ELECTRONIC SUPPLEMENTARY INFORMATION

Asymmetric total synthesis of (+)-*O*-methylasparvenone, a rare nitrogen-free serotonin 2C receptor antagonist[†]

Raphael Lafleur-Lambert and John Boukouvalas*

[†]Department of Chemistry, Pavillon Alexandre-Vachon, Université Laval, 1045 Avenue de la Médecine, Quebec City, Quebec G1V 0A6, Canada

E-mail: john.boukouvalas@chm.ulaval.ca

Table of Contents

¹ H NMR (400 Mhz, CDCl ₃) of 4-ethyl-3,5-dimethoxybenzaldehyde (4) S3
¹³ C NMR (100 Mhz, CDCl ₃) of 4-ethyl-3,5-dimethoxybenzaldehyde (4)
¹ H NMR (500 Mhz, CDCl ₃) of (<i>R</i>)-methyl 4-(4-ethyl-3,5-dimethoxyphenyl)-4- hydroxybut-2-ynoate (5)
¹³ C NMR (125 Mhz, CDCl ₃) of (<i>R</i>)-methyl 4-(4-ethyl-3,5-dimethoxyphenyl)-4- hydroxybut-2-ynoate (5)
¹ H NMR (500 Mhz, CDCl ₃) of (<i>R</i>)-methyl 4-((tert-butyldiphenylsilyl)oxy)-4-(4- ethyl-3,5-dimethoxyphenyl)but-2-ynoate (6)
¹³ C NMR (125 Mhz, CDCl ₃) of (<i>R</i>)-methyl 4-((tert-butyldiphenylsilyl)oxy)-4-(4- ethyl-3,5-dimethoxyphenyl)but-2-ynoate (6)
¹ H NMR (500 Mhz, CDCl ₃) of (<i>S</i>)-methyl 4-((tert-butyldiphenylsilyl)oxy)-4-(4- ethyl-3,5-dimethoxyphenyl)butanoate (7)
¹³ C NMR (125 Mhz, CDCl ₃) of (<i>S</i>)-methyl 4-((tert-butyldiphenylsilyl)oxy)-4-(4-ethyl-3,5-dimethoxyphenyl)butanoate (7)
¹ H NMR (500 Mhz, CDCl ₃) of (<i>S</i>)-4-((tert-butyldiphenylsilyl)oxy)-4-(4-ethyl-3,5- dimethoxyphenyl)butanoic acid (8)
¹³ C NMR (125 Mhz, CDCl ₃) of (<i>S</i>)-4-((tert-butyldiphenylsilyl)oxy)-4-(4-ethyl-3,5-dimethoxyphenyl)butanoic acid (8)
¹ H NMR (400 Mhz, CDCl ₃) of (<i>S</i>)-4-((tert-butyldiphenylsilyl)oxy)-7-ethyl-6,8- dimethoxy-3,4-dihydronaphthalen-1(2H)-one (9)
¹ H NMR (100 Mhz, CDCl ₃) of (<i>S</i>)-4-((tert-butyldiphenylsilyl)oxy)-7-ethyl-6,8- dimethoxy-3,4-dihydronaphthalen-1(2H)-one (9)
¹ H NMR (500 Mhz, CDCl ₃) of (<i>S</i>)-4-((tert-butyldiphenylsilyl)oxy)-7-ethyl-8- hydroxy-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (10)
¹ H NMR (125 Mhz, CDCl ₃) of (<i>S</i>)-4-((tert-butyldiphenylsilyl)oxy)-7-ethyl-8- hydroxy-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (10)
¹ H NMR (500 Mhz, CDCl ₃) of (+)- <i>O</i> -Methylasparvenone (1a) S17
¹ H NMR (125 Mhz, CDCl ₃) of (+)-O-Methylasparvenone (1a) S18
HPLC traces

¹³C NMR (100 MHz, CDCl₃)

77.48 cdcl3
77.16 cdcl3
√76.84 cdcl3

77.48 77.16 76.84 75.15

—55.70 —51.57 \sim 34.89 \sim 29.66 \sim 27.14 \sim 19.54 \sim 16.36 \sim 14.03

¹³C NMR (125 MHz, CDCl₃)

S12

120 110 100 13C (ppm) -10

1H (ppm)

— 12.87	7.76 7.76 7.62 7.61 7.46 7.37 7.37	6.34	4.91 4.90 4.89 4.89	2.95 2.95 2.95 2.95 2.93 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	2.49 2.47 2.47 2.17 2.17 2.17 2.09 1.11 1.10
$ \begin{array}{c} & & & \\ H_{3}C \\ H_{3}$	3)				
			/		- Mu
1.00 ⊨	1.97 2.01 2.22 1.98	ا ق S15	1.02 -=	3.02 _북 1.17 <i>년</i> 1.14 <i>북</i> 2.33 ਪ	11.83 – F

1H (ppm) Т

-1

-7

Т

(+)-*O*-Methylasparvenone ¹H NMR (500 MHz, CDCl₃)

--7.26 cdcl3 --6.63

(+)-*O*-Methylasparvenone ¹³C NMR (125 MHz, CDCl₃)

Chiral HPLC Traces

Chiral HPLC trace of (*R*)-methyl 4-(4-ethyl-3,5-dimethoxyphenyl)-4-hydroxybut-2-ynoate (**5**), 94 % ee

CHIRALCEL OJ-H, 250 X 4.6 mm, 5 µm Daicel

Eluent = n-hex.: *iso*-propanol = 90:10, 1 mL/min, λ 235.16 nm

Figure S1. Determination of enantiomeric excess via chiral HPLC of (+)-(*R*)-**5** 94% ee ((-)-(S)-**5** t_R =13.11 min, (+)-(*R*)-**5** t_R =20.09 min)

Chiral HPLC trace of (+)-O-Methylasparvenone (1a), 94 % ee

ChiralPAK AD-H, 250 X 4.6 mm, 5 µm Daicel

Eluent = n-hex.: *iso*-propanol = 90:10, 1 mL/min, λ 235.16 nm

Figure S2. Determination of enantiomeric excess via chiral HPLC of (+)-(*S*)-1a 94% ee ((-)-(R)-1a t_R =8.87 min, (+)-(*S*)-1a t_R =10.35 min)