(1)	7055(1)	28(1)
C42	1546(2)	-1130(1)	7248(1)	24(1)
C43	1948(2)	-1205(1)	7900(1)	21(1)
N1	6407(2)	450(1)	9233(1)	17(1)
N2	9081(2)	1308(1)	8995(1)	24(1)
N3	10098(2)	1639(1)	8655(1)	24(1)
N4	10441(2)	1111(1)	8196(1)	20(1)
01	4622(1)	539(1)	8337(1)	19(1)
02	4737(1)	-629(1)	9034(1)	19(1)
B1	4824(2)	240(1)	8985(1)	18(1)

C1-C2	1.384(3)	C16-C17	1.395(3)
C1-C6	1.414(2)	C16-H16	0.95
C1-B1	1.616(3)	C17-H17	0.95
C2-C3	1.401(3)	C18-C23	1.391(3)
C2-H2	0.95	C18-C19	1.394(3)
C3-C4	1.394(3)	C19-C20	1.383(3)
С3-Н3	0.95	C19-H19	0.95
C4-C5	1.390(3)	C20-C21	1.391(5)
C4-H4	0.95	С20-Н20	0.95
C5-C6	1.390(2)	C21-C22	1.384(5)
С5-Н5	0.95	C21-H21	0.95
C6-C7	1.460(3)	C22-C23	1.394(3)
C7-N1	1.288(2)	C22-H22	0.95
С7-Н7	0.95	С23-Н23	0.95
C8-N1	1.479(2)	C24-O1	1.372(2)
C8-C9	1.501(3)	C24-C33	1.384(3)
C8-C18	1.525(3)	C24-C25	1.412(3)
С8-Н8	1.00	C25-C26	1.369(3)
C9-N2	1.359(2)	С25-Н25	0.95
C9-C10	1.367(3)	C26-C27	1.417(3)
C10-N4	1.342(2)	C26-H26	0.95
С10-Н10	0.95	C27-C28	1.422(3)
C11-N4	1.471(2)	C27-C32	1.422(3)
C11-C12	1.514(2)	C28-C29	1.364(3)
C11-H11A	0.99	C28-H28	0.95
C11-H11B	0.99	C29-C30	1.410(3)
C12-C17	1.389(3)	С29-Н29	0.95
C12-C13	1.390(3)	C30-C31	1.376(3)
C13-C14	1.388(3)	С30-Н30	0.95
С13-Н13	0.95	C31-C32	1.425(3)
C14-C15	1.384(4)	С31-Н31	0.95
C14-H14	0.95	C32-C33	1.438(2)
C15-C16	1.385(4)	C33-C34	1.486(3)
С15-Н15	0.95	C34-C35	1.385(2)

Table 3. Bond lengths [Å] and angles [°] for 13.

