Supporting Information

Reversibility of thia-Michael reaction of the cytotoxic C5-curcuminoid GO-Y030 and structure-activity relationship of the bis-thiol-adducts thereof

Aki Kohyama, ${ }^{a}$ Michihiro Fukuda, ${ }^{\text {a }}$ Shunsuke Sugiyama, ${ }^{\text {b }}$ Hiroyuki Yamakoshi, ${ }^{\text {a }}$ Naoki Kanoh, ${ }^{a}$ Chikashi Ishioka, ${ }^{\text {b }}$ Hiroyuki Shibata ${ }^{\mathrm{c}}$ and Yoshiharu Iwabuchi**

${ }^{\text {a }}$ Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.

General Procedure 2
Synthesis of GO-Y compounds 3
Data of GO-Y compounds 6
Data of others 15
Experimental Procedure for ${ }^{1} \mathrm{H}$-NMR studies 16
UV spectra of GO-Y030-thiol-bis-adducts 17
Δ Absorbance at 340 nm (thiol-bis-adducts) 23
UV spectra of GO-Y030-thiol-mono-adducts 24
Δ Absorbance at 340 nm (thiol-mono-adducts) 28
ClogP value predicted by ChemDraw 29
The solubility of GO-Y030 and GO-Y140 30
Experimental Procedure for Biological Analysis 31
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra 32

General Procedure

All reactions were carried out under an atmosphere of argon unless otherwise specified. Reactions were monitored by thin-layer chromatography (TLC) carried out on silica gel plates (Merck Kieselgel 60 F254; Fuji Silysia Chemical, Ltd., Research Triangle Park, NC, USA, NH TLC plates). Column chromatography was performed on Silica gel 60N (Kanto Chemical Co. Inc., spherical, neutral, 63-210 $\mu \mathrm{m}$) and flash column chromatography was performed on Silica gel 60N (Kanto Chemical Co. Inc.; spherical, neutral, 40-50 $\mu \mathrm{m}$). Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}-\mathrm{NMR}$) homogeneous materials unless otherwise stated. Reagents of the highest commercial quality were purchased and used without further purification. IR spectra were recorded on a JASCO FT/IR-410 Fourier Transform Infrared Spectrophotometer or Travel-IRTм. ${ }^{1} \mathrm{H}$-NMR (400 and 600 MHz) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra (100 and 150 MHz) were recorded on JEOL JNM-AL-400 and JEOL JNM-ECA-600 spectrometers, respectively. For ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, chemical shifts (δ) are given from TMS (0.00 ppm) in CDCl_{3} or $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ in CDCl_{3} or $\mathrm{CHD}_{2} \mathrm{OD}(3.31 \mathrm{ppm})$ in $\mathrm{CD}_{3} \mathrm{OD}$ or Acetone (2.10 ppm) in $\mathrm{D}_{2} \mathrm{O}$ as internal standards. For ${ }^{13} \mathrm{C}$-NMR spectra, chemical shifts (δ) are given from $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ or $\mathrm{CD}_{3} \mathrm{OD}(49.0 \mathrm{ppm})$ or sodium 3-trimethylsilyl-1-propanesulfonate (0.00 $\mathrm{ppm})$ in $\mathrm{D}_{2} \mathrm{O}$ as internal standards. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, sept $=$ septet, $\mathrm{br}=$ broad. Mass spectra were recorded on a JEOL JMS-DX303, JEOL JNM-AL500 and JEOL JMS-700. Gel permeation chromatography (GPC) was performed on a JAI LC-908 equipped with JAIGEL-2H using CHCl_{3} as an eluent.

A. Synthetic procedure of bis adducts (GO-Y135, GO-Y139, GO-Y142, GO-Y146, GO-Y174, GO-Y176, GO-Y178, GO-Y144)

To a solution of thiol (4 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M})$ was added $\mathbf{G O} \mathbf{- Y 0 3 0}$ (1 eq.) and $\mathrm{Et}_{3} \mathrm{~N}$ (1-4 eq.). After the starting material was consumed, the reaction mixture was concentrated in vacuo. The residue was purified by silica gel colum chromatography to give bis adducts. Column conditions; GO-Y135: EtOAc/Hexane = 1:4 and GPC, GO-Y139: M/C = 1:20 to 1:10, GO-Y142: EtOAc/Hexane $=1: 4$ to $1: 1$, GO-Y146: M/C $=1: 10$ and GPC, GO-Y174: EtOAc/Hexane $=1: 1$ and GPC, GO-Y176: EtOAc/Hexane = 1:1 and GPC, GO-Y178: EtOAc/Hexane = 1:1 and GPC, GO-Y144: EtOAc/Hexane $=1: 4$

B. Synthetic procedure of bis adducts (GO-Y180, GO-Y185, GO-Y187, GO-Y189)

To a solution of disulfide $\mathbf{S c}$ (2 eq.) in DMF- $\mathrm{H}_{2} \mathrm{O}(9: 1)(0.05 \mathrm{M})$ was added TCEP (2 eq.) as reducing agent. After the reaction mixture was stirred overnight, to the resulting solution was added $\mathrm{Et}_{3} \mathrm{~N}$ (13 eq.) and GO-Y030 (1 eq.). After $10 \mathrm{~min} \sim 9 \mathrm{~h}$, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The conbined organic layes were dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel colum chromatography to give concentrated in vacuo. The residue was purified by silica gel colum chromatography to give bis adducts. Column conditions; GO-Y180: EtOAc/Hexane $=1: 1$ and GPC, GO-Y185: EtOAc/Hexane $=1: 2$, GO-Y187: EtOAc/Hexane $=1: 4$ and GPC, GO-Y189: $\mathrm{EtOAc} /$ Hexane $=1: 4$
C. Synthetic procedure of mono adducts (GO-Y181, GO-Y136, GO-Y138, GO-Y141, GO-Y145, GO-Y173, GO-Y175, GO-Y177, GO-Y143)

To a solution of GO-Y030 (1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M})$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($1-2 \mathrm{eq}$.) and thiol ($0.5-2 \mathrm{eq}$). After being stirred for $30 \mathrm{~min} \sim 1 \mathrm{~h}$, the reaction mixture was concentrated in vacuo. The residue was purified by silica gel colum chromatography to give mono adducts. Column conditions; GO-Y181: $\mathrm{EtOAc} / \mathrm{Hexane}=1: 20$ to $1: 10$, GO-Y136: EtOAc/Hexane $=1: 4$ to $1: 1$, GO-Y138: Methanol $/ \mathrm{CHCl}_{3}=$ 1:20, GO-Y141: $\mathrm{EtOAc} / \mathrm{Hexane}=1: 4$ to 1:2, GO-Y145: Methanol/ $\mathrm{CHCl}_{3}=1: 10$ and GPC, GO-Y173:

EtOAc/Hexane $=1: 1$ and GPC, GO-Y175: EtOAc/Hexane $=1: 1$ and GPC, GO-Y177: EtOAc/Hexane $=1: 1$ and GPC, GO-Y143: EtOAc/Hexane $=1: 4$

D. Synthetic procedure of mono adducts (GO-Y179, GO-Y184, GO-Y186, GO-Y188)

To a solution of disulfide (0.5 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{M}$) was added TCEP (0.5 eq.) as reducing agent. After the reaction mixture was stirred for $50 \mathrm{~min} \sim 12 \mathrm{~h}$, to the resulting solution was added $\mathrm{Et}_{3} \mathrm{~N}$ (4 eq.) and GO-Y030 (1 eq.). After $1 \sim 9 \mathrm{~h}$, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The conbined organic layes were dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel colum chromatography to give concentrated in vacuo. Column conditions; GO-Y179: EtOAc/Hexane $=1: 1$ and GPC, GO-Y184: EtOAc/Hexane = 1:2 and GPC, GO-Y186: EtOAc/Hexane = 1:2 and GPC, GO-Y188: EtOAc/Hexane $=1: 4$

E. Synthetsis of GO-Y140

To a solution of GO-Y030 ($50.0 \mathrm{mg}, 0.105 \mathrm{mmol}$) in $\mathrm{MeOH}(1 \mathrm{ml})$ was added glutathione (128 mg , $0.416 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(16 \mu \mathrm{l}, 1.1 \mathrm{mmol})$. After being stirred overnight, to the resulting solution was filtered and the residue was washed with $\mathrm{H}_{2} \mathrm{O}$ three times to give GO-Y140 (containing $12 \% \mathrm{Et}_{3} \mathrm{~N}$, $21.6 \mathrm{mg}, 0.0196 \mathrm{mmol}, 19 \%)$.

The synthesis and spectral properties of compounds GO-Y030, GO-Y075, and GO-Y077 were reported in our previous paper ${ }^{\text {a), b) }}$.

Reference
a) Ohori, H.; Yamakoshi, H.; Iwabuchi, Y.; Shibata, H. et al. Mol. Cancer. Ther. 2006, 5, 2563-2571.
b) Yamakoshi, H.; Shibata, H.; Iwabuchi, Y. et al. Bioorg. Med. Chem. 2010, 18, 1083-1092.

Preparation of disulfide S1~S3 (Scheme S1)

To a solution of thiol Sa1~4 in EtOAc (1.0 M) was added $\mathrm{NaI}\left(1.0 \mathrm{~mol} \%\right.$) and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ (1.0 eq.). After being stirred for 10 min , the reaction mixture was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq.. The resulting solution was extracted with EtOAc. The conbined organic layes were dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel colum chromatography to give disulfide. The resulting crude disulfide in THF (1.0 M) was added NaH (3.0 eq.) followed by MeI (3.0 eq.) at 0 C . After being stirred for $6 \mathrm{~h} \sim$ overnight, the reaction mixture was quenched with crushed ice. The resulting solution was extracted with EtOAc. The conbined organic layes were dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel colum chromatography (Methanol/ $\left./ \mathrm{CHCl}_{3}=1: 10\right)$ to give methyl adducts.

Data of GO-Yxxx compounds

GO-Y181

Colourless oil; IR (neat): 1689, 1662, 1593, 1439, $1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(1 \mathrm{H}$, d, $J=15.9 \mathrm{~Hz}), 7.36-7.33(2 \mathrm{H}, \mathrm{m}), 7.25-7.22(3 \mathrm{H}, \mathrm{m}), 6.85(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{t}, J=2.2$ $\mathrm{Hz}), 6.65(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}), 5.16(4 \mathrm{H}, \mathrm{s}), 5.11-5.06$ $(4 \mathrm{H}, \mathrm{m}), 4.76(1 \mathrm{H}, \mathrm{dd}, J=6.9,6.9 \mathrm{~Hz}), 3.48(6 \mathrm{H}, \mathrm{s}), 3.44(6 \mathrm{H}, \mathrm{s}), 3.25(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 3.23(1 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.7,158.6,158.2,143.6,142.9,136.4,134.2,133.0$, $128.8,127.6,126.8,109.6,109.3,107.3,103.8,94.6,94.5,56.1,56.0,48.4,46.5$; LR-MS (FAB) m / z $584\left(\mathrm{M}^{+}\right), 45(100 \%)$; HR-MS (FAB) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{9} \mathrm{~S}: 584.2080$, found: 584.2061.

GO-Y135

Colorless oil (diastereo mixture); IR (neat): 1714, 1593, 1438, $1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.39-6.98(10 \mathrm{H}, \mathrm{m}), 6.77-6.68(1 \mathrm{H}, \mathrm{m}), 6.57-6.50(4 \mathrm{H}, \mathrm{m}), 6.41-6.29(1 \mathrm{H}, \mathrm{m}), 5.10-5.02(8 \mathrm{H}, \mathrm{m})$, 4.97-4.79 ($0.33 \mathrm{H}, \mathrm{m}$) 4.59-4.53 ($1.66 \mathrm{H}, \mathrm{m}$), 3.44-3.42 ($12 \mathrm{H}, \mathrm{m}$), 3.35-3.32 ($1.33 \mathrm{H}, \mathrm{m}$), 3.02-2.85 $(2.66 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8,(158.2,158.1),(143.3,143.3), 133.8,(133.1,133.0)$, (128.8, 128.7, 128.6). (127.6, 127.6), (109.1, 109.0), (103.8, 103.8), (94.5, 94.4), (56.0, 56.0), 49.1, (47.8, 47.7); LR-MS (EI) $m / z 694$ (M ${ }^{+}$), 110 (100\%); HR-MS (EI) Calcd. for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{O}_{9} \mathrm{~S}_{2}$: 694.2270, found: 694.2276.

GO-Y136

Colorless oil; IR $\left(\mathrm{CDCl}_{3}\right): 1736,1592,1438,1213 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(1 \mathrm{H}, \mathrm{d}, J$ $=16.1 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}), 6.73(2 \mathrm{H}, \mathrm{d}, J$ $=2.1 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz}), 5.16-5.12(8 \mathrm{H}, \mathrm{m}), 4.56(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.48(6 \mathrm{H}$, s), $3.47(6 \mathrm{H}, \mathrm{s}), 3.21(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 3.10(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $196.0,170.5,158.6,158.4,143.1,143.0,136.4,126.6,109.55,109.48,107.2,103.8,94.55,94.48,56.1$, 52.4, 46.6, 44.8, 33.0; LR-MS (EI) m/z 581 ([M+H] $)$, 251 (100\%); HR-MS (EI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{11} \mathrm{~S}: 581.2057$, found: 581.2075.

GO-Y137

Colorless oil (diastereo mixture); IR $\left(\mathrm{CHCl}_{3}\right)$: 1736, 1592, $1438,1213 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.64(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.62(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.60,(2 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}), 5.16-5.07(8 \mathrm{H}$, $\mathrm{m})$, 4.44-4.38(2H, m), $3.68(3 \mathrm{H}, \mathrm{s}), 3.67(3 \mathrm{H}, \mathrm{s}), 3.47(6 \mathrm{H}, \mathrm{s}), 3.46(6 \mathrm{H}, \mathrm{s}), 3.10-2.85(8 \mathrm{H}, \mathrm{m}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.9$, $(170.5,170.4),(158.4,158.3),(142.83,142.81)$, (109.33, 109.30), (103.9, 103.8), ($94.54,94.52$), ($56.10,56.09$), ($52.35,52.32$), 49.0, 44.1, (32.9, 32.8); LR-MS (FAB) $m / z 686\left(\mathrm{M}^{+}\right)$; HR-MS (FAB) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{O}_{13} \mathrm{~S}_{2}: 686.2067$, found: 686.2050.

GO-Y138

Colorless oil (diastereo mixture); IR $\left(\mathrm{CDCl}_{3}\right): 3450,1658,1593,1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(0.5 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 7.46(0.5 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{t}$, $J=2.1 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.68(0.5 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}), 6.67(0.5 \mathrm{H}$, d, $J=16.4 \mathrm{~Hz}$), 6.64-6.62 ($1 \mathrm{H} . \mathrm{m}$), $5.20-5.12(8 \mathrm{H}, \mathrm{m}), 4.45(0.5 \mathrm{H}, \mathrm{dd}, J=6.1,8.3 \mathrm{~Hz}), 4.41(0.5 \mathrm{H}, \mathrm{dd}$, $J=6.1,8.3 \mathrm{~Hz}), 3.84-3.79(0.5 \mathrm{H}, \mathrm{m}), 3.74-3.68(0.5 \mathrm{H}, \mathrm{m}), 3.70-3.56(2 \mathrm{H}, \mathrm{m}), 3.483(6 \mathrm{H}, \mathrm{s}), 3.476(6 \mathrm{H}$, s), $3.23(0.5 \mathrm{H}, \mathrm{dd}, J=8.3,17.0 \mathrm{~Hz}), 3.22(0.5 \mathrm{H}, \mathrm{dd}, J=8.3,17.0 \mathrm{~Hz}), 3.14(1 \mathrm{H}, \mathrm{dd}, J=6.1,17.0 \mathrm{~Hz})$, 2.60-2.46 ($2 \mathrm{H}, \mathrm{m}$), 1.71 ($2 \mathrm{H}, \mathrm{brs}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(196.8,196.6), 158.6,158.4,144.1$, (143.3, 143.2), 136.2, 126.4, 109.5, (109.2, 109.1), 107.4, 103.9, (94.5, 94.4, 94.4, two carbon), 71.1, 69.4, 65.3, (56.1, 56.1), (47.3, 47.0), 45.2, 43.9, (35.2, 34.8); LR-MS (FAB) $m / z 583$ ([M+H $]^{+}$); HR-MS (FAB) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{O}_{11} \mathrm{~S}: 583.2213$, found: 583.2214 .

GO-Y139

Yellow oil (diastereo mixture); IR (neat): 3420, 2925, 1715, 1597, $1460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 6.67-6.65 $(2 \mathrm{H}, \mathrm{m}), 6.64-6.62(2 \mathrm{H}, \mathrm{m}), 6.58-6.57(1 \mathrm{H}, \mathrm{m}), 6.55-6.53(1 \mathrm{H}, \mathrm{m}), 5.15-5.10(8 \mathrm{H}$, m), 4.27-4.22 ($2 \mathrm{H}, \mathrm{m}$), 3.65-3.56 ($2 \mathrm{H}, \mathrm{m}$) 3.55-3.42 ($4 \mathrm{H}, \mathrm{m}$), $3.44(6 \mathrm{H}, \mathrm{s}), 3.42(6 \mathrm{H}, \mathrm{s}), 3.05-2.84(4 \mathrm{H}$, m), 2.54-2.33 ($4 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(206.8,206.7),(159.7,159.6),(145.6,145.6$, 145.6), (110.4, 110.4, 110.3, 110.3), 104.7, (95.5, 95.5), (72.7, 72.2), 65.9, (56.3, 56.3), (50.5, 50.4,
50.4), (45.7, 45.7, 45.6, 45.6), (35.5, 35.5, 35.3, 35.2); LR-MS (FAB) $m / z 713$ ([M+Na] $), 45$ (100%); HR-MS (FAB) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{13} \mathrm{~S}_{2} \mathrm{Ns}$: 713.2278, found: 713.2278.

GO-Y141

Colorless oil; IR (neat): 3377, 1711, 1663, 1593, 1509, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43$ $(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{t}, J=1.9 \mathrm{~Hz}), 6.73(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.64$ $(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}), 5.16-5.14(8 \mathrm{H}, \mathrm{m}), 4.96(1 \mathrm{H}, \mathrm{brs}), 4.39(1 \mathrm{H}, \mathrm{dd}, J=7.1$, 7.1 Hz), 3.48 ($6 \mathrm{H} . \mathrm{s}$), $3.47(6 \mathrm{H}, \mathrm{s}), 3.30-3.11(4 \mathrm{H}, \mathrm{m}), 2.55-2.50(2 \mathrm{H}, \mathrm{m}), 1.43(9 \mathrm{H}, \mathrm{s})$; LR-MS (FAB) $m / z 652\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HR-MS (FAB) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{NO}_{11} \mathrm{~S}: 652.2792$, found: 652.2817.

GO-Y142

Colorless oil (diastereo mixture); IR $\left(\mathrm{CHCl}_{3}\right): 3370,1713,1595,1512 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.60(2 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 6.27-6.60(3 \mathrm{H}, \mathrm{m}), 6.59(1 \mathrm{H}, \mathrm{t}, J=1.9 \mathrm{~Hz}), 5.16-5.10(8 \mathrm{H}, \mathrm{m})$, 4.25-4.20 ($2 \mathrm{H}, \mathrm{m}$), 3.47-3.46 ($12 \mathrm{H}, \mathrm{m}$), 3.40-3.22 ($4 \mathrm{H}, \mathrm{m}$), 2.98-2.79 ($4 \mathrm{H}, \mathrm{m}$), 2.50-2.43 ($4 \mathrm{H}, \mathrm{m}$), 1.40 $(18 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.7,(158.49,158.46), 155.7,(144.2,144.1),(109.1,109.0)$, (103.9, 103.8), 94.5, 79.3, 56.2, 49.9, (43.78, 43.73), 39.4, (32.03, 31.96), 28.5; LR-MS (FAB) $\mathrm{m} / \mathrm{z} 829$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right), 57(100 \%)$; HR-MS (FAB) Calcd. for $\mathrm{C}_{39} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{~S}_{2}: 829.3615$, found: 829.3631.

GO-Y145

Colorless oil; IR $\left(\mathrm{CHCl}_{3}\right): 1659,1593,1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(1 \mathrm{H}, \mathrm{d}, J=16.1$ $\mathrm{Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz}), 6.73(2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{d}, J=16.1$ $\mathrm{Hz}), 6.63(1 \mathrm{H}, \mathrm{t}, J=2.3 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{brs}), 5.17(4 \mathrm{H}, \mathrm{s}), 5.15(4 \mathrm{H}, \mathrm{s}), 4.36(1 \mathrm{H}, \mathrm{dd}, J=8.5,5.8 \mathrm{~Hz})$, 3.48 ($6 \mathrm{H} . \mathrm{s}$), $3.47(6 \mathrm{H}, \mathrm{s}), 3.48-3.30(2 \mathrm{H}, \mathrm{m}), 3.22(1 \mathrm{H}, \mathrm{dd}, J=16.9,8.5 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{dd}, J=16.9$, $5.8 \mathrm{~Hz}), 2.62-2.50(2 \mathrm{H}, \mathrm{m}), 1.99(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.7,170.1,158.6,158.5$, 144.5, 143.2, 136.3, 126.6, 109.5, 109.1, 107.4, 103.8, 74.5, 56.1, 56.1, 47.1, 44.1, 38.1, 31.5, 23.2; LR-MS (FAB) $m / z 594\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HR-MS (FAB) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{NO}_{10} \mathrm{~S}: 594.2295$, found: 594.2366.

GO-Y146

Colorless oil; IR $\left(\mathrm{CHCl}_{3}\right)$: $3314,1719,1656,1595,1460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.65$ $(4 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.63(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 5.98(2 \mathrm{H}, \mathrm{brs}), 5.15(8 \mathrm{H}, \mathrm{s}), 4.22(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.48$ $(12 \mathrm{H}, \mathrm{s}), 3.40-3.21(4 \mathrm{H}, \mathrm{m}), 2.94-2.85(4 \mathrm{H}, \mathrm{m}), 2.57-2.43(4 \mathrm{H}, \mathrm{m}), 1.96(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 204.3,(170.2,170.1),(158.5,158.4),(144.0,144.0),(109.0,108.9),(104.0,103.9)(94.5$, 94.4), (56.2, 56.1), (49.8, 49.8), (43.8, 43.7), (38.2, 38.1), (31.5, 31.4), (23.1, 23.1); LR-MS (FAB) m / z $713\left([\mathrm{M}+\mathrm{H}]^{+}\right), 45(100 \%) ;$ HR-MS (FAB) Calcd. for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{~S}_{2}: 713.2778$, found: 713.2795.

GO-Y140

White solid; IR (solid): 3419, 1652, 1558, $1456 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 6.66-6.54(6 \mathrm{H}, \mathrm{m})$, 5.21-5.18 ($8 \mathrm{H}, \mathrm{m}$), 4.40-4.36 ($2 \mathrm{H}, \mathrm{m}$), 4.24-4.13 ($4 \mathrm{H}, \mathrm{m}$), 3.93-3.84 ($4 \mathrm{H}, \mathrm{m}$), 3.79-3.73 ($2 \mathrm{H}, \mathrm{m}$), 3.47 $(12 \mathrm{H}, \mathrm{s}), 3.20-2.61(6 \mathrm{H}, \mathrm{m}), 2.49-2.38(4 \mathrm{H}, \mathrm{m}), 2.20-2.06(4 \mathrm{H}, \mathrm{m}), 1.27(1.16 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, from $\left.\mathrm{Et}_{3} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{pH} 8.0\right.$ PBS buffer $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta(211.2,211.1)(179.1,178.94,178.92,178.89)$, (177.8, 177.5, 177.3), (176.9, 176.8, 176.7), (174.5, 174.5, 174.3), (160.4, 160.3), (146.7, 146.3), (112.7, 112.50, 112.44), (107.5, 107.3, 102.8), (97.3, 97.2), (58.8, 58.5), 57.2, 57.0), (55.7, 55.6), 49.5, $46.2\left(\right.$ from $\left.\mathrm{Et}_{3} \mathrm{~N}\right)$, (34.3, 34.2), 29.1, 29.0, 28.3, $11.1\left(\right.$ from $\left.\mathrm{Et}_{3} \mathrm{~N}\right)$; LR-MS (FAB) $m / z 1089\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, 154 (100\%); HR-MS (FAB) Calcd. for $\mathrm{C}_{45} \mathrm{H}_{65} \mathrm{O}_{21} \mathrm{~S}_{2}$: 1089.3644, found: 1089.3687.

GO-Y173

Pale yellow oil; IR (neat): 2956, 2826, 1659, 1593, $1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(1 \mathrm{H}$, d, $J=16.0 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}$, $J=16.4 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}), 5.16-5.12(8 \mathrm{H}, \mathrm{m}), 4.40(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.48(6 \mathrm{H}, \mathrm{s}), 3.47$ $(6 \mathrm{H}, \mathrm{s}), 3.16(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.41(2 \mathrm{H}, \mathrm{m}), 1.19(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 196.8,158.6,158.3,144.7,142.8,136.5,126.8,109.5,109.3,107.2,103.5,94.6,94.5,56.1,56.0$, 47.2, 44.3, 25.6, 14.3; LR-MS (EI) $m / z 536[M]^{+}, 62$ (100\%); HR-MS (EI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{9} \mathrm{~S}$: 536.2080 , found: 536.2034 .

Pale yellow oil (diastereo mixture); IR (neat) : 2958, 1720, 1596, $1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.65(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.63(2 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{t}, J=2.2$ $\mathrm{Hz}), 5.16-5.09(8 \mathrm{H}, \mathrm{m}), 4.27-4.22(2 \mathrm{H}, \mathrm{m}), 3.47(6 \mathrm{H}, \mathrm{s}), