Colorimetric and fluorescent probe for detection of nanomolar lysine in aqueous medium

Susanta Adhikari^a*, Avijit Ghosh^a, Sandip Mandal^b, Subhajit Guria^a, Prajna Paramita Banerjee^c, Ansuman Chatterjee^c and Debasis Das^b*

^aDepartment of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, West Bengal, India

^bDepartment of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India ^cDepartment of Zoology, Visva Bharati University, Santiniketan, West Bengal, India

INDEX	page no.
General information	
Calculation of detection limits	(S-3)
¹ H, ¹³ C NMR and mass spectra of the compounds(S-4)-	S-11)
Table S-1 Crystal data and structure refinement for THBPY (CCDC	
Figure S-7 Visible color changes of THBPY (10 μ M) in buffer).	
Figure S-8 Effect of pH on the emission intensity of THBPY and [THBPY-Lys]	(S-16)
Figure S-9 HRMS spectrum of [THBPY- Lys] in methanol	(S-17)
Figure S-10 Change in absorbance of [THBPY+ butyl amine] complex	(S-18)
Figure S-11 Change in absorbance of THBPY (10µM) upon addition of butyl am diaminopentane, 6-amino hexanoic acid, ethelenediamine	
Figure S-12 Change in fluorescence of THBPY (10µM) upon addition of butyl at diaminopentane, 6-amino hexanoic acid and ethylenediamine	
Figure S-13 Reversibility of absorbance of [THBPY + Lys] adduct in DMSO–HE	EPES buffer (S-20)

Figure S-15 HRMS spectrum after H_2O_2 treatment of [THBPY + Lys] adduct (S-21)
Figure S-16 Changes in the emission profile of compound 3 upon addition of Lys (S-21)
Figure S-17 Change in the absorbance of compound 3 upon addition of Lys(S-22)
Figure S-18 Changes in the emission profile of compound-4 upon addition of Lys (S-22)
Figure S-19 Changes in the absorbance of compound-4 upon addition of butyl amine 1,5-diaminopentane and 6-amino hexanoic acid complex
Table S-2 Frontier molecular orbitals (MOs) of THBPY and energy levels of the
MOs(S-23)
Table S-3 Frontier molecular orbitals (MOs) of THBPY+ Lys (neutral) and the energy levels of
MOs
Table S-4 Frontier molecular orbitals (MOs) of THBPY+ Lys (cationic) and the energy levels of
MOs
Figure S-20 Selected MOs of THBPY, [THBPY + cysteine], [THBPY + homo
cysteine] (S-26)
Cell imaging &
cytotoxicity(S-27)

General information

Reagents and solvents were purchased from commercial suppliers and used as received. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III HD (300 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.16) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). High resolution mass spectra were obtained on a Micromass/Q-Toff. microTM spectrometer. IR spectra were measured on Thermo Scientific Nicolet 380 instrument. For thin layer chromatography (TLC), Merck precoated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with iodine. Flash chromatography separations were performed on SRL 230-400 mesh silica gel.

Measurement of fluorescence quantum yield

For determination of the fluorescence quantum yields ($\Phi_{\rm fl}$), of BODIPY dye we used a Perkin-Elmer instrument, with fluorescein in 0.1 M NaOH as a fluorescence standard (fluorescence quantum yield of 0.85 in 0.1 N NaOH).

Fluorescence quantum yields ($\Phi_{\rm fl}$) were obtained by the following equation

$$\Phi_{fl}^{sample} = \Phi_{fl}^{standard} Abs^{standard} \Sigma[F^{sample}] / Abs^{sample} \Sigma[F^{standard}]$$

Where F denotes fluorescence intensity at each wavelength and Σ [*F*] was calculated by summation of fluorescence intensity.¹

solvent	Absorbance	Fluorescence	Quantum
	maximum	maximum	yield (%)
CH ₂ Cl ₂	504	517	80
Methanol	503	515	68

Equation used for calculating detection limit (DL)

 $DL = CL \times CT$; where CL = conc. of ligand; CT = conc. of Lys at which fluorescence enhanced.

Thus, $DL = 1 \times 10^{-6} \times 0.001 \ \mu M = 0.001 \times 10^{-6} \ \mu M$.

