Supporting Information

Pd-Catalyzed C(sp³)-C(sp²) Cross-Coupling of Y(CH₂SiMe₃)₃(THF)₂ with Vinyl Bromides and Triflates Followed by Subsequent Hosomi-Sakurai Reaction: Development of A Novel Three-Component One-Pot Cascade Reaction

Guilong Cai, Zhibing Zhou, Wenchao Wu, Bo Yao,* Shaowen Zhang and Xiaofang Li*

Key Laboratory of Cluster Science of Ministry of Education, Department of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China

Table of Contents

General Information	S2
Preparation of Y(CH ₂ SiMe ₃) ₃ (THF) ₂	S2
Preparation of Vinyl Bromides and Triflates	S3
Substrate Scope for Vinyl Bromides	S5
Substrate Scope for Vinyl Triflates	S7
Three-Component Reactions of 2a with 1 and 6	S10
Three-Component Reactions for Other Vinyl Bromides and Triflates	S12
Multi-functionalization of Styrenes	S16
Copies of ¹ H and ¹³ C NMR Spectra	S18

General Information

All reactions were carried out in oven-dried glassware with magnetic stirring and some reactions were carried out under a nitrogen atmosphere using oven dried glassware and using standard Schlenk techniques. THF, hexane and toluene were dried and distilled over sodium. Palladium catalysts (>98% purity), phosphine ligands, rare-earth metal trichlorides and LiCH₂SiMe₃ are purchased from J&KScientic and used without further purification. The real purity of $Pd_2(dba)_3$ was determined as 92% according to the method in the literature (S. S. Zalesskiy, V. P. Ananikov, Organometallics, 2012, 31, 2302-2309). Other reagents were purchased from J&K Scientic and Energy Chemical and used without further purification. Chromatographic purification was conducted with technical grade solvents (petroleum ether, dichloromethane and ethyl acetate) and silica gel 40-63 µm. TLC was performed on Merck silica gel 60 F_{254} TLC aluminium plates and visualized with UV light (254 nm), permanganate stain, CAN stain or PMA stain. ¹H NMR spectra were recorded on a Brucker Advance 400 MHz spectrometer in CDCl₃ (all signals are reported in ppm with the internal chloroform signal at 7.26 ppm). ¹³C NMR spectra were recorded with ¹H-decoupling on a Brucker Advance 101 MHz and 176 MHz spectrometer in CDCl₃ (all signals are reported in ppm with the internal chloroform signal at 77.16 ppm). Infrared spectra were recorded on a micro-FTIR (Nicolet iN10TM) spectrometer with a liquid-nitrogen cooled Mercury Cadmium Telluride (MCT) detector and two ZnSe wafers (Φ 20mm×2mm), which could be used to obtain FTIR transmission spectra in the range of 800-4000 cm-1 and were reported as cm^{-1} (w = weak, m = medium, s = strong). High resolution mass spectrometric measurements were performed by the mass spectrometry service of ICCAS and BIT.

<u>Preparation of Y(CH₂SiMe₃)₃(THF)₂</u>

YCl₃
$$\xrightarrow{1) \text{ THF, reflux, 30 min}}$$
 Y(CH₂SiMe₃)₃(THF)₂
2) LiCH₂SiMe₃ (3.1 equiv) **1**, 90%

Procedure: Anhydrous YCl₃ (488 mg, 2.5 mmol) was slurried in THF (60 mL) and stirred at 60 $^{\circ}$ C for 7 days. To the resulting suspension of YCl₃(THF)_x was added dropwise a solution of LiCH₂SiMe₃ (7.75 mmol) in 10 mL of THF at ambient temperature. The mixture was stirred for 3 h and the solvent was removed under reduced pressure. The resulting residue was extracted with 3×10 mL of hexane. The solvent was evaporated in *vacuo* to give Y(CH₂SiMe₃)₃(THF)₂ (**1**, 1100 mg, 90% yield) as a white solid.

¹H NMR (400 MHz, toluene-d₈) δ 4.09 (t, *J* = 6.4 Hz, 8H), 1.61-1.33 (m, 8H), 0.18 (s, 27H), -0.38 (s, 6H). The NMR data is in good agreement with that reported in the literature.¹

^[1] M. F. Lappert, R. Pearce, J. Chem. Soc., Chem. Commun., 1973, 126-126.

Preparation of Vinyl Bromides and Triflates

2b-2d were prepared from the corresponding 1-arylethynes using *Method A*,² **2e-2g** are prepared from the corresponding cinnamic acid and its derivatives using *Method B*,³ **2h** is prepared from the corresponding cinnamyl acids using *Method C*,⁴ **4a-4i** are prepared from the corresponding ketone or aldehyde using *Method D*.⁵ **2a** and **2i** are commercially available.

Method A:

To cold (0 °C, ice/water bath) neat 1-ethynyl-4-methoxybenzene (66.5 mg, 0.5 mmol, 1.0 equiv.) was added HBr (38% *w/w* in AcOH, 89 μ L, 0.5 mmol, 1.0 equiv.) slowly by syringe. The resulting dark-blue solution was then stirred at ambient temperature for 1 h. Upon completion, the reaction mixture was quenched by the addition of saturated aqueous NaHCO₃. The aqueous layer was extracted with methylene chloride. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was rapidly purified by flash chromatography on silica gel (petroleum ether, R_f 0.3) to give the product **2d** as a colorless liquid (86 mg, 81% yield).

