Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information for:

A Ni-PyBisulidine Complex for the Asymmetric

Hydrophosphonylation of Aldehydes

Youmao Zeng,^{a‡} Ping Deng,^{a‡} Shixiong Zhang,^a Hong Yan,^a Guojuan Liang,^a Yan Xiong^b and Hui Zhou*^a

hzhou@cqmu.edu.cn

^a School of Pharmaceutical Science, Chongqing Medical University, Chongqing, China

^b School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China

Contents:

1. General information	S2
2. The preparation and characterization of the ligands	S2
3. General procedures for the preparation of the catalyst	S3
4. ESI-HRMS analysis of Ni-L1 complex and the proposed structure of the complex	S3
5. The effects of the catalyst loading and the concentration of benzaldehyde	S5
6. General Procedure for Catalytic Asymmetric Reaction	S5
7. Characterization of products	S6
8. Copy of NMR spectra	S19

1. General information

All reagents were obtained from Adamas, Aladin, TCI, or Acros etc. without further purification unless otherwise noted. High resolution mass spectra were measured on commercial instruments. NMR spectra were recorded on commercial instruments and operating at 500 MHz for ¹H NMR and 125 MHz for ¹³C NMR. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, $\delta = 7.26$) in ¹H NMR spectra and Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, $\delta = 77.0$) in ¹³C NMR spectra. Spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration, and assignment. The enantiomeric excess (*ee*) was determined by HPLC analysis. Analytical HPLC was performed on a Shimadzu liquid chromatography (LC-16), using a chiral DAICEL CHIRALCEL OD-H or CHIRALPAK AS-H or CHIRALPAK AD-H column at 210 nm. Optical rotations were measured on a commercial polarimeter and are reported as follows: [α]_D^T(c = g/100 mL, solvent).

2. The preparation and characterization of the ligands

Ligands L1-L4 were prepared according to the literature.¹

¹HNMR (500MHz, CDCl₃): δ 8.02-7.96 (m, 3H), 7.53 (d, *J* = 8.2 Hz, 4H), 7.25-7.17 (m, 4H), 7.16-7.10 (m, 16H), 7.00 (d, *J* = 7.2 Hz, 4H), 5.83 (s, 2H), 4.71 (d, *J* = 5.4 Hz, 2H), 4.26 (d, *J* = 5.4 Hz, 2H), 2.39 (s, 6H).

¹H NMR (500 MHz, CDCl₃) δ 7.99-7.98 (m, 2H), 7.65-7.63 (m, 3H), 7.52-7.49 (m, 2H), 7.35 (t, *J* = 7.9 Hz, 4H), 7.18-7.09 (m, 16H), 6.98-6.97 (m, 4H), 5.88 (s, 2H), 4.71 (d, *J* = 5.8 Hz, 2H), 4.26 (d, *J* = 5.8 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 158.14, 139.51, 139.01, 138.22, 138.08, 128.99, 128.62, 128.37, 127.85, 127.61, 127.10, 126.79, 123.99,

78.30, 71.64, 69.49. HRMS (ESI): *m/z* calcd for C₄₇H₄₁N₅NaO₄S₂ [M + Na]⁺: 826.24922, found

^[1] A. Gonzalez-de-Castro, C. M. Robertson, J. Xiao, J. Am. Chem. Soc., 2014, 136, 8350-8360.

¹H NMR (500 MHz, CDCl₃) δ 8.02-7.94 (m, 7H), 7.50 (d, J = 8.2 Hz, 4H), 7.20-7.11 (m, 20H), 5.75 (s, 2H), 4.96 (s, 2H), 4.45 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 156.32, 156.07, 149.97, 143.28, 139.37, 139.25, 138.34, 128.84, 128.53, 128.33, 128.16, 125.83, 79.32, 70.67, 68.97. HRMS (ESI): m/z calcd for C₄₇H₃₉N₇NaO₈S₂ [M + Na]⁺: 916.21937,

¹H NMR (500 MHz, CDCl₃) δ 8.01-7.99 (m, 2H), 7.61 (d, J = 8.5 Hz, 4H), 7.37 (d, J = 8.6 Hz, 4H), 7.18-7.13 (m, 7H), 7.10-7.06 (m, 10H), 6.96-6.94 (m, 4H), 5.93 (s, 2H), 4.67 (d, *J* = 6.1 Hz, 2H), 4.25 (d, *J* = 6.0 Hz, 2H), 1.34 (s, 18H).