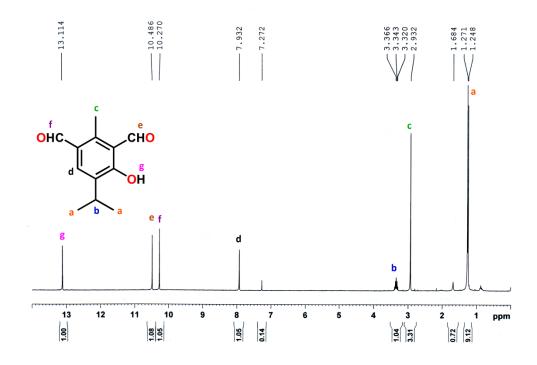


Figure S-1¹H NMR spectrum of DFTH in CDCl₃

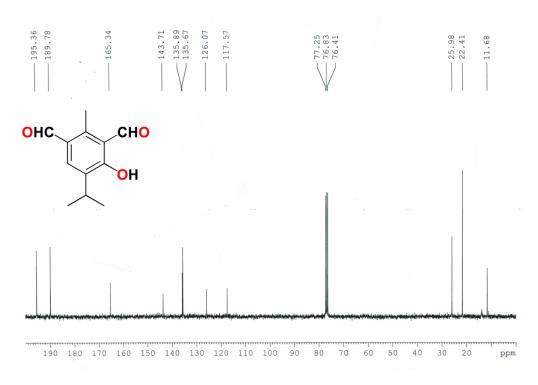
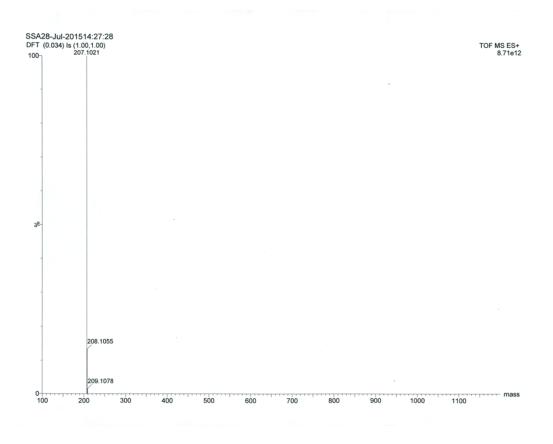
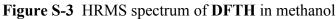




Figure S-2¹³C spectrum of DFTH in CDCl₃

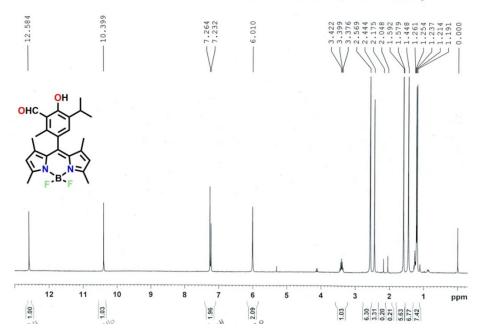


Figure S-4 ¹H NMR spectrum of THBPY in CDCl₃

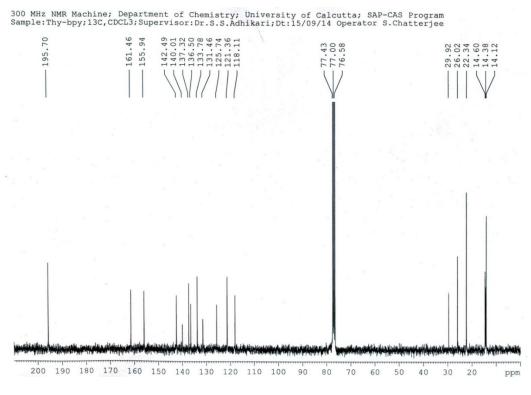


Figure S-5¹³C NMR spectrum of THBPY in CDCl₃

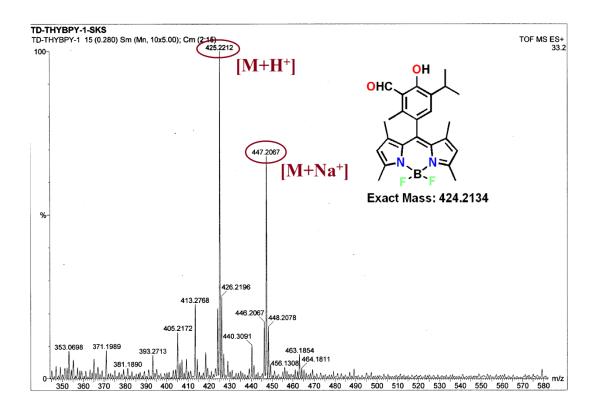
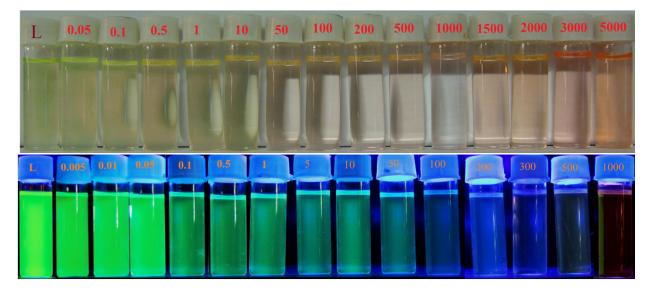
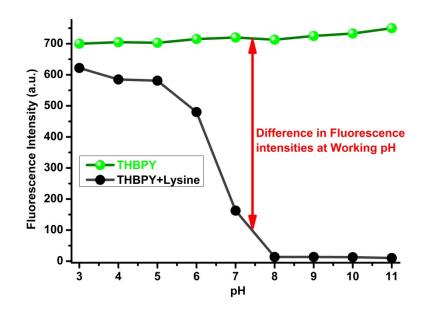
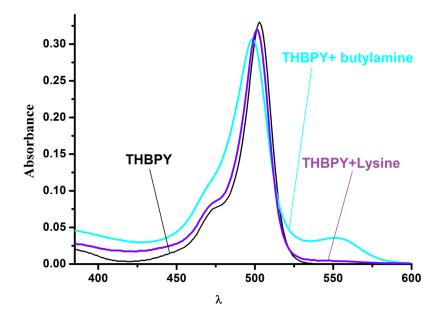
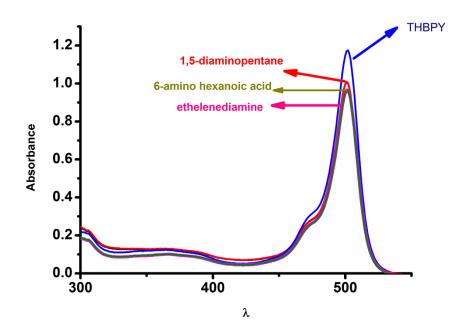
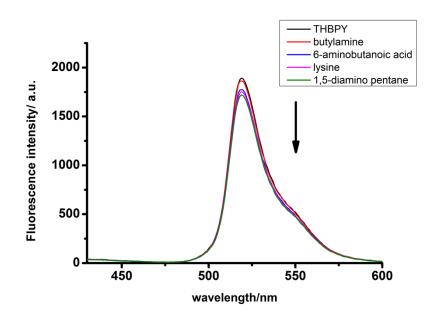
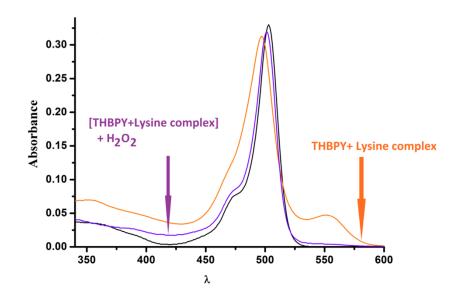



Figure S-6 HRMS spectrum of THBPY in methanol

Figure S-7 Color changes of **THBPY** (10 μ M) in DMSO–HEPES buffer (0.01 M, pH 7.4) (1: 9, v/v) media upon gradual addition of Lys from 0.05 to 5000.0 μ M (bare eye, top) and under UV light for Lys 0.005 μ M to 1000 μ M (bottom).


Figure S-8 Effect of pH on the emission intensity of THBPY and [THBPY-Lys] adduct


Figure S-9 Change in absorbance of **THBPY** upon addition of butyl amine in DMSO–HEPES buffer (1: 9, v/v, 0.01 M, pH 7.4)

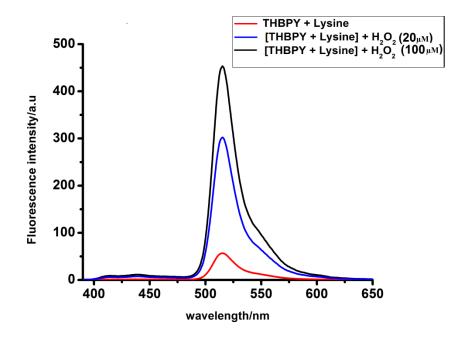

Figure S-10 Changes in absorbance of **THBPY** (10 μ M) upon addition of 1,5-diaminopentane, 6-amino hexanoic acid and ethylenediamine (50 μ M) in DMSO–HEPES buffer, 1: 9, v/v, 0.01 M, pH 7.4.

Figure S-11 Changes in fluorescence of **THBPY** (10 μ M) upon addition of butyl amine, 1,5diaminopentane, 6-amino hexanoic acid, ethelenediamine (50 μ M) in DMSO–HEPES buffer (1: 9, v/v, 0.01 M, pH 7.4).

Figure S-12 Reversibility of absorbance of [**THBPY**+ Lys] adduct (50 μ M) in DMSO–HEPES buffer (1: 9, v/v, 0.01 M, pH 7.4) upon addition of 10,100 μ M H₂O₂ solutions.

Figure S-13 Reversibility of fluorescence spectrum of the [**THBPY**+ Lys] adduct (10 μ M) in DMSO–HEPES buffer (1: 9, v/v, 0.01 M, pH 7.4) upon addition of 20,100 μ M H₂O₂ solutions.

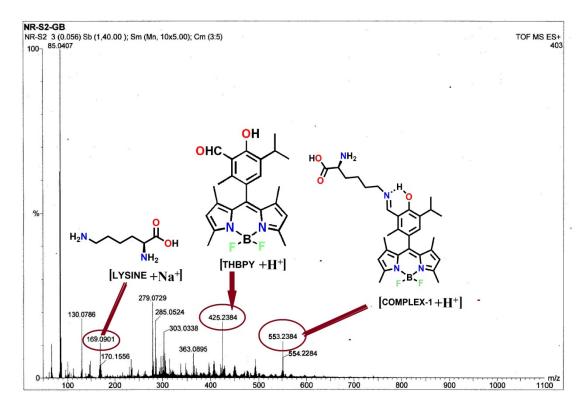
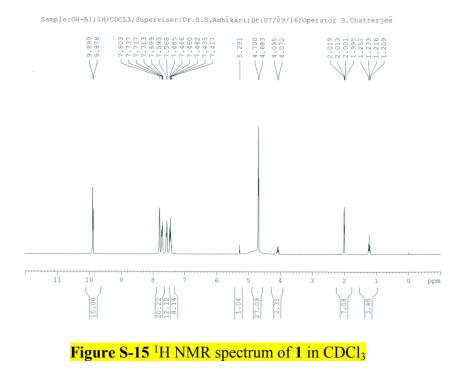
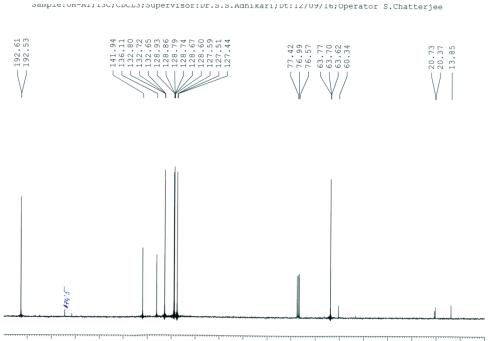
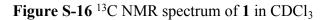





Figure S-14 HRMS spectrum of the solution of [THBPY+ Lys] adduct after treatment of H₂O₂.

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

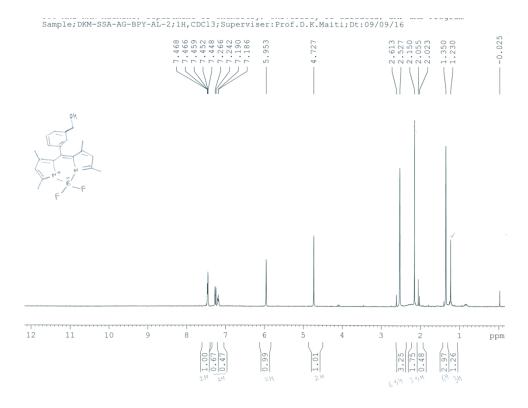


Figure S-17 ¹H NMR spectrum of 2 in CDCl₃

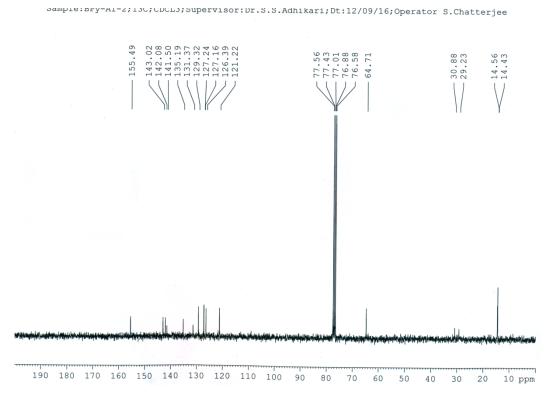


Figure S-18¹³C NMR spectrum of 2 in CDCl₃

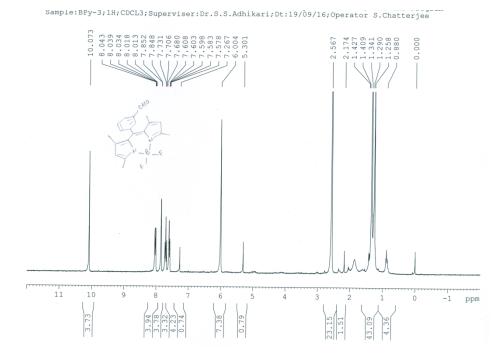


Figure S-19 ¹H NMR spectrum of 3 in CDCl₃

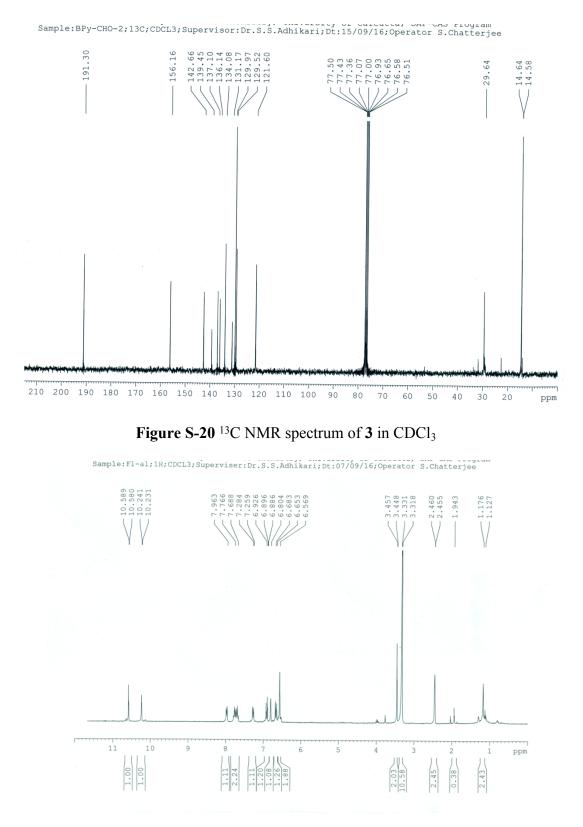


Figure S-21 ¹H NMR spectrum of 4 in DMSO-d₆

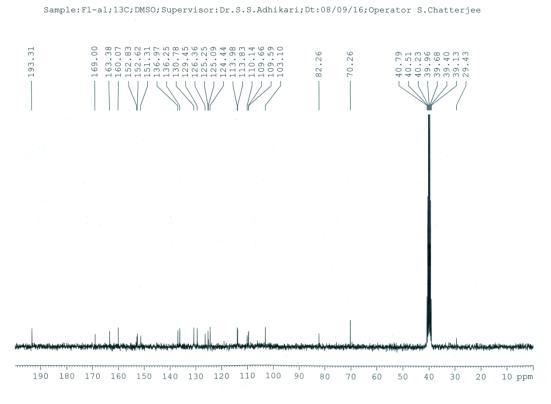
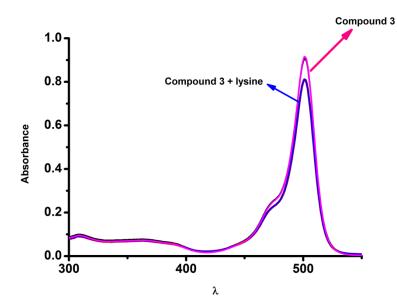
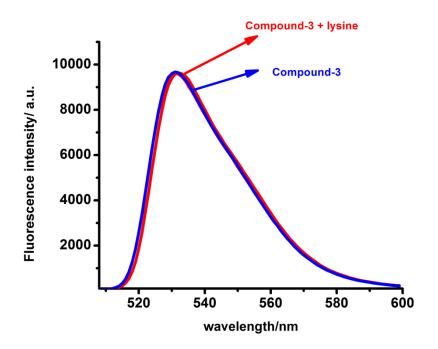




Figure S-22 ¹³C NMR spectrum of 4 in DMSO-d₆

Figure S-23 Changes in the absorbance of **3** (10 μ M) upon addition of Lys (50 μ M) in DMSO–HEPES buffer (1: 9, v/v, 0.01 M, pH 7.4).

Figure S-24 Changes in the emission profile of **3** (10 μ M) upon addition of Lys (50 μ M) in DMSO–HEPES buffer (1: 9, v/v, 0.01 M, pH 7.4).

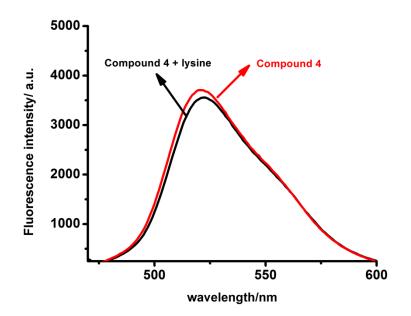
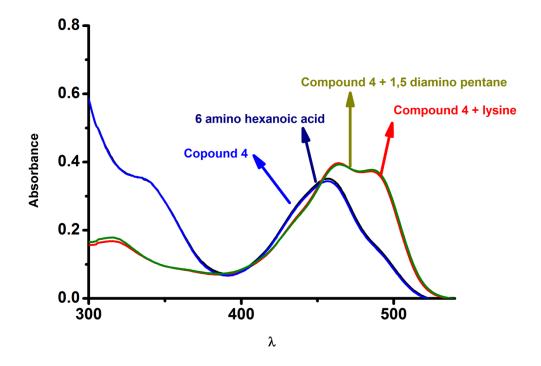