Method B:

A round-bottomed flask was charged with cinnamic acid (148 mg, 1 mmol), *N*-bromosuccinimide (187 mg, 1.05 mmol), Mn(OAc)₂ 4H₂O (50 mg, 0.2 mmol), 2 mL of H₂O and 2mL of acetonitrile.

The reaction mixture was stirred at room temperature and monitored by TLC analysis. After total conversion of substrates, acetonitrile was evaporated. The mixture was extracted by Et_2O (2 mL×3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄. After evaporation of the solvent, the residue was purified by flash chromatography on silica gel (petroleum ether, $R_f 0.4$) to give the product **2e** as a colorless oil (168 mg, 92% yield).

Method C:

To a mixture of *trans*-cinnamic acid (148mg, 1.0 mmol) and chloroform (1 mL) at 0 $^{\circ}$ C, was added bromine (60 µL, 1.2 mmol) dropwise. The resulting solution was stirred at this temperature for 20 min. Then the solution was stored in refrigerator overnight. The precipitated sample was collected by filtration and washed twice with cold chloroform to give the crude product 2,3-dibromopropanoic acid, which was used in the next step without further purification.

Triethylamine (0.3 mL, 2.0 mmol) in dry DMF (0.5 mL) was added dropwise to 2,3dibromopropanoic acid in DMF (2 mL) at 0 °C. The solution was stirred at 0 °C for 30 min, then at room temperature for 6 h. Water (5 mL) was added. The mixture was extracted with diethyl ether (5 mL×3). The combined organic layers were washed with saturated potassium carbonate (5 mL×2) and saturated sodium chloride (5 mL×2), dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (petroleum ether, R_f 0.4) to give the product **2h** as a colorless oil (119 mg, 65% yield).

Method D:

To a solution of 2-acetonaphthone (170 mg, 1 mmol) in THF (5 ml) was added a THF solution of NaHMDS (1 M, 1.2 ml, 1.2 mmol) at -78 °C. After 40 min, a THF solution of PhNTf₂ (0.4 g, 1.2 mmol) was slowly added to the mixture. Then the resulting mixture was gradually warmed to 0 °C, and stirred for 3 h at this temperature. The reaction mixture was quenched with saturated NaHCO₃ and extracted by Et₂O. The organic extracts were washed with brine, dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 40/1 with 0.1% Et₃N) to give 1-(naphthalene-2-yl)vinyltrifluoromethanesulfonate **4e** as a white solid (0.2 g, 66 %, white solid).

Substrate Scope for Vinyl Bromides

General procedure: In a dry Schlenk flask, to a mixture of $Pd(PPh_3)_2Cl_2$ and vinyl bromides 2 (1.0 equiv, 0.3 mmol) in 3.2 mL of dry toluene was added a solution of (trimethylsilyl)methyl yttrium complex 1 (0.33 equiv) in 0.8 mL of dry toluene dropwise. After being stirred at room temperature for 1 h, the reaction was quenched with saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted by ethyl acetate (3×10 mL) and the combined extracts were washed by brine, dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography with petroleum ether/ethyl acetate as the eluent to give the product 3.

3a, 97%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **2a** and **4a**. $R_f = 0.45$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.41 (m, 2H), 7.36 – 7.30 (m, 2H), 7.30 – 7.26 (m, 1H), 5.16 (d, *J* = 1.7 Hz, 1H), 4.90 (d, *J* = 1.7 Hz, 1H), 2.06 (d, *J* = 1.1 Hz, 2H), -0.06 (s, 9H). The NMR data is in good agreement with that reported in the literature.⁵

3b, 95%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **2b** and **4b**. $R_f = 0.4$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.30 (m, 2H), 7.17 – 7.11 (m, 2H), 5.15 (d, J = 1.8 Hz, 1H), 4.86 (d, J = 1.7 Hz, 1H), 2.37 (s, 3H), 2.04 (d, J = 1.1 Hz, 2H), -0.05 (s, 9H).¹³C NMR (101 MHz, Chloroform-*d*) δ 146.5, 139.9, 136.9, 128.8, 126.3, 109.4, 26.1, 21.2, -1.2. The NMR data is in good agreement with that reported in the literature.⁶

3c, 97%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **2c**. $R_f = 0.5$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H), 5.15 (d, J = 1.8 Hz, 1H), 4.86 (d, J = 1.7 Hz, 1H), 2.67 (q, J = 7.6 Hz, 2H), 2.04 (d, J = 1.1 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H), -0.05 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.5, 143.3, 140.1, 127.6, 126.3, 109.4, 28.6, 26.1, 15.6, -1.2.

IR(neat) 2957 (m), 2924(m), 1730 (m), 1494 (w), 1250(s),1089(m), 1070(m), 946(w), 840(s), 700(m). HRMS (ESI) calcd for $C_{14}H_{23}Si^+[M+H]^+$ 219.1564; found 219.1561.

3d, 99%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **2d**. $R_f = 0.3$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 5.08 (d, J = 1.7 Hz, 1H), 4.80 (d, J = 1.5 Hz, 1H), 3.82 (s, 3H), 2.01 (d, J = 1.1 Hz, 2H), -0.08 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.0, 145.9, 135.3, 127.5, 113.5, 108.6, 55.3, 26.2, -1.2. The NMR data is in good agreement with that reported in the literature.⁵

3e, 98%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **2e**. $R_f = 0.4$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.22 (m, 4H), 7.18 – 7.10 (m, 1H), 6.26 – 6.21 (m, 2H), 1.69 – 1.63 (m, 2H), 0.04 (s, 9H). The NMR data is in good agreement with that reported in the literature.⁷

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **2g**. $R_f = 0.35$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.20 (m, 4H), 6.32 – 6.16 (m, 2H), 1.69 (d, *J* = 7.0 Hz, 2H), 0.08 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.1, 131.7, 128.8, 128.6, 127.1, 126.8, 24.1, -1.7. The NMR data is in good agreement with that reported in the literature.⁸

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **2f**. $R_f = 0.35$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.33 (m, 2H), 7.22 – 7.10 (m, 2H), 6.43 – 6.11 (m, 2H), 1.68 (dd, J = 7.8, 0.8 Hz, 2H), 0.07 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.5, 131.5, 129.0, 127.2, 127.1, 119.8, 24.2, -1.6. The NMR data is in good agreement with that reported in the literature.⁹

3h, 95%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **2h**. $R_f = 0.5$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (h, J = 6.1 Hz, 4H), 7.21 – 7.15 (m, 1H), 6.33 (dt, J = 11.7, 1.6 Hz, 1H), 5.72 (dt, J = 11.6, 9.1 Hz, 1H), 1.83 (dd, J = 9.1, 1.5 Hz, 2H), 0.04 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 129.1, 128.7, 128.2, 126.9, 126.1, 19.7, -1.4. The NMR data is in good agreement with that reported in the literature.¹⁰

Substrate Scope for Vinyl Triflates

General procedure: In a dry Schlenk flask, to a mixture of vinyl triflates **4** (1.0 equiv, 0.3 mmol) and Pd(PPh₃)₄ (1 mol%) in 3.2 mL of dry toluene was added a solution of the (trimethylsilyl)methyl yttrium complex **1** (0.1 mmol, 0.33 equiv) in 0.8 mL of dry toluene dropwise. After being stirred at room temperature for 45 min, the reaction was quenched with saturated NH₄Cl aqueous solution (20 mL). The resulting mixture was extracted by ethyl acetate (3×10 mL) and the combined extracts were washed by brine, dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography with petroleum ether/ethyl acetate as the eluent to give the product **5**.

5a, 96%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ 1 with 4a. The data is the same as 3a.

5b, 98%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ 1 with 4b. The data is the same as 3b.

5c, 94%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **4c**. $R_f = 0.55$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.30 (m, 4H), 5.15 (d, J = 1.7 Hz, 1H), 4.84 (dt, J = 1.9, 1.1 Hz, 1H), 2.02 (d, J = 1.1 Hz, 2H), 1.33 (s, 9H), -0.07 (s, 9H). The NMR data is in good agreement with that reported in the literature.¹¹

5d, 97%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **4d**. $R_f = 0.45$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 – 7.15 (m, 3H), 7.06 (tdd, J = 3.8, 1.8, 0.8 Hz, 1H), 5.11 (d, J = 1.7 Hz, 1H), 4.85 (dt, J = 2.0, 1.1 Hz, 1H), 2.35 (d, J = 0.7 Hz, 3H), 2.01 (d, J = 1.0 Hz, 2H), -0.09 (s, 9H). The NMR data is in good agreement with that reported in the literature.⁵

5e, 93%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **4e**. $R_f = 0.4$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.76 (m, 4H), 7.62 (dd, J = 8.6, 1.9 Hz, 1H), 7.53 – 7.42 (m, 2H), 5.32 (d, J = 1.6 Hz, 1H), 5.01 (q, J = 1.2 Hz, 1H), 2.17 (d, J = 1.1 Hz, 2H), -0.05 (s, 9H). The NMR data is in good agreement with that reported in the literature.⁵

5f, 90%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **4f**. $R_f = 0.3$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 2H), 7.25 – 7.16 (m, 3H), 5.32 – 5.26 (m, 1H), 2.79 – 2.67 (m, 1H), 2.34 – 2.23 (m, 1H), 2.21 – 2.08 (m, 2H), 2.01 – 1.88 (m, 2H), 1.83 – 1.69 (m, 1H), 1.47 (s, 2H), 0.03 (s, 9H). The NMR data is in good agreement with that reported in the literature.¹²

5g, 98%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **4g**. $R_f = 0.4$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 – 7.09 (m, 4H), 5.70 (td, J = 4.6, 2.3 Hz, 1H), 2.82 – 2.69 (m, 2H), 2.29 – 2.18 (m, 2H), 1.94 (q, J = 1.2 Hz, 2H), -0.01 (s, 9H). The NMR data is in good agreement with that reported in the literature.¹³

5h, 99%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **4h**. $R_f = 0.45$ (Petroleum ether/ethyl acetate 50:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 – 7.08 (m, 1H), 6.71 (dq, J = 5.5, 2.9 Hz, 2H), 5.57 (t, J = 4.6 Hz, 1H), 3.81 (s, 3H), 2.71 (t, J = 7.9 Hz, 2H), 2.30 – 2.15 (m, 2H), 1.90 (d, J = 1.3 Hz, 2H), -0.02 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.2, 138.7, 133.9, 129.1, 124.7, 120.4, 113.6, 110.5, 55.3, 29.6, 23.3, 22.5, -0.9. IR(neat) 2952 (s), 2926(s), 2832 (m), 1607 (m), 1497(m), 1250(s), 1187(m), 839(s), 847(s), 694(w). HRMS (ESI) calcd for C₁₅H₂₃OSi⁺ [M+H]⁺ 247.1513; found 247.1510.

5i, 92%

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **4i**. $R_f = 0.4$ (Petroleum ether/ethyl acetate 50:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 (d, J = 2.0 Hz, 1H), 7.13 – 6.99 (m, 2H), 5.73 (td, J = 4.5, 2.2 Hz, 1H), 2.68 (t, J = 7.9 Hz, 2H), 2.22 (dddd, J = 9.0, 7.7, 4.6, 1.2 Hz, 2H), 1.88 (d, J = 1.2 Hz, 2H), -0.02 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.6, 135.1, 133.6, 131.8, 128.5, 126.1, 124.2, 123.7, 28.3, 23.3, 22.4, -0.9. IR(neat) 2953 (m), 2933(m), 2887 (m), 2832 (w), 1480(m), 1247 (s), 1098(m), 839(s), 809(m), 693(w). HRMS (ESI) calcd for C₁₄H₂₀ClSi⁺ [M+H]⁺ 251.1017; found 251.1016.

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **4j**. $R_f = 0.4$ (Petroleum ether/ethyl acetate 50:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (d, J = 2.0 Hz, 1H), 7.23 (dd, J = 7.9, 2.1 Hz, 1H), 6.98 (dt, J = 7.9, 1.0 Hz, 1H), 5.72 (td, J = 4.6, 2.4 Hz, 1H), 2.66 (t, J = 7.9 Hz, 2H), 2.22 (dddt, J = 9.0, 6.0, 4.6, 1.2 Hz, 2H), 1.88 (q, J = 1.2 Hz, 2H), -0.02 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.0, 135.6, 133.5, 129.1, 128.9, 126.6, 124.2, 119.8, 28.4, 23.2, 22.5, -0.9. IR(neat) 2952 (m), 2931(m), 1478(m), 1247(s), 1021(m), 851(s). ESI-MS: *m/z* 295.0 for [M+H]⁺. Anal. Calcd (%) for C14H20BrSi: C, 56.94; H, 6.49; found: C, 56.71; H, 6.20.

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **4k**. $R_f = 0.45$ (Petroleum ether/ethyl acetate 50:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.12 (m, 4H), 5.79 (tt, *J* = 7.1, 1.2 Hz, 1H), 2.57 (t, *J* = 7.0 Hz, 2H), 2.06 (p, *J* = 7.1 Hz, 2H), 1.97 (d, *J* = 1.0 Hz, 2H), 1.79 (q, *J* = 7.2 Hz, 2H), -0.14 (s, 9H). The NMR data is in good agreement with that reported in the literature.¹⁴

From the reaction of Y(CH₂SiMe₃)₃(THF)₂ **1** with **4**l. $R_f = 0.3$ (Petroleum ether). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 – 7.28 (m, 4H), 7.26 – 7.12 (m, 6H), 6.16 (t, J = 8.8 Hz, 1H), 1.63 (d, J = 8.8 Hz, 2H), 0.01 (s, 9H). The NMR data is in good agreement with that reported in the literature.¹⁵

Three-Component Reactions of 2a with 1 and 6

General procedure: In a dry Schlenk flask, to a mixture of vinyl bromide **2a** (1.0 equiv, 0.3 mmol) and Pd(PPh₃)₂Cl₂ (1 mol%) in 3.2 mL of dry toluene was added a solution of (trimethylsilyl)methyl yttrium complex **1** (0.33 equiv) in 0.8 mL of dry toluene dropwise. After being stirred at room temperature for 2 h, the reaction mixture was treated with ArCHO (1.1 equiv, 0.33 mmol) and heated at 100 °C for 3 hours. Then the reaction was quenched with saturated NaHCO₃ (20 mL) or with aq. HCl (1.0 M, 10 mL). The resulting mixture was extracted by ethyl acetate (3×10 mL) and the combined extracts were washed by brine, dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography with petroleum ether/ethyl acetate as the eluent to give the product **7**, **8a-8f**.

 $R_f = 0.4$ (Petroleum ether/ethyl acetate 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.42 (m, 2H), 7.39 – 7.27 (m, 8H), 5.31 (d, J = 1.6 Hz, 1H), 5.03 (q, J = 1.2 Hz, 1H), 4.68 (dd, J = 7.9, 5.2 Hz, 1H), 2.96 – 2.81 (m, 2H), -0.09 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.2, 128.4, 128.1, 127.5, 127.1, 126.5, 126.0, 115.4, 77.3, 47.1, 0.1. IR(neat) 2958 (m), 1731 (w), 1453(w), 1261(s), 1091(s), 947(m), 841(s), 700(s). ESI-MS: m/z 297.2 for [M+H]⁺. Anal. Calcd (%) for C19H24OSi: C, 76.97; H, 8.16; found: C, 76.69; H, 7.98.

 $R_f = 0.3$ (Petroleum ether/ethyl acetate 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.26 (m, 10H), 5.42 (d, J = 1.4 Hz, 1H), 5.18 (q, J = 1.3 Hz, 1H), 4.74 (ddd, J = 9.2, 4.2, 1.8 Hz, 1H), 3.16 – 2.76 (m, 2H). ¹³C NMR (176 MHz, Chloroform-*d*) δ 145.1, 140.4, 128.6, 128.5, 127.9, 127.7, 126.4, 125.9, 115.9, 72.1, 46.1. The NMR data is in good agreement with that reported in the literature.¹⁶

 $R_f = 0.35$ (Petroleum ether/ethyl acetate 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.27 (m, 5H), 7.24 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 7.8 Hz, 2H), 5.41 (d, J = 1.4 Hz, 1H), 5.17 (d, J = 1.3 Hz, 1H), 4.79 – 4.60 (m, 1H), 3.09 – 2.72 (m, 2H), 2.34 (s, 3H). The NMR data is in good agreement with that reported in the literature.¹⁷

 $R_f = 0.35$ (Petroleum ether/ethyl acetate 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.28 (m, 7H), 7.25 – 7.19 (m, 2H), 5.42 (d, J = 1.4 Hz, 1H), 5.15 (q, J = 1.2 Hz, 1H), 4.69 (ddd, J = 9.2, 4.5, 2.1 Hz, 1H), 3.12 – 2.68 (m, 2H). The NMR data is in good agreement with that reported in the literature.¹⁶

 $R_f = 0.35$ (Petroleum ether/ethyl acetate 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.27 (m, 9H), 5.42 (d, J = 1.3 Hz, 1H), 5.15 (q, J = 1.2 Hz, 1H), 4.71 (ddd, J = 9.0, 4.5, 2.1 Hz, 1H), 3.00 – 2.78 (m, 2H). ¹³C NMR (176 MHz, Chloroform-*d*) δ 142.4, 133.3, 128.6, 128.0, 127.3, 126.4, 116.2, 71.5, 46.2. IR(neat) 3386 (m), 3082(w), 2924 (s), 2852 (s), 1667(w),1627(w), 1598(w), 1492(s), 1261(s), 1091(s), 1028(s), 1013(s), 902(m), 828(s), 778(s), 706(s). HRMS (ESI) calcd for C₁₆H₁₅CIONa [M+Na]⁺ 281.0704; found 281.0708.

 $R_f = 0.3$ (Petroleum ether/ethyl acetate 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 – 8.07 (m, 2H), 7.68 (dt, J = 7.6, 1.4 Hz, 1H), 7.50 (t, J = 7.9 Hz, 1H), 7.46 – 7.29 (m, 5H), 5.45 (d, J = 1.3 Hz,

1H), 5.18 (d, J = 1.2 Hz, 1H), 4.83 (ddd, J = 8.9, 4.5, 2.7 Hz, 1H), 3.12 – 2.80 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.0, 144.4, 132.0, 129.4, 128.8, 128.2, 126.4, 122.6, 121.0, 116.8, 71.2, 46.3, 29.8. IR(neat) 3361(w), 2920(s), 2850(s), 1659(w), 1632(w), 1529(s), 1470(m), 1349(s), 779(w), 708(w). HRMS (ESI) calcd for C₁₆H₁₆NO₃⁺ [M+H]⁺ 270.1125; found 270.1122.

 $R_f = 0.5$ (Petroleum ether/ethyl acetate 50:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.15 (m, 10H), 5.24 (d, J = 1.5 Hz, 1H), 5.09 – 4.87 (m, 1H), 4.18 (dd, J = 7.7, 6.0 Hz, 1H), 3.13 (s, 3H), 3.04 (ddd, J = 14.5, 7.7, 1.1 Hz, 1H), 2.78 (ddd, J = 14.5, 5.9, 1.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.1, 141.9, 128.4, 128.4, 127.7, 127.5, 126.8, 126.4, 115.2, 82.3, 56.8, 44.6. The NMR data is in good agreement with that reported in the literature.¹⁸

Three-Component Reactions for Other Vinyl Bromides and Triflates

General Procedure: In a dry Schlenk flask, to a mixture of vinyl bromide or triflates (1.0 equiv, 0.3 mmol) and Pd(PPh₃)₂Cl₂ (1 mol%) or Pd(PPh₃)4 (1 mol%) in 3.2 mL of dry toluene was added a solution of (trimethylsilyl)methyl yttrium complex **1** (0.33 equiv, 0.1 mmol) in 0.8 mL of dry toluene dropwise. After being stirred at room temperature for 2 h, the solvent was evaporated *in vacuo*. To the residue was added a solution of benzadldehyde dimethyl acetal **6f** (1.1 equiv, 0.33 mmol) in 2 mL of dry CH₂Cl₂ and TiCl₄ (0.3 equiv) dropwise at -78 °C, and the mixture was stirred under N₂ at -78 °C for 10 hours. Then the reaction was quenched with saturated NaHCO₃ (20 mL). The resulting mixture was extracted by ethyl acetate (3×10 mL) and the combined extracts were washed by brine, dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography with petroleum ether/ethyl acetate as the eluent to give the product **9-11**.

Two diastereoisomers of **9a** (dr 3:1) were inseparable with the anti-isomer as the major one. $R_f = 0.4$ (Petroleum ether/ethyl acetate 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 6.01 (m, 13.3H), 6.41 – 6.24 (m, 0.33H), 6.02 – 5.84 (m, 1H), 5.11 (dd, J = 57.1, 13.7 Hz, 0.67H), 4.92 (dd, J = 43.7, 13.7 Hz, 2H), 4.44-4.37 (m, 1.33H), 3.67 (t, J = 7.8 Hz, 1H), 3.58 (t, J = 7.5 Hz, 0.33H), 3.27 (s, 1H), 3.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 141.3 (anti), 140.3, 140.1 (anti), 138.49, 138.47 (anti), 128.8 (anti), 128.7, 128.29 (anti), 128.26, 128.1 (anti), 128.0, 127.9 (anti), 127.8, 127.5 (anti), 127.5, 126.5 (anti), 126.4, 116.64 (anti), 116.60, 87.4, 87.1 (anti), 57.7, 57.4 (anti), 57.2, 57.1 (anti). The NMR data is in good agreement with that reported in the literature.¹⁹

Ó fl (ppm)

Only **10b** was observed by NMR. $R_f = 0.45$ (Petroleum ether/ethyl acetate 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 3H), 7.31 – 7.22 (m, 4H), 7.20 – 7.14 (m, 2H), 5.72 (t, J = 4.5 Hz, 1H), 4.38 (t, J = 6.7 Hz, 1H), 3.23 (s, 3H), 3.07 (dd, J = 14.0, 6.7 Hz, 1H), 2.81 – 2.57 (m, 3H), 2.30 – 2.05 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.2, 137.0, 134.9, 132.9, 128.3, 127.8, 127.7, 127.6,

126.8, 126.7, 126.4, 122.7, 82.6, 57.0, 42.1, 28.4, 23.2. IR(neat) 3028(m), 2932(s), 2882(m), 2826(m), 1729(w), 1487(s), 1451(s), 1099(s), 760(s), 736(m), 701(s). HRMS (ESI) calcd for $C_{19}H_{20}ONa^+$ [M+Na]⁺ 287.1406; found 287.1405.

The mixture of **11a** and **11b** was isolated in 89% yield and they were inseparatable. $R_f = 0.45$ (Petroleum ether/ethyl acetate 50:1).

For the major product **11b**: ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.16 (m, 5H), 7.13 – 7.09 (m, 4H), 5.87 (t, *J* = 7.2 Hz, 1H), 3.94 (dd, *J* = 8.2, 5.8 Hz, 1H), 2.92 (s, 3H), 2.89 (dd, *J* = 14.4, 8.3 Hz, 1H), 2.76 (dd, *J* = 14.4, 5.9 Hz, 1H), 2.48 (dt, *J* = 12.8, 7.6 Hz, 1H), 2.22 (dt, *J* = 12.8, 6.5 Hz, 1H), 2.05 – 1.83 (m, 2H), 1.77 – 1.59 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 142.0, 140.3, 138.1, 129.0, 128.6, 128.4, 127.6, 126.9, 126.7, 126.0, 126.0, 82.6, 56.7, 45.8, 35.0, 32.1, 24.6.

For the major product **11a**: ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 142.3, 140.7, 140.2, 131.0, 129.8, 128.3, 127.9, 127.8, 127.2, 126.1, 114.5, 83.6, 56.6, 52.0, 36.5, 33.3, 23.4.

IR (neat) 3062(w), 3026(w), 2930(s), 2855(m), 1452(m), 1101(s), 759(s), 700(s). HRMS (ESI) calcd for C₂₀H₂₂ONa⁺ [M+Na]⁺ 301.1563; found 301.1567.

Multi-functionalization of Styrenes

Procedure: In a dry Schlenk flask, to a mixture of vinyl bromide **2g** (1.0 equiv, 0.15 mmol) and Pd(PPh₃)₂Cl₂ (1 mol%) in 1.6 mL of dry toluene was added a solution of (trimethylsilyl)methyl yttrium complex **1** (0.33 equiv, 0.05 mmol) in 0.4 mL of dry toluene dropwise. After being stirred at room temperature for 1 h, the solvent was evaporated *in vacuo*. To the residue was added a solution of benzaldehyde **6a** (1.1 equiv) in 2 mL of dry CH₂Cl₂ and TiCl₄ (0.3 equiv) dropwise at -78 °C, and the

mixture was stirred under N₂ at -78 °C for 10 hours. Then the solvent was evaporated again *in vacuo* followed by addition of 1.6 mL of dry toluene, $Pd_2(dba)_3$ (0.5 mol%), XPhos(2 mol%), and a solution of (trimethylsilyl)methyl yttrium complex **1** (0.33 equiv) in 2.0 mL of dry toluene successively. After being stirred at room temperature for 1 h, the reaction mixture was treated with with aq HCl (1 M, 10 mL). The resulting mixture was extracted by ethyl acetate (3×10 mL) and the combined extracts were washed by brine, dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography with petroleum ether/ethyl acetate as the eluent to give the product **12** as a colorless oil (33.5 mg, 72% yield for three steps).

Two diastereoisomers of **12** were inseparable with the anti-isomer as the major one. The ratio of anti-**12** to syn-**12** was determined as 2.8:1 by NMR analysis of the crude sample. $R_f = 0.4$ (Petroleum ether/ethyl acetate 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 6.72 (m, 13.5H), 6.25 (ddd, J =17.7, 10.3, 7.9 Hz, 0.5H), 5.90 (ddd, J = 17.8, 10.3, 8.1 Hz, 1H), 5.10 (dd, J = 45.6 Hz, J = 13.7 Hz, 1H), 4.92 (d, J = 35.7 Hz, J = 13.7 Hz, 1H), 4.35 (d, J = 7.2 Hz, 1H), 4.30 (d, J = 7.5 Hz, 0.5H), 3.57 (t, J = 7.6 Hz, 1H), 3.46 (t, J = 7.7 Hz, 0.5H), 3.22 (s, 1.5H), 3.13 (s, 3H), 2.03 (s, 2H), 1.96 (s, 1H), -0.03 (s, 9H), -0.08 (s, 4.5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.1, 138.9, 138.6, 138.4, 136.4, 128.5, 128.4, 127.9, 127.8, 127.8, 127.8, 127.6, 127.5, 127.3, 116.3, 116.1, 87.6, 87.2, 57.3, 57.1, 57.1, 56.7, 26.6, 26.6, -1.7, -1.8. IR(neat) 3291(w), 2955(m), 1905(m), 1248(s), 1101(s), 851(s), 700(s). HRMS (ESI) calcd for C₂₁H₂₈OSiNa⁺ [M+Na]⁺ 347.1802; found 347.1804.

^[2] F. Romanov-Michailidis, K. F. Sedillo, J. M. Neely and T. Rovis, J. Am. Chem. Soc., 2015, 137, 8892-8895.

^[3] H. Li, Z. Zhang, X. Shangguan, S. Huang, J. Chen, Y. Zhang and J. Wang, *Angew. Chem., Int. Ed.*, **2014**, 126, 12115-12119.

^[4] D. Chang, Y. Gu and Q. Shen, *Chem. -Eur. J.*, **2015**, 21, 6074-6078.

^[5] R. Shimizu, H. Egami, Y. Hamashima and M. Sodeoka, *Angew. Chem., Int. Ed.*, **2012**, 124, 4655-4658.

^[6] J. Mo, L. Xu and J. Xiao, J. Am. Chem. Soc., 2005, 127, 751-760.

^[7] J. R. McAtee, G. P. Yap and D. A. Watson, J. Am. Chem. Soc., 2014, 136, 10166-10172.

[13] Z.-J. Ni and T.-Y. Luh, J. Chem. Soc., Chem. Commun., 1988, 1011-1012.

- [15] J. G. Smith, S. E. Drozda, S. P. Petraglia, N. R. Quinn, E. M. Rice, B. S. Taylor and M. Viswanathan, *J. Org. Chem.*, **1984**, 49, 4112-4120.
- [16] C. B. Tripathi and S. Mukherjee, Angew. Chem., Int. Ed., 2013, 52, 8450-8453.
- [17] Z. Tan, X. Wan, Z. Zang, Q. Qian, W. Deng and H. Gong, *Chem. Commun.*, **2014**, 50, 3827-3830.
- [18] K. Miura, H. Izumi, H. Kinoshita, J. Ichikawa and A. Hosomi, *Chem. Lett.*, **2009**, 38, 1204-1205.
- [19] H. Kinoshita, R. Kizu, G. Inoue, M. Fujimoto, M. Saito, J. Ichikawa, A. Hosomi and K. Miura, *Tetrahedron Lett.*, **2015**, 56, 713-716.

Copies of ¹H and ¹³C NMR Spectra

^[8] T. Jeffery, Tetrahedron Lett., 2000, 41, 8445-8449.

^[9] J. Yoshida, K. Muraki, H. Funahashi and N. Kawabata, J. Org. Chem., 1986, 51, 3996-4000.

^[10] L. Hevesi, B. Hermans and C. Allard, *Tetrahedron Lett.*, **1994**, 35, 6729-6730.

^[11] K. Olofsson, M. Larhed and A. Hallberg, J. Org. Chem., 1998, 63, 5076-5079.

^[12] M. G. Saulnier, J. F. Kadow, M. M. Tun, D. R. Langley and D. M. Vyas, *J. Am. Chem. Soc.*, **1989**, 111, 8320-8321.

^[14] L. Guo, M. Leiendecker, C.-C. Hsiao, C. Baumann and M. Rueping, *Chem. Commun.*, **2015**, 51, 1937-1940.

			¹³ C NMR of 3b		
	— 128.89 — 126.31		77.48 CDCI3 77.16 CDCI3 76.84 CDCI3		1.22
H ₃ C Si H ₃ C H ₃ C	CH ₂				
150 140	130 120	110 100 90	80 70 60 50 40 fl (ppm)	30 20 10	0

_

	1	³ C NMR of 3d		
		77.48 CDCl3 77.16 CDCl3 76.84 CDCl3 -55.35		
H ₃ C H ₃ C H ₃ C CH ₂ CH ₃				
160 150 140 130 120	110 100 90	80 70 60 fl (ppm)	50 40 30 20	10 0 -10

	¹³ C NMR of 3f		
-137.11 131.77 128.66 127.19 126.80	77.48 CDCI3 77.16 CDCI3 76.84 CDCI3		1.70
CH ₃ Si-CH ₃ CH ₃			
150 140 130 120 110 100 90	80 70 60 50 40 3 f1 (ppm)	30 20 10	0 -1

_

	¹³ C NMR of 3g		
	77.48 CDCl3 77.16 CDCl3 76.84 CDCl3		
Br CH ₃ Si-CH ₃ CH ₃ CH ₃			
150 140 130 120 110 100	90 80 70 60 50 f1 (ppm)	40 30 20 10	0 -10

S38

		¹³ C NMR of 5h			
	138.74 133.90 129.17 120.48 113.64 113.64 110.54	77.48 CDCl3 77.16 CDCl3 76.84 CDCl3	- 55.30	- 29.63 - 23.39 - 22.59	
H ₃ C CH ₃					
p P I I I I I I I I I I I I I I I I I I					
CH ₃					
		h			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ᡧᠫᡛᡇᢣᠹᠧᡏᡯᡳᡯᡛᡷᡘᡊᡋᡬᡬᠧᡁᡀᠹᡊᡛᢦᠯᡟᡘᠯᠯᡊᠮᢓᡇ᠘ᡟᢆᡩᠰᢂᡧ᠓ᢣᡬᡦᠯᢜᡆᢤᡈᢑᢤᡣᠮᡬᠥᡮᡘᢤᠰᡘᠺᡀᡧᡭᡭ᠕ᡰ᠆ᢧᡁᡪᡛᠧᡐᡘᢋᡎᡮᠯ	⋾⋬⋡⋺⋑⋽⋹⋳∊∊⋳⋹⋐⋳⋻⋻⋻⋳⋳⋐∊⋺⋏ <b>⋎∊⋴∊⋺⋎⋎⋎</b> ⋐⋑⋞⋪⋠⋑⋎ [⋴] ⋑⋩⋳⋐⋠⋳⋎⋻⋳⋎⋎	\$\$\$\$\$,2,400,300,400,400,400,400,400,400,400,400	ĸĸĸġſĸĸĸĸġĸĸġĸĬĸġĸĨĸġĸŢŔĸġŢġĸġţĊĸġĿĸĔġĬĸĸġĬĸĸġĬĸĸġĬĸĸġĬĸĸġĬĸĸ	agperten nitaan kange dig Friy kundoon had nidan k
170 160 150	140 130 120 110 100	90 80 70 f1 (ppm)	60 50	40 30 20	10 0 -10



	¹³ C NMR of <b>5</b> i		
/ / 137.68 135.16 133.67 128.155 128.155 123.75 123.755	77.48 CDCl3 77.16 CDCl3 76.84 CDCl3		
H ₃ C CH ₃ H ₃ C CI			
			any successive and the successive successive
140 135 130 125 120 115 110 105 100 95 90	85 80 75 70 65 60 55 50 45 4 f1 (ppm)	0 35 30 25 20 15 10	5 0 -5







![](_page_44_Figure_0.jpeg)

![](_page_45_Figure_0.jpeg)

¹³ C NMR of <b>7</b>	
	-0.13
H ₃ C Si H ₃ CH ₂	
150 140 130 120 110 100 90 80 70 60 50 40 30 20 10	 0

![](_page_47_Figure_0.jpeg)

	¹³ C NMR of <b>8a</b>		
145.18 144.05 128.68 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.95 127.12 127.95 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 127.12 12	- 115.95 - 77.34 CDCl3 - 77.16 CDCl3 - 72.19 - 72.19	- 46.14	
CH ₂ OH			
1 11			
	il.i.	I	
160 150 140 130 120	110 100 90 80 7 fl (ppm)	0 60 50 40	30 20 10 0

_

![](_page_49_Figure_0.jpeg)

![](_page_50_Figure_0.jpeg)

S51

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_55_Figure_0.jpeg)

					¹³ C	NMR of <b>8f</b>						
	- 145.12 - 141.94 - 141.23	128.45 128.45 127.70 127.52 126.49	— 115.21					44.68				
	H ₃ C. CH ₂											
										-lander-andrese and according		Lawly-reference in the second
r	150 140	130 12	0 110	100	90 8 f	0 70 1 (ppm)	60	50	40 30	20	10	0

____

![](_page_57_Figure_0.jpeg)

![](_page_58_Figure_0.jpeg)

![](_page_59_Figure_0.jpeg)

![](_page_60_Figure_0.jpeg)

¹H NMR of 11a + 11b

![](_page_61_Figure_1.jpeg)

![](_page_62_Figure_0.jpeg)

![](_page_63_Figure_0.jpeg)

![](_page_64_Figure_0.jpeg)