3. General procedures for the preparation of the

catalyst

Method A (in situ): The mixture of Ni(OAc)₂·4H₂O (0.02 mmol) and ligand (0.02 mmol) was stirred in a certain solvent (0.5 mL) at 35 °C for 1 h.

Method B (pre-prepared): The mixture of the L1 (0.4 mmol) and Ni(OAc)₂·4H₂O (0.4 mmol) was stirred in methanol (20 mL) at 80 °C for 4 h. After cooling down to room temperature, the precipitate was collected by filtration. Then, the solid was washed with MeOH and dried under reduced pressure to afford the Ni-L1 complex as a green solid, 0.36g, 83% yield.

4. ESI-HRMS analysis of Ni-L1 complex and the proposed structure of the complex

In the ESI-HRMS chart of Ni-L1 complex (Figure S1), the peak corresponding to Ni/L1 was detected. The peak of m/z = 948.23941 was assigned to $[L1 + Ni(OAc)_2 - HOAc + H]^+$ (Calcd. For C₅₁H₄₈N₅NiO₆S₂: 948.23940). On the basis of the related structure of Fe-PyBisulidine complex (J. Am. Chem. Soc., 2014, 136, 8350-8360) and the geometry of L1 optimized using Chem3D at MM2 level (Figure S2), we speculated that the ligand could coordinate to the Ni via pyridine nitrogen and secondary amine nitrogens. According to the ESI-HRMS analysis of the complex and the balance of total charge, one proton should removed (Figure S3).

Acquisition Paramet	er				
Polarity	Positive	n/a	n/a	No. of Laser Shots	200
n/a	n/a	No. of Cell Fills	1	Laser Power	20.0 lp
Broadband Low Mass	150.5 m/z	n/a	n/a	n/a	n/a
Broadband High Mass	3000.0 m/z	n/a	n/a	n/a	n/a
Acquisition Mode	Single MS	n/a	n/a		
Pulse Program	basic	n/a	n/a	Calibration Date	Mon Jul 25 11:54:52 2016
Source Accumulation	0.010 sec	n/a	n/a	Data Acquisition Size	1048576
Ion Accumulation Time	0.020 sec	n/a	n/a	Apodization	Sine-Bell Multiplication
Flight Time to Aca Cell	0.002 sec				

Figure S1. The ESI-HRMS chart of Ni-L1

Figure S2. The geometry of L1 optimized using Chen3D (8.0) at MM2 level

Calcd. For $C_{51}H_{48}N_5NiO_6S_2$ [M + H]⁺: 948.23940, Found: 948.23941

Figure S3. The proposed structure of Ni-L1 complex

5. The effects of the catalyst loading and the concentration of benzaldehyde.

	CHO +	$\begin{array}{c} O \\ H^{-P} OPh \\ OPh \end{array} \begin{array}{c} Ni-L1 \\ CH_2Cl_2, \end{array}$	mol% ,0 °C ↓ 0 °C		
1a			2a		
Entry	Time (h)	The loading of Ni-	The concentration of	Yield	ee (%) ^{<i>i</i>}
		L1 (mol %)	benzaldehyde (M)	(%) ^h	
1^b	17	10	0.1	44	93
2^c	15	10	0.2	90	93
3 ^{<i>d</i>}	15	10	0.4	98	93
4^d	17	5	0.4	74	93
5 ^e	15	2	1	2	5
6 ^f	15	1	2	5	5
7g	39	5	0.5	24	85

Table S1 The effects of the catalyst loading and the concentration of aldehyde. ^a

^{*a*} The catalyst was prepared in *situ*. ^{*b*} The reaction was carried out: aldehyde (0.1 mmol), diphenylphosphite (0.1 mmol), 1.0 mL CH₂Cl₂. ^{*c*} The reaction was carried out: aldehyde (0.2 mmol), diphenylphosphite (0.2 mmol), 1.0 mL CH₂Cl₂. ^{*d*} The reaction was carried out: aldehyde (0.2 mmol), diphenylphosphite (0.2 mmol), 0.5 mL CH₂Cl₂. ^{*e*} The reaction was carried out: aldehyde (1.0 mmol), diphenylphosphite (1.0 mmol), 1.0 mL CH₂Cl₂. ^{*e*} The reaction was carried out: aldehyde (1.0 mmol), diphenylphosphite (2.0 mmol), 1.0 mL CH₂Cl₂. ^{*f*} The reaction was carried out: aldehyde (2.0 mmol), diphenylphosphite (2.0 mmol), 1.0 mL CH₂Cl₂. ^{*f*} The reaction was carried out: aldehyde (0.5 mmol), diphenylphosphite (0.5 mmol), 1.0 mL CH₂Cl₂. ^{*f*} Isolated yield. ^{*i*} Enantiomeric excesses were determined by HPLC analysis.

6. General Procedure for Catalytic Asymmetric Reaction

The mixture of diphenylphosphite (0.2 mmol) and the chiral complex (0.02 mmol, 10 mol%) was stirred in CH_2Cl_2 (0.5 mL) at -10 °C for 30 min followed by the addition of the aldehyde (0.2 mmol). The stirring was continued for the time indicated in Table 3 at -10 °C. The residue was purified by silica gel flash column chromatography (petroleum ether / AcOEt, 2:1) to afford the products.

7. Characterization of products

(CHIRALCEL OD-H column, hexane / 2-propanol = 90 / 10, flow 0.7 mL/min, detection at 210 nm) t_r (major) = 11.7 min and t_r (minor) = 13.0 min.

 $\begin{array}{c} \begin{array}{c} \mathsf{OH} \\ \mathsf{P}(\mathsf{OPh})_2 \\ \mathsf{O} \\$

19.6. HRMS (ESI): m/z calcd for $C_{20}H_{19}NaO_4P [M + Na]^+$: 377.09132, found 377.09042. [α]_D²⁵ =

^[2] S. Hirashima, R. Arai, K. Nakashima, N. Kawai, J. Kondo, Y. Koseki, T. Miura, Adv. Synth. Catal., 2015, 357, 3863-3867.

+63.3 (c 0.41, CHCl₃). HPLC (CHIRALPAK AD-H column, hexane / 2-propanol = 80/20, flow 1mL/min, detection at 210 nm) t_r (major) = 11.7 min and t_r (minor) = 14.7 min.

 $\begin{array}{ccc} \mathsf{OH} & \text{White solid, 71mg, 99\% yield, 95\% ee, }^{1}\text{H NMR (500 MHz, CDCl_3) } \delta \\ & \mathsf{P(OPh)_2} & 7.30\text{-}7.24 \ (m, 2\text{H}), 7.20\text{-}7.11 \ (m, 5\text{H}), 7.08\text{-}7.00 \ (m, 3\text{H}), 7.00\text{-}6.95 \ (m, 2\text{H}), 6.94\text{-}6.89 \ (m, 2\text{H}), 5.14 \ (d, J = 9.2 \ \text{Hz}, 1\text{H}), 4.64 \ (\text{brs, 1H}), 2.24 \ (\text{s, 3H}). \ ^{13}\text{C NMR} \ (125 \ \text{MHz, CDCl_3}) \ \delta \ 149.3 \ (d, J = 5.6 \ \text{Hz}), 149.2 \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{H} \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{Hz} \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{Hz} \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{Hz} \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{Hz} \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{Hz} \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{Hz} \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{Hz} \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{Hz} \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{Hz} \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{Hz} \ (d, J = 5.6 \ \text{Hz}). \ ^{14}\text{Hz} \ (d, J = 5$

6.2 Hz), 137.0 (d, J = 1.7 Hz), 134.4, 128.6 (d, J = 10.0 Hz), 128.2 (d, J = 2.8 Hz), 127.3 (d, J = 0.9 Hz), 127.1 (d, J = 6.2 Hz), 124.1 (d, J = 11.3 Hz), 123.6 (d, J = 6.2 Hz), 119.6 (d, J = 4.0 Hz), 119.5 (d, J = 4.0 Hz), 69.6 (d, J = 160.2 Hz), 20.4. HRMS (ESI): m/z calcd for C₂₀H₁₉NaO₄P [M + Na]⁺: 377.09132, found 377.09030. [α]_D²⁵ = +26.5 (c 0.32, CHCl₃). HPLC (CHIRALCEL OD-H column, hexane / 2-propanol = 90/10, flow 0.8 mL/min, detection at 210 nm) t_r (major) = 10.0 min and t_r (minor) =11.2 min.

for *S* enantiomer in 91% *ee*]. HPLC (CHIRALCEL OD-H column, hexane / 2-propanol = 90/10, flow 1 mL/min, detection at 210nm) t_r (major) =8.4 min and t_r (minor) =10.2 min.

1		8 3 5 5			1	13553	806		07 500					
Peak#	R	etentic	n Tim	e		Area	l		Area%					
0.0 1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0 min	
0		<u> </u>	-				*		<u>т</u>		*			⊕
100-														-
200														
300-														
400-														
300														
500														
mV 600- 检测器A 210nr	1										Time 7	.950 Inten.	4.191	

1	8.355	11355306	97.590
2	10.218	280468	2.410
Total		11635774	100.000

White solid, 77.5 mg, 95% yield, 95% ee, ¹H NMR (500 MHz, CDCl₃) δ 7.69-7.55 (m, 4H), 7.32-7.22 (m, 4H), 7.20-7.12 (m, 2H), 7.10-7.05 (m, 2H), 7.03-6.95 (m, 2H), 5.27 (d, *J* = 10.4 Hz, 1H), 5.21 (brs, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 150.2 (d, *J* = 6.2 Hz),

150.1 (d, J = 6.6 Hz), 139.8, 129.8 (d, J = 10.1 Hz), 127.7 (d, J = 5.9 Hz), 125.6, 125.5, 125.3 (qui, J = 3.3 Hz), 120.7 (d, J = 4.1 Hz), 120.5 (d, J = 4.1 Hz), 70.1 (d, J = 159.6 Hz). HRMS (ESI): m/z calcd for C₂₀H₁₆F₃NaO₄P [M + Na]⁺: 431.06305, found 431.06167. [α]_D²⁵ = +32.6 (c 0.41, CHCl₃). HPLC (CHIRALCEL OD-H column, hexane / 2-propanol = 90/10, flow 0.5 mL/min, detection at 210 nm) t_r (minor) =13.7 min and t_r (major) =14.5 min.

1	13.710	453161	2.601	
2	14.547	16971678	97.399	
Total		17424839	100.000	

 $\begin{array}{c} \mathsf{OH} \\ \mathsf{P}(\mathsf{OPh})_2 \\ \mathsf{F} \\ \begin{array}{c} \mathsf{OPh} \\ \mathsf{O} \\ \mathsf{O}$

Br OH P(OPh)₂

White solid, 78.6 mg, 94% yield, 95%ee, ¹H NMR (500 MHz, CDCl₃)δ 7.50-7.43 (m, 2H), 7.42-7.36 (m, 2H), 7.30-7.22 (m, 4H), 7.20-7.11 (m, 2H), 7.09-7.04 (m, 2H), 7.02-6.96 (m, 2H), 5.15 (d, *J* =

9.5 Hz, 1H), 5.08 (brs, 1H). $[\alpha]_D^{25} = +35.9$ (c 0.46, CHCl₃) [lit.² $[\alpha]_D^{24} = -45.8$ (c 1.0, CHCl₃) for *S* enantiomer in 97% *ee*]. HPLC (CHIRALPAK AD-H column, hexane / 2-propanol = 90/10, flow 1 mL/min, detection at 210nm) t_r (minor) = 25.9 min and t_r (major) = 28.9 min.

White solid, 73.3 mg, 98% yield, 95% ee, ¹H NMR (500 MHz, CDCl₃) δ 7.55-7.43 (m, 2H), 7.41-7.24 (m, 7H), 7.24-7.15 (m, 2H), 7.13-7.00 (m, 4H), 5.34-5.26 (m, 1H), 5.25-5.19 (m, 1H). [α]_D²⁵ = +39.8 (c 0.42, CHCl₃) [lit.² [α]_D²⁰ = -48.3 (c 1.0, CHCl₃) for *S* enantiomer in 93%

ee].HPLC (CHIRALPAK AD-H column, hexane / 2-propanol = 90/10, flow 1 mL/min, detection at 210 nm) t_r (minor) = 24.5 min and t_r (major) = 26.5 min.

mV 检测器A 210nm		-			-						Time 13.189	Max Intensit	y : 544,474 -2.479	
0										<u> </u>				
0									 					
0														
0														
0														-
0.0 2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0	32.5	min	ØØ
Peak#		Re	tentior	n Time		Ar	ea		Area	ι%				
1			24.549)		606	217		2.6	02				
2			26.508	5		226	96022		97.	398				
Total						233	02239		100	0.000				