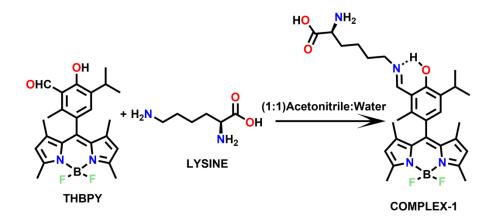



Figure S-25 Changes in emission profile of 4 (10 μ M) upon addition of Lys (50 μ M) in DMSO–HEPES buffer (1: 9, v/v, 0.01 M, pH 7.4).

Figure S-26 Change in absorbance of 4 (10 μ M) upon addition of butyl amine 1,5diaminopentane, 6-amino hexanoic acid (50 μ M in DMSO–HEPES buffer, 1: 9, v/v, 0.01 M, pH 7.4).

Table S-1 Crystal data and structure refinement for THBPY (CCDC No. 1409)


Bond lengths (Å)

(B1)-(F1)	1.380(3)	(C8)-(N2)	1.409(4)	(C7)-(C6)	1.406(3)
(F1)-(B1)	1.380(3)	(N2)-(C10)	1.344(3)	(C6)-(C7)	1.406(3)
(B1)-(F2)	1.402(4)	(C10)-(N2)	1.344(3)	(C7)-(C14)	1.494(4)
(F2)-(B1)	1.402(4)	(N1)-(C6)	1.409(4)	(C14)-(C7)	1.494(4)
(B1)-(N2)	1.545(4)	(C6)-(N1)	1.409(4)	(C8)-(C12)	1.437(3)
(N2)-(B1)	1.545(4)	(N1)-(C2)	1.340(3)	(C12)-(C8)	1.437(3)
(B1)-(N1)	1.552(4)	(C2)-(N1)	1.340(3)	(C6)-(C4)	1.416(3)
(N1)-(B1)	1.552(4)	(C7) - (C8)	1.389(3)	(C4) - (C6)	1.416(3)
(N2)-(C8)	1.409(4)	(C8)-(C7)	1.389(3)	(C12)-(C13)	1.499(4)

(C13)-(C12)	1.499(4)	(C13)-(H13C)) 0.96	(C18)-(C19)	1.415(4)
(C12)-(C11)	1.373(4)	(H13C)-(C13)) 0.96	(C19)-(C14)	1.390(4)
(C11)-(C12)	1.373(4)	(C3)-(H3)	0.93	(C14)-(C19)	1.390(4)
(C10)-(C9)	1.493(5)	(H3)-(C3)	0.93	(C19)-(C20)	1.507(4)
(C9)-(C10)	1.493(5)	(C5)-(H5A)	0.961	(C20)-(C19)	1.507(4)
(C10)-(C11)	1.396(4)	(H5A)-(C5)	0.961	(C18)-(C17)	1.413(4)
(C11)-(C10)	1.396(4)	(C5)-(H5B)	0.959	(C17)-(C18)	1.413(4)
(C4)-(C3)	1.381(4)	(H5B)-(C5)	0.959	(C18)-(C24)	1.454(5)
(C3)-(C4)	1.381(4)	(C5)-(H5C)	0.96	(C24)-(C18)	1.454(5)
(C4)-(C5)	1.505(4)	(H5C)-(C5)	0.96	(C15)-(H15)	0.929
(C5)-(C4)	1.505(4)	(C11)-(H11)	0.93	(H15)-(C15)	0.929
(C2)-(C3)	1.402(5)	(H11)-(C11)	0.93	(C15)-(C14)	1.409(4)
(C3)-(C2)	1.402(5)	(C1)-(H1A)	0.96	(C14)-(C15)	1.409(4)
(C2)-(C1)	1.500(5)	(H1A)-(C1)	0.96	(C17)-(O2)	1.353(4)
(C1)-(C2)	1.500(5)	(C1)-(H1B)	0.96	(O2)-(C17)	1.353(4)
(C9)-(H9A)	0.961	(H1B)-(C1)	0.96	(C24)-(H24)	0.93
(H9A)-(C9)	0.961	(C1)-(H1C)	0.961	(H24)-(C24)	0.93
(C9)-(H9B)	0.96	(H1C)-(C1)	0.961	(C24)-(O1)	1.233(4)
(H9B)-(C9)	0.96	(C16)-(C15)	1.375(4)	(O1)-(C24)	1.233(4)
(C9)-(H9C)	0.96	(C15)-(C16)	1.375(4)	(C20)-(H20A)) 0.96
(H9C)-(C9)	0.96	(C16)-(C17)	1.404(5)	(H20A)-(C20)) 0.96
(C13)-(H13A) 0.96	(C17)-(C16)	1.404(5)	(C20)-(H20B)) 0.96
(H13A)-(C13) 0.96	(C16)-(C21)	1.518(4)	(H20B)-(C20)) 0.96
(C13)-(H13B) 0.959	(C21)-(C16)	1.518(4)	(C20)-(H20C)) 0.96
(H13B)-(C13) 0.959	(C19)-(C18)	1.415(4)	(H20C)-(C20)) 0.96

(C21)-(H21) 0.981		(H2)-(O2) 0.82		(C22)-(H22A) 0.96	
(H21)-(C21) 0.981		(C23)-(H23A) 0.96		(H22A)-(C22) 0.96	
(C21)-(C23) 1.520((5)	(H23A)-(C23) 0.96		(C22)-(H22B) 0.959	
(C23)-(C21) 1.520((5)	(C23)-(H23B) 0.96		(H22B)-(C22) 0.959	
(C21)-(C22) 1.528((4)	(H23B)-(C23) 0.96		(C22)-(H22C) 0.96	
(C22)-(C21) 1.528((4)	(C23)-(H23C) 0.96		(H22C)-(C22) 0.96	
(O2)-(H2) 0.82		(H23C)-(C23) 0.96			
Bond angles (°)					
(F1)-(B1)-(F2)	108.9(2)	(C7)-(C8)-(C12)	132.1(2)	(C10)-(C9)-(H9B)	109.5
(F1)-(B1)-(N2)	111.3(2)	(N1)-(C6)-(C7)	119.8(2)	(C10)-(C9)-(H9C)	109.5
(F1)-(B1)-(N1)	111.3(2)	(N1)-(C6)-(C4)	108.0(2)	(H9A)-(C9)-(H9B)	109.5
(F2)-(B1)-(N2)	109.2(2)	(C7)-(C6)-(C4)	132.1(3)	(H9A)-(C9)-(H9C)	109.5
(F2)-(B1)-(N1)	109.4(2)	(C8-(C12)-(C13)	129.7(2)	(H9B)-(C9)-(H9C)	109.5
(N2)-(B1)-(N1)	106.6(2)	(C8)-(C12)-(C11)	105.8(2)	(C12)-(C13)-(H13A)	109.4
(B1)-(N2)-(C8)	125.4(2)	(C13)-(C12)-(C11)	124.5(3)	(C12)-(C13)-(H13B)	109.5
(B1)-(N2)-(C10)	126.2(2)	(N2)-(C10)-(C9)	121.8(3)	(C12)-(C13)-(H13C)	109.4
(C8)-(N2)-(C10)	108.3(2)	(N2)-(C10)-(C11)	109.0(3)	(H13A)-(C13)-(H13B	3)109.5
(B1)-(N1)-(C6)	125.5(2)	(C9)-(C10)-(C11)	129.2(3)	(H13A)-(C13)-(H13C	C)109.5
(B1)-(N1)-(C2)	126.5(3)	(C6)-(C4)-(C3)	106.1(3)	(H13B)-(C13)-(H13C	C)109.6
(C6)-(N1)-(C2)	108.0(2)	(C6)-(C4)-(C5)	128.7(3)	(C4)-(C3)-(C2)	108.8(3)
(C8)-(C7)-(C6)	121.5(2)	(C3)-(C4)-(C5)	125.3(3)	(C4)-(C3)-(H3)	125.6
(C8)-(C7)-(C14)	118.6(2)	(N1)-(C2)-(C3)	109.1(3)	(C2)-(C3)-(H3)	125.6
(C6-(C7)-(C14)	119.9(2)	(N1)-(C2)-(C1)	122.7(3)	(C4)-(C5)-(H5A)	109.5
(N2)-(C8)-(C7)	120.6(2)	(C3)-(C2)-(C1)	128.2(3)	(C4)-(C5)-(H5B)	109.5
(N2)-(C8)-(C12)	107.4(2)	(C10)-(C9)-(H9A)	109.4	(C4)-(C5)-(H5C)	109.5

(H5A)-(C5)-(H5B)	109.4	(C16)-(C17)-(18)	121.3(3)	(H23A)-(C23)-(H23B)109.4
(H5A)-(C5)-(H5C)	109.4	(C16)-(C17)-(O2)	117.5(3)	(H23A)-(C23)-(H23C)109.5
(H5B)-(C5)-(H5C)	109.5	(C18)-(C17)-(O2)	121.1(3)	(H23B)-(C23)-(H23C)109.5
(C12)-(C11)-(C10)	109.5(3)	(C7)-(C14)-(C19)	121.0(2)	(C21)-(C22)-(H22A) 109.4
(C12)-(C11)-(H11)	125.2	(C7)-(C14)-(C15)	119.0(2)	(C21)-(C22)-(H22B) 109.5
(C10)-(C11)-(H11)	125.2	(C19)-(C14)-(C15)	119.9(2)	(C21)-(C22)-(H22C) 109.5
(C2)-(C1)-(H1A)	109.5	(C18)-(C24)-(H24)	117.7	(H22A)-(C22)-(H22B)109.5
(C2)-(C1)-(H1B)	109.5	(C18)-(C24)-(O1)	124.6(3)	(H22A)-(C22)-(H22C)109.4
(C2)-(C1)-(H1C)	109.5	(H24)-(C24)-(O1)	117.7	(H22B)-(C22)-(H22C)109.5
(H1A)-(C1)-(H1B)	109.5	(C19)-(C20)-(H20A)	109.5	
(H1A)-(C1)-(H1C)	109.4	(C19)-(C20)-(H20B)	109.4	
(H1B)-(C1)-(H1C)	109.4	(C19)-(C20)-(H20C)	109.5	
(C15)-(C16)-(C17)	116.7(2)	(H20A)-(C20)-(H20B	8)109.5	
(C15)-(C16)-(C21)	123.6(2)	(H20A)-(C20)-(H20C	2)109.5	
(C17)-(C16)-(C21)	119.7(2)	(H20B)-(C20)-(H20C	2)109.5	
(C18)-(C19)-(C14)	118.0(2)	(C16)-(C21)-(H21)	107.6	
(C18)-(C19)-(C20)	121.6(2)	(C16)-(C21)-(C23)	113.4(3)	
(C14)-(C19)-(C20)	120.4(2)	(C16)-(C21)-(C22)	110.0(3)	
(C19)-(C18)-(C17)	120.5(2)	(H21)-(C21)-(C23)	107.6	
(C19)-(C18)-(C24)	120.6(3)	(H21)-(C21)-(C22)	107.6	
(C17)-(C18)-(C24)	118.8(3)	(C23)-(C21)-(C22)	110.4(3)	
(C16)-(C15)-(H15)	118.3	(C17)-(O2)-(H2)	109.4	
		(C21)-(C23)-(H23A)	109.5	
(C16)-(C15)-(C14)	123.5(2)	(C21)-(C23)-(H23B)	109.5	
(H15)-(C15)-(C14)	118.2	(C21)-(C23)-(H23C)	109.5	

Scheme S-1 Synthesis of [THBPY- Lys] adduct (complex-1)

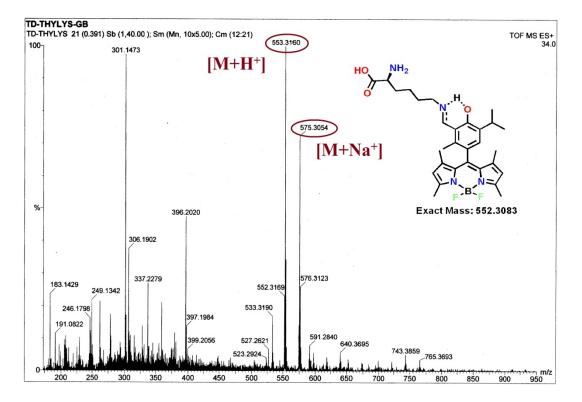
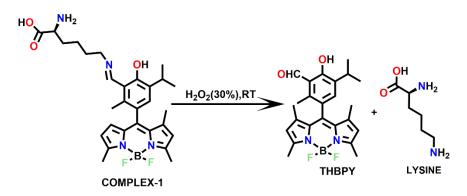



Figure S-27 HRMS spectrum of [THBPY- Lys] adduct in methanol.

Scheme S-2 Reversibility of [THBPY- Lys] adduct in presence of hydrogen peroxide

Table S-2 Frontier molecular orbitals (MOs) of **THBPY** and the energy levels of the MOs are shown (in a.u). Calculations are based on ground state geometry by DFT at the B3LYP/6-31G/level using Gaussian 09

Frontier orbital	Energy (a.u.)	Energy optimised geometry
LUMO+1	-0.0498	

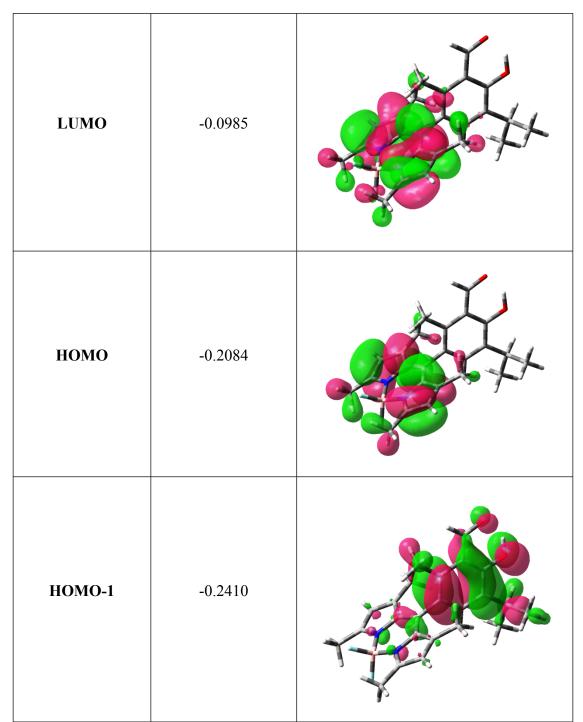
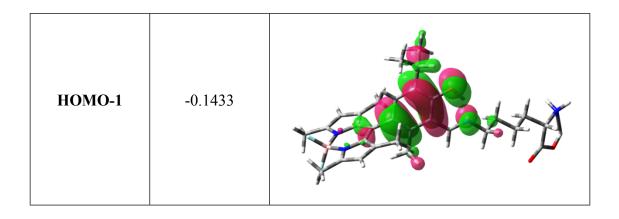



 Table S-3 Frontier molecular orbitals (MOs) of THBPY-lysine (neutral) and the energy levels

 of the MOs are shown (in a.u). Calculations are based on ground state geometry by DFT at the

 B3LYP/6-31G/level using Gaussian 09.

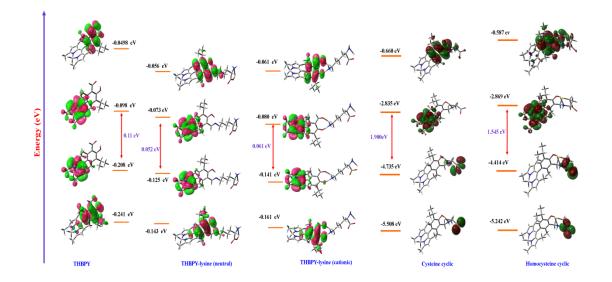

Frontier orbital	Energy (a.u.)	Energy optimised geometry
LUMO+1	0.0565	
LUMO	-0.0738	the second secon
номо	-0.1253	the states

Table S-4 Frontier molecular orbitals (MOs) of **THBPY-lysine (cationic)** and the energy levels of the MOs are shown (in a.u). Calculations are based on ground state geometry by DFT at the B3LYP/6-31G/level using Gaussian 09.

Frontier orbital	Energy (a.u.)	Energy optimized geometry
LUMO+1	0.0613	
LUMO	-0.08011	

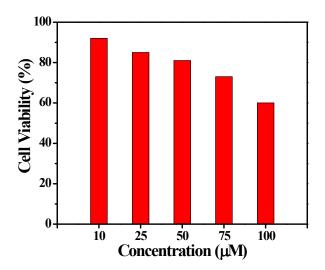

номо	-0.1415	
HOMO-1	-0.1612	

Figure S-28 Selected MOs of **THBPY**, [**THBPY** + cysteine], [**THBPY** + homo cysteine], (not to scale; isovalue = 0.02).

Cytotoxicity assay

In vitro cytotoxicity was measured by using the colorimetric methyl thiazolyltetrazolium (MTT) assay against MDA-MB 231 cells. Cells were seeded into 24-well tissue culture plate in presence of 500 μ L Dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37 °C temperature and 5 % CO₂ atmosphere for overnight and then incubated for 12h in presence of **THBPY** at different concentrations (10-100 μ M). Then cells were washed with PBS buffer and 500 μ L supplemented DMEM medium was added. Subsequently, 50 μ L 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT (5 mg/mL) was added to each well and incubated for 4h. Next, violet formazan was dissolved in 500 μ L of sodium dodecyl sulfate solution in water/DMF mixture. The absorbance of solution was measured at 570 nm using microplate reader. The cell viability was determined by assuming 100 % cell viability for cells without MDA-MB 231 cells.

Figure S-29 Cell viability of **THBPY** at different concentration against MDA-MB 231 cells after 12h incubation.

Ref:

(1) Xu, J.; Li, Q.; Yue, Y.; Guo, Y.; Shao, S. Biosens. Bioelectron. 2014, 56, 58-63.