Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

SUPPORTING INFORMATION

Stereoelectronic effects in the reaction of aromatic substrates catalysed by Halomonas elongata transaminase and its mutants

Martina Letizia Contente^{a,b}, Matteo Planchestainer^a, Francesco Molinari^{b*}, Francesca Paradisi^{a,c*}

- ^a UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- ^b Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli studi di Milano,
 Via Mangiagalli 25, 20133, Milan, Italy
- ^c School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Corresponding authors

Francesca Paradisi E-mail: francesca.paradisi@nottingham.ac.uk Telephone: +44(0)115 74 86267 Fax: +44(0)1159513564 Address: School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Francesco Molinari E-mail: francesco.molinari@unimi.it Telephone: +39(0)250319148 Fax: +39(0)250319191 Address: Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy

Table of contents:

- 1 Table S.1 (retention times of ketones, aldehydes, and amines)
- 2 Transaminases' stability
- 3 Docking energy results

Ketones/Aldehydes	Retention time	Amines	Retention time
Acetophenone	12.2 min	(S)-Phenylethylamine	4.3 min
<i>p</i> -Nitroacetophenone	16.2 min	(S)-p-Nitrophenylethanamine	4.8 min
<i>m</i> -Nitroacetophenone	15.1 min	(S)-m-Nitrophenylethanamine	4.7 min
o-Nitroacetophenone	12.9 min	(S)-o-Nitrophenylethanamine	4.4 min
p-Fluoroacetophenone	14.3 min	(S)-p-Fluorophenylethanamine	4.6 min
<i>m</i> -Fluoroacetophenone	14.5 min	(S)-m-Fluorophenylethanamine	4.6 min
o-Fluoroacetophenone	14.7 min	(S)-o-Fluorophenylethanamine	4.2 min
<i>p</i> -Trifluoroacetophenone	39.4 min	n.a.	-
<i>m</i> -Trifluoroacetophenone	46.6 min	n.a.	-
o-Trifluoroacetophenone	35.9 min	n.a.	-
p-Methoxyacetophenone	14.8 min	(S)-p-Methoxyphenylethanamine	4.6 min
m-Methoxyacetophenone	14.4 min	(S)-m-Methoxyphenylethanamine	4.7 min
o-Methoxyacetophenone	15.9 min	(S)-o-Methoxyphenylethanamine	5.1 min
p-Methylacetophenone	22.2 min	(S)-p-Methylphenylethanamine	5.9 min
<i>m</i> -Methylacetophenone	22.1 min	n.a.	-
o-Methylacetophenone	22.7 min	n.a.	-
Benzaldehyde	10.6 min	phenylmethanamine	3.7 min
p-Nitrobenzaldehyde	12.2 min	p-Nitrophenylmethanamine	4.2 min
<i>m</i> -Nitrobenzaldehyde	12.0 min	<i>m</i> -Nitrophenylmethanamine	4.1 min
o-Nitrobenzaldehyde	12.3 min	o-Nitrophenylmethanamine	3.7 min
p-Fluorobenzaldehyde	12.3 min	<i>p</i> -Fluorophenylmethanamine	4.1 min
<i>m</i> -Fluorobenzaldehyde	13.5 min	<i>m</i> -Fluorophenylmethanamine	4.0 min
o-Fluorobenzaldehyde	12.2 min	o-Fluorophenylmethanamine	3.7 min
<i>p</i> -Trifluorobenzaldehyde	41.2 min	<i>p</i> -Trifluorophenylmethanamine	7.2 min
<i>m</i> -Trifluorobenzaldehyde	38.8 min	<i>m</i> -Trifluorophenylmethanamine	7.1 min
o-Trifluorobenzaldehyde	39.8 min	o-Trifluorophenylmethanamine	5.4 min
<i>p</i> -Methoxybenzaldehyde	16.2 min	<i>p</i> -Methoxyphenylmethanamine	4.3 min
<i>m</i> -Methoxybenzaldehyde	16.8 min	<i>m</i> -Methoxyphenylmethanamine	4.2 min
o-Methoxybenzaldehyde	15.6 min	o-Methoxyphenylmethanamine	4.2 min
<i>p</i> -Methylbenzaldehyde	18.7 min	<i>p</i> -Methylphenylmethanamine	4.8 min
m-Methylbenzaldehyde	20.4 min	<i>m</i> -Methylphenylmethanamine	4.7 min
o-Methylbenzaldehyde	19.4 min	o-Methylphenylmethanamine	4.4 min

Table S.1: retention times of ketones, aldehydes, and amines in isocratic run with 25% acetonitrile/75% water with TFA 0.1% v/v at 25 °C with a flow rate of 1 mL/min (Supelcosil LC-18-T column (250 mm x 4.6 mm, 5 μm particle size; Supelco, Sigma-Aldrich, Germany)

2 – Transaminases' stability

Stability of transaminases in the reaction conditions tested was determined by spectrophotometric enzyme assay performed with phosphate buffer 50 mM pH 8 in the presence of pyridoxal 5'-phosphate (PLP) 0.1 mM, (*S*)-PEA 25 mM and Pyruvate 25 mM. The analysis of the residual activity was carried out at 25 °C and 100% corresponds to the activity before incubation (3.99 \pm 0.02 U/mg for wild type enzyme, 4.43 \pm 0.02 U/mg for W56G, 0.50 \pm 0.01 for Y149F, 0.06 \pm 0.01 U/mg for F84A and 0.43 \pm 0.02 for I258A). Each reaction was performed in triplicates and the results reported as the average of the data obtained.

Figure S.1: temperature stability profile of HEWT WT and mutants

3 – In silico mutations evaluation

Table S.2 shows the docking energies (expressed in Kcal/mol) for the WT enzyme and different mutants at each position calculated against four different molecules. The natural substrate (*S*)-PEA was used as reference compound to tune the methodology; subsequently the *ortho-, meta-,* and *para-*nitro substituted acetophenones were tested to identify the more plausible mutations able enhance binding of such substrates.

Position	Mutation	(S)-PEA	o-NO ₂	m-NO₂	p-NO ₂
W56	-	-7.5	-4.2	-5.4	-3.1
	G	-7.6	-8.3	-7.3	-7.6
	А	-7.5	-6.7	-6.4	-6.7
	L	-7.2	-6.3	-6.3	-6.2
	F	-7.6	-5-5	-5.7	-5.2
F84	-	-7.5	-4.2	-5.4	-3.1
	G	-	-7-6	-6.9	-4.1
	Α	-3.0	-8.0	-7.5	-4.3
	L	-6.7	-6.1	-6.4	-4.0
	W	-6.7	-5-0	-6.0	-2.5
Y149	-	-7.5	-4.2	-5.4	-3.1
	G	-7.4	-5.7	-6.3	-4.4
	А	-7.1	-5.8	-6.2	-4.1
	F	-7.2	-5.1	-5.6	-3.4
1258	-	-7.5	-4.2	-5.4	-3.1
	G	-6.2	-6.5	-7.0	-7.3
	Α	-6.8	-6.6	-7.3	-7.4
	V	-7.2	-6.2	-5.1	-4.2

Table S.2: Substrates' docking energies (Kcal/mol) determined by the simulation software Autodock Vina.