 $\begin{array}{ccc} \mathsf{OH} & \text{White solid, 69.2 mg, 99\% yield, 95\% ee, }^{1}\text{H NMR (500 MHz, CDCl_3) } \delta \\ & & \mathsf{P}(\mathsf{OPh})_2 & 7.36\text{-}7.34 (\text{m, 1H}), 7.33\text{-}7.23 (\text{m, 7H}), 7.19\text{-}7.15 (\text{m, 2H}), 7.15\text{-}7.11 (\text{m, 2H}), \\ & & 7.09\text{-}7.04 (\text{m, 2H}), 7.03\text{-}7.00 (\text{m, 1H}), 5.51 (\text{d}, J = 9.7 \text{ Hz}, 1\text{H}), 3.95 (\text{brs, } \\ & & 1\text{H}). \, \, ^{13}\text{C NMR} (125 \text{ MHz, CDCl_3}) \, \delta \, 150.8 (\text{d}, J = 11.6 \text{ Hz}), 138.4, 130.3 (\text{d}, J = 7.6 \text{ Hz}), 127.7, 127.1 (\text{d}, J = 3.2 \text{ Hz}), 126.0 (\text{d}, J = 10.6 \text{ Hz}), 121.2 (\text{d}, J = 3.9 \text{ Hz}), 121.1 (\text{d}, J = 3.7 \text{ Hz}), 116.5, 67.3 (\text{d}, J = 169.0 \text{ Hz}). \text{HRMS (ESI): m/z calcd for C}_{17}\text{H}_{15}\text{NaO}_4\text{PS [M + Na]^+:} \\ 369.03209, \text{ found } 369.03203. \ [\alpha]_D^{25} = +19.9 (\text{c} \, 0.41, \text{ CHCl}_3). \text{HPLC (CHIRALCEL OD-H column, hexane / 2-propanol = 90/10, flow 1 mL/min, detection at 210 nm) t_r (major) = 8.8 min and t_r (minor) = 12.8 min. \end{array}$

1	8.789	12548503	97.560	
2	12.753	313840	2.440	
Total		12862343	100.000	

Peak#	Retention Time	Area	Area%	
1	13.963	74005617	95.608	
2	15.762	3399664	4.392	
Total		77405281	100.000	

S13

White solid, 70.2 mg, 90% yield, 97% ee, ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, *J* = 7.7, 1H), 8.00 (brs, 1H), 7.96-7.84 (m, 2H), 7.62-7.47 (m, 3H), 7.33-7.24 (m, 3H), 7.22-7.13 (m, 3H), 7.11-7.04 (m, 3H), 6.92 (d, *J*

2k

= 7.0 Hz, 2H), 6.22 (d, J = 9.7 Hz, 1H), 3.95 (brs, 1H). $[\alpha]_D^{25} = +98.9$ (c 0.39, CHCl₃) [lit.² $[\alpha]_D^{22}$ = -131.2 (c 1.0, CHCl₃) for *S* enantiomer in 93% *ee*].HPLC (CHIRALCEL OD-H column, hexane / 2-propanol = 90/10, flow 1 mL/min, detection at 210 nm) t_r (minor) =11.6 min and t_r (major) =15.5 min.

White solid, 78 mg, 99% yield, 96% ee, ¹H NMR (500 MHz, CDCl₃)
δ 8.03 (s, 1H), 7.90-7.78 (m, 3H), 7.73-7.65 (m, 1H), 7.55-7.44 (m, 2H), 7.30-7.17 (m, 5H), 7.17-6.98 (m, 6H), 5.49 (d, J = 8.7 Hz, 1H), 3.89 (brs, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 150.3 (d, J = 7.7 Hz),

133.4, 133.1, 132.8, 129.7 (d, J = 8.6 Hz), 128.3 (d, J = 8.1 Hz), 127.7, 126.8 (d, J = 8.2 Hz), 126.4 (d, J = 13.2 Hz), 125.3 (d, J = 10.8 Hz), 124.9 (d, J = 4.2 Hz), 120.6 (d, J = 3.9 Hz), 120.5 (d, J = 3.7 Hz), 70.9 (d, J = 160.0 Hz). HRMS (ESI): m/z calcd for C₂₃H₁₉NaO₄P [M + Na]⁺: 413.09132, found 413.09020. [α]_D²⁵ = +45.2 (c 0.38, CHCl₃). HPLC (CHIRALPAK AD-H column, hexane / 2-propanol = 80/20, flow 1mL/min, detection at 210 nm) t_r (major) = 26.8 min and t_r (minor) = 31.2 min.