C34-C43	1.437(3)	C40-C41	1.412(3)
C35-O2	1.374(2)	C40-H40	0.95
C35-C36	1.408(3)	C41-C42	1.371(3)
C36-C37	1.363(3)	C41-H41	0.95
С36-Н36	0.95	C42-C43	1.426(3)
C37-C38	1.419(3)	C42-H42	0.95
С37-Н37	0.95	N1-B1	1.628(2)
C38-C39	1.417(3)	N2-N3	1.320(2)
C38-C43	1.428(3)	N3-N4	1.344(2)
C39-C40	1.372(3)	O1-B1	1.459(2)
С39-Н39	0.95	O2-B1	1.453(2)
C2-C1-C6	117.89(17)	N1-C8-H8	106.4
C2-C1-B1	133.63(16)	С9-С8-Н8	106.4
C6-C1-B1	108.48(16)	С18-С8-Н8	106.4
C1-C2-C3	119.79(18)	N2-C9-C10	108.63(16)
С1-С2-Н2	120.1	N2-C9-C8	123.52(16)
С3-С2-Н2	120.1	C10-C9-C8	127.85(16)
C4-C3-C2	121.16(18)	N4-C10-C9	104.61(16)
С4-С3-Н3	119.4	N4-C10-H10	127.7
С2-С3-Н3	119.4	С9-С10-Н10	127.7
C5-C4-C3	120.22(17)	N4-C11-C12	111.34(16)
С5-С4-Н4	119.9	N4-C11-H11A	109.4
С3-С4-Н4	119.9	C12-C11-H11A	109.4
C6-C5-C4	117.90(18)	N4-C11-H11B	109.4
С6-С5-Н5	121.0	C12-C11-H11B	109.4
С4-С5-Н5	121.0	H11A-C11-H11B	108.0
C5-C6-C1	123.00(18)	C17-C12-C13	119.00(18)
C5-C6-C7	127.52(17)	C17-C12-C11	120.12(18)
C1-C6-C7	109.43(16)	C13-C12-C11	120.88(18)
N1-C7-C6	112.93(16)	C14-C13-C12	120.6(2)
N1-C7-H7	123.5	С14-С13-Н13	119.7
С6-С7-Н7	123.5	С12-С13-Н13	119.7
N1-C8-C9	112.87(15)	C15-C14-C13	120.2(2)
N1-C8-C18	109.27(14)	C15-C14-H14	119.9
C9-C8-C18	114.87(16)	C13-C14-H14	119.9

C14-C15-C16	119.6(2)	C26-C27-C28	121.25(18)
С14-С15-Н15	120.2	C26-C27-C32	119.46(17)
С16-С15-Н15	120.2	C28-C27-C32	119.23(18)
C15-C16-C17	120.2(2)	C29-C28-C27	121.44(19)
С15-С16-Н16	119.9	С29-С28-Н28	119.3
С17-С16-Н16	119.9	С27-С28-Н28	119.3
C12-C17-C16	120.3(2)	C28-C29-C30	119.72(18)
С12-С17-Н17	119.8	С28-С29-Н29	120.1
С16-С17-Н17	119.8	С30-С29-Н29	120.1
C23-C18-C19	119.6(2)	C31-C30-C29	120.47(19)
C23-C18-C8	121.65(19)	С31-С30-Н30	119.8
C19-C18-C8	118.73(19)	С29-С30-Н30	119.8
C20-C19-C18	120.4(3)	C30-C31-C32	121.16(19)
С20-С19-Н19	119.8	С30-С31-Н31	119.4
С18-С19-Н19	119.8	С32-С31-Н31	119.4
C19-C20-C21	120.0(3)	C27-C32-C31	117.94(17)
С19-С20-Н20	120.0	C27-C32-C33	119.62(17)
С21-С20-Н20	120.0	C31-C32-C33	122.38(17)
C22-C21-C20	119.8(2)	C24-C33-C32	118.09(17)
С22-С21-Н21	120.1	C24-C33-C34	119.18(15)
С20-С21-Н21	120.1	C32-C33-C34	122.66(16)
C21-C22-C23	120.4(3)	C35-C34-C43	118.00(17)
С21-С22-Н22	119.8	C35-C34-C33	118.74(17)
С23-С22-Н22	119.8	C43-C34-C33	123.12(15)
C18-C23-C22	119.7(2)	O2-C35-C34	120.14(16)
С18-С23-Н23	120.1	O2-C35-C36	117.71(15)
С22-С23-Н23	120.1	C34-C35-C36	122.15(17)
O1-C24-C33	120.97(16)	C37-C36-C35	120.13(16)
O1-C24-C25	117.08(16)	С37-С36-Н36	119.9
C33-C24-C25	121.87(16)	С35-С36-Н36	119.9
C26-C25-C24	120.13(18)	C36-C37-C38	120.55(17)
С26-С25-Н25	119.9	С36-С37-Н37	119.7
С24-С25-Н25	119.9	С38-С37-Н37	119.7
C25-C26-C27	120.49(18)	C39-C38-C37	120.85(18)
С25-С26-Н26	119.8	C39-C38-C43	119.73(17)
С27-С26-Н26	119.8	C37-C38-C43	119.33(17)

C40-C39-C38	121.01(19)	C7-N1-B1	111.51(14)
С40-С39-Н39	119.5	C8-N1-B1	123.29(13)
С38-С39-Н39	119.5	N3-N2-C9	108.61(15)
C39-C40-C41	119.48(19)	N2-N3-N4	106.88(15)
С39-С40-Н40	120.3	C10-N4-N3	111.27(15)
С41-С40-Н40	120.3	C10-N4-C11	128.39(15)
C42-C41-C40	121.07(18)	N3-N4-C11	120.32(15)
C42-C41-H41	119.5	C24-O1-B1	119.36(13)
C40-C41-H41	119.5	C35-O2-B1	113.49(14)
C41-C42-C43	120.92(19)	O2-B1-O1	113.45(14)
C41-C42-H42	119.5	O2-B1-C1	119.40(15)
C43-C42-H42	119.5	O1-B1-C1	110.50(14)
C42-C43-C38	117.74(17)	O2-B1-N1	104.11(14)
C42-C43-C34	122.71(17)	O1-B1-N1	110.23(14)
C38-C43-C34	119.42(16)	C1-B1-N1	97.40(13)
C7-N1-C8	125.00(16)		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C1	22(1)	18(1)	14(1)	1(1)	-1(1)	0(1)
C2	22(1)	23(1)	18(1)	1(1)	-1(1)	0(1)
C3	22(1)	24(1)	23(1)	0(1)	5(1)	1(1)
C4	32(1)	22(1)	17(1)	-3(1)	5(1)	1(1)
C5	28(1)	20(1)	15(1)	-1(1)	0(1)	-1(1)
C6	22(1)	20(1)	13(1)	1(1)	0(1)	0(1)
C7	21(1)	21(1)	15(1)	1(1)	-1(1)	-2(1)
C8	19(1)	22(1)	18(1)	-1(1)	2(1)	1(1)
C9	21(1)	20(1)	16(1)	0(1)	-1(1)	2(1)
C10	23(1)	21(1)	18(1)	-1(1)	0(1)	0(1)
C11	20(1)	27(1)	21(1)	3(1)	2(1)	-1(1)
C12	25(1)	23(1)	20(1)	4(1)	2(1)	-3(1)
C13	27(1)	31(1)	25(1)	5(1)	0(1)	-3(1)
C14	31(1)	42(1)	30(1)	10(1)	-7(1)	-8(1)
C15	47(1)	49(1)	20(1)	2(1)	-4(1)	-13(1)
C16	47(1)	50(1)	24(1)	-3(1)	7(1)	-1(1)
C17	31(1)	38(1)	25(1)	2(1)	4(1)	2(1)
C18	24(1)	29(1)	23(1)	5(1)	7(1)	7(1)
C19	31(1)	30(1)	42(1)	10(1)	16(1)	7(1)
C20	44(1)	44(1)	59(2)	28(1)	26(1)	14(1)
C21	50(2)	67(2)	44(1)	35(1)	23(1)	30(1)
C22	36(1)	81(2)	23(1)	13(1)	5(1)	23(1)
C23	28(1)	45(1)	22(1)	4(1)	3(1)	10(1)
C24	21(1)	22(1)	12(1)	0(1)	-2(1)	3(1)
C25	27(1)	23(1)	18(1)	1(1)	-2(1)	-4(1)
C26	24(1)	34(1)	16(1)	2(1)	2(1)	-3(1)
C27	24(1)	29(1)	14(1)	-1(1)	-2(1)	4(1)
C28	27(1)	40(1)	16(1)	-3(1)	1(1)	5(1)
C29	33(1)	39(1)	19(1)	-10(1)	-2(1)	10(1)
C30	38(1)	25(1)	25(1)	-8(1)	-2(1)	5(1)
C31	30(1)	24(1)	22(1)	-3(1)	0(1)	2(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for 13. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C32	23(1)	24(1)	14(1)	-2(1)	-2(1)	3(1)
C33	21(1)	21(1)	15(1)	-1(1)	-1(1)	2(1)
C34	24(1)	17(1)	16(1)	-3(1)	0(1)	1(1)
C35	22(1)	16(1)	18(1)	0(1)	-2(1)	1(1)
C36	25(1)	19(1)	18(1)	1(1)	0(1)	1(1)
C37	24(1)	21(1)	23(1)	1(1)	4(1)	-1(1)
C38	23(1)	18(1)	23(1)	-2(1)	0(1)	-1(1)
C39	24(1)	22(1)	30(1)	-3(1)	0(1)	-2(1)
C40	24(1)	26(1)	34(1)	-7(1)	-7(1)	-2(1)
C41	31(1)	31(1)	22(1)	-6(1)	-7(1)	2(1)
C42	28(1)	25(1)	20(1)	-5(1)	-2(1)	1(1)
C43	24(1)	18(1)	20(1)	-3(1)	-1(1)	0(1)
N1	18(1)	19(1)	15(1)	0(1)	1(1)	0(1)
N2	25(1)	23(1)	23(1)	-3(1)	4(1)	-2(1)
N3	27(1)	23(1)	22(1)	-3(1)	4(1)	-1(1)
N4	21(1)	22(1)	17(1)	1(1)	0(1)	1(1)
01	24(1)	18(1)	14(1)	-2(1)	-1(1)	1(1)
02	20(1)	20(1)	16(1)	-1(1)	-2(1)	-1(1)
B1	18(1)	21(1)	14(1)	-1(1)	-1(1)	0(1)

	х	у	Z	U(eq)
H2	1863	634	9371	25
Н3	1171	1513	10186	28
H4	2842	2218	10781	29
Н5	5259	2064	10559	25
H7	7214	1205	9864	23
H8	7372	-332	8652	24
H10	9681	-15	7966	25
H11A	12411	950	7844	27
H11B	11872	1860	7795	27
H13	9202	1676	7131	33
H14	8534	1476	6072	41
H15	10020	784	5375	46
H16	12209	327	5733	48
H17	12924	576	6783	37
H19	6991	-1488	9263	41
H20	7774	-2375	10045	58
H21	9431	-1953	10802	65
H22	10255	-632	10785	56
H23	9521	253	9982	38
H25	6465	930	7514	27
H26	7247	220	6634	29
H28	7283	-1038	6000	33
H29	6566	-2347	5845	36
H30	4909	-2933	6542	35
H31	3917	-2185	7357	30
H36	2702	-1246	9661	25
H37	591	-1752	9290	27
H39	-1126	-1902	8410	30
H40	-1745	-1712	7352	33
H41	-52	-1238	6620	33

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for 13.

H42	2219	-954	6943	29

Table 6. Torsion angles [°] for 13.

C6-C1-C2-C3	-1.0(3)	C8-C18-C19-C20	179.29(19)
B1-C1-C2-C3	179.67(17)	C18-C19-C20-C21	1.0(3)
C1-C2-C3-C4	1.1(3)	C19-C20-C21-C22	0.8(4)
C2-C3-C4-C5	0.3(3)	C20-C21-C22-C23	-1.8(4)
C3-C4-C5-C6	-1.7(3)	C19-C18-C23-C22	0.9(3)
C4-C5-C6-C1	1.9(3)	C8-C18-C23-C22	179.71(18)
C4-C5-C6-C7	-175.30(18)	C21-C22-C23-C18	1.0(3)
C2-C1-C6-C5	-0.5(3)	O1-C24-C25-C26	-179.48(16)
B1-C1-C6-C5	179.02(16)	C33-C24-C25-C26	-2.5(3)
C2-C1-C6-C7	177.10(16)	C24-C25-C26-C27	-1.7(3)
B1-C1-C6-C7	-3.37(19)	C25-C26-C27-C28	-175.35(18)
C5-C6-C7-N1	177.65(17)	C25-C26-C27-C32	1.7(3)
C1-C6-C7-N1	0.2(2)	C26-C27-C28-C29	175.16(19)
N1-C8-C9-N2	38.8(2)	C32-C27-C28-C29	-1.9(3)
C18-C8-C9-N2	-87.4(2)	C27-C28-C29-C30	-0.2(3)
N1-C8-C9-C10	-142.40(18)	C28-C29-C30-C31	1.6(3)
C18-C8-C9-C10	91.4(2)	C29-C30-C31-C32	-1.0(3)
N2-C9-C10-N4	-0.2(2)	C26-C27-C32-C31	-174.66(17)
C8-C9-C10-N4	-179.14(17)	C28-C27-C32-C31	2.4(3)
N4-C11-C12-C17	-135.90(19)	C26-C27-C32-C33	2.4(3)
N4-C11-C12-C13	44.6(2)	C28-C27-C32-C33	179.50(16)
C17-C12-C13-C14	-0.5(3)	C30-C31-C32-C27	-1.0(3)
C11-C12-C13-C14	179.07(19)	C30-C31-C32-C33	-178.03(18)
C12-C13-C14-C15	1.5(3)	01-C24-C33-C32	-176.65(15)
C13-C14-C15-C16	-1.0(3)	C25-C24-C33-C32	6.5(3)
C14-C15-C16-C17	-0.5(4)	01-C24-C33-C34	0.4(2)
C13-C12-C17-C16	-1.0(3)	C25-C24-C33-C34	-176.49(17)
C11-C12-C17-C16	179.5(2)	C27-C32-C33-C24	-6.4(3)
C15-C16-C17-C12	1.5(4)	C31-C32-C33-C24	170.55(17)
N1-C8-C18-C23	-90.0(2)	C27-C32-C33-C34	176.72(16)
C9-C8-C18-C23	38.0(2)	C31-C32-C33-C34	-6.3(3)
N1-C8-C18-C19	88.9(2)	C24-C33-C34-C35	-50.0(2)
C9-C8-C18-C19	-143.11(18)	C32-C33-C34-C35	126.82(19)
C23-C18-C19-C20	-1.8(3)	C24-C33-C34-C43	125.61(19)

C32-C33-C34-C43	-57.5(2)	C10-C9-N2-N3	0.5(2)
C43-C34-C35-O2	-173.14(15)	C8-C9-N2-N3	179.45(17)
C33-C34-C35-O2	2.7(3)	C9-N2-N3-N4	-0.5(2)
C43-C34-C35-C36	6.9(3)	C9-C10-N4-N3	-0.1(2)
C33-C34-C35-C36	-177.20(16)	C9-C10-N4-C11	178.16(17)
O2-C35-C36-C37	177.17(16)	N2-N3-N4-C10	0.4(2)
C34-C35-C36-C37	-2.9(3)	N2-N3-N4-C11	-178.03(15)
C35-C36-C37-C38	-3.0(3)	C12-C11-N4-C10	50.7(2)
C36-C37-C38-C39	-172.11(18)	C12-C11-N4-N3	-131.20(17)
C36-C37-C38-C43	4.4(3)	C33-C24-O1-B1	63.9(2)
C37-C38-C39-C40	174.26(18)	C25-C24-O1-B1	-119.16(18)
C43-C38-C39-C40	-2.3(3)	C34-C35-O2-B1	72.0(2)
C38-C39-C40-C41	2.1(3)	C36-C35-O2-B1	-108.09(18)
C39-C40-C41-C42	-0.1(3)	C35-O2-B1-O1	-54.2(2)
C40-C41-C42-C43	-1.8(3)	C35-O2-B1-C1	78.87(19)
C41-C42-C43-C38	1.6(3)	C35-O2-B1-N1	-174.03(13)
C41-C42-C43-C34	-174.16(18)	C24-O1-B1-O2	-31.8(2)
C39-C38-C43-C42	0.4(3)	C24-O1-B1-C1	-169.02(15)
C37-C38-C43-C42	-176.22(17)	C24-O1-B1-N1	84.46(18)
C39-C38-C43-C34	176.33(17)	C2-C1-B1-O2	-65.2(3)
C37-C38-C43-C34	-0.3(3)	C6-C1-B1-O2	115.37(17)
C35-C34-C43-C42	170.50(17)	C2-C1-B1-O1	69.1(3)
C33-C34-C43-C42	-5.2(3)	C6-C1-B1-O1	-110.33(16)
C35-C34-C43-C38	-5.2(3)	C2-C1-B1-N1	-176.02(19)
C33-C34-C43-C38	179.08(16)	C6-C1-B1-N1	4.56(17)
C6-C7-N1-C8	-171.93(15)	C7-N1-B1-O2	-127.55(15)
C6-C7-N1-B1	3.1(2)	C8-N1-B1-O2	47.62(19)
C9-C8-N1-C7	-60.7(2)	C7-N1-B1-O1	110.45(16)
C18-C8-N1-C7	68.4(2)	C8-N1-B1-O1	-74.38(19)
C9-C8-N1-B1	124.81(16)	C7-N1-B1-C1	-4.65(17)
C18-C8-N1-B1	-106.08(18)	C8-N1-B1-C1	170.52(14)

References

- 1) L. Ye, W. He and L. Zhang, J. Am. Chem. Soc., 2010, 132, 8550-8551.
- 2) Z. Ni, L. Giordano and A. Tenaglia, *Chem. Eur. J.*, 2014, 20, 11703-11706.
- 3) B. M. Nilsson and U. Hacksell, J. Heterocycl. Chem., 1989, 26, 269-275.
- 4) 4. D. Castagnolo, F. Dessì, M. Radi and M. Botta, *Tetrahedron: Asymmetry*, 2007, 18, 1345-1350.
- 5) CrysAlisPro. Agilent Technologies (2013). Agilent Technologies UK Ltd., Oxford, UK, SuperNova CCD System, CrysAlicPro Software System, 1.171.37.31.
- 6) SuperFlip. (2007). A program for crystal structure solution. Palatinus, L. and Chapuis, G. J. Appl. Cryst. 40, 786-790.
- 7) Sheldrick, G. M. (2015). SHELXL-2014/7. Program for the Refinement of Crystal Structures. Acta Cryst., C71, 9-18.
- 8) Spek, A. L. (1998). PLATON, A Multipurpose Crystallographic Tool. Utrecht University, The Netherlands.
- 9) WinGX 1.64. (1999). An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-ray Diffraction Data. Farrugia, L. J. J. Appl. Cryst. 32. 837-838.
- 10)
 $$\begin{split} R_W(F^2) &= \{ \Sigma w(|F_0|^2 |F_c|^2)^2 / \Sigma w(|F_0|)^4 \}^{1/2} \text{ where } w \text{ is the weight given} \\ &= \operatorname{each reflection.} \\ R(F) &= \Sigma (|F_0| |F_c|) / \Sigma |F_0| \} \text{ for reflections with } F_0 > 4(\sigma(F_0)). \\ S &= [\Sigma w(|F_0|^2 |F_c|^2)^2 / (n p)]^{1/2}, \text{ where } n \text{ is the number of reflections and } p \text{ is the number of reflections and } p \text{ is the number of reflections}. \end{split}$$
- 11) International Tables for X-ray Crystallography (1992). Vol. C, Tables 4.2.6.8 and 6.1.1.4, A. J. C. Wilson, editor, Boston: Kluwer Academic Press.
- 12) Sheldrick, G. M. (1994). SHELXTL/PC (Version 5.03). Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.