 $\begin{array}{c} \mathsf{OH} \\ \mathsf{P}(\mathsf{OPh})_2 \\ \mathsf{U} \\ \mathsf{U}$

Hz), 133.9 (d, J = 14.1 Hz), 129.8 (d, J = 5.7 Hz), 128.7, 128.2, 126.9 (d, J = 1.8 Hz), 125.4 (d, J = 10.9 Hz), 120.9 (d, J = 4.1 Hz), 120.8 (d, J = 4.1 Hz), 69.5 (d, J = 161.5 Hz). HRMS (ESI): m/z calcd for C₂₁H₁₉NaO₄P [M + Na]⁺: 389.09132, found 389.09106. [α]_D²⁵ = +29.3 (c 0.35, CHCl₃). HPLC (CHIRALPAK AD-H column, hexane / 2-propanol = 90/10, flow 1 mL/min, detection at 210 nm) t_r (major) = 22.4 min and t_r (minor) = 27.2 min.

mV -检测器A 210nm				Max Intensity : 1,083,941 Time 9.462 Inten. 0.060
1000			·····	
750				
500				
250				
of				
0.0 2.5	5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5	25.0 27.5 min
Peak#	Retention Time	Area	Area%	
1	22.399	38213753	96.427	
2	27.233	1415901	3.573	
Total		39629654	100.000	

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \mathsf{OH} \\ \mathsf{P}(\mathsf{OPh})_2 \\ \mathsf{O} \end{array} & \\ \begin{array}{c} \mathsf{N} \\ \mathsf{P}(\mathsf{OPh})_2 \end{array} & \\ \begin{array}{c} \mathsf{N} \\ \mathsf{O} \end{array} & \\ \begin{array}{c} \mathsf{N} \\ \mathsf{N} \end{array} & \\ \begin{array}{c} \mathsf{N} \end{array} & \\ \begin{array}{c} \mathsf{N} \\ \mathsf{N} \end{array} & \\ \begin{array}{c} \mathsf{N} \end{array} & \\ \begin{array}{c} \mathsf{N} \\ \mathsf{N} \end{array} & \\ \begin{array}{c} \mathsf{N} \\ \mathsf{N} \end{array} & \\ \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \begin{array}{c} \mathsf{N} \end{array} & \\ \begin{array}{c} \mathsf{N} \end{array} & \\ \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \mathsf{N} \end{array} & \\ \end{array} & \\ \end{array} & \begin{array}{c} \mathsf{$

1	13.435	13703285	85.891
2	15.578	2250921	14.109
Total		15954206	100.000

 $\begin{array}{c} \begin{array}{c} \mathsf{OH} \\ \mathsf{P}(\mathsf{OPh})_2 \\ \mathsf{O} \\$

129.8, 125.2 (d, J = 5.8 Hz), 120.8 (d, J = 4.0 Hz), 120.7 (d, J = 4.1 Hz), 67.8 (d, J = 158.7 Hz), 31.5, 31.3 (d, J = 0.8 Hz), 25.4 (d, J = 13.9 Hz), 22.5, 14.1. HRMS (ESI): m/z calcd for $C_{18}H_{23}NaO_4P$ [M + Na]⁺: 357.12262, found 357.12250. [α]_D²⁵ = -10.1 (c 0.40, CHCl₃). HPLC (CHIRALPAK AD-H column, hexane / 2-propanol = 90/10, flow 1 mL/min, detection at 210nm) t_r (major) = 9.5 min and t_r (minor) = 10.7 min.

8. Copy of NMR spectra.

L2

S20

S21

S22

S24

2a

S25

2b

S26

2b

2c

S29

2c

S30

2d

S32

2e

S33

2e

S34

2f

S36

2f

S37

2g

S40

S41

2i

S42

2i

S43

S45

2j

S47

21

21

2m

S51

2m

S52

2n

S54

20

S55

20

S56

2p

S57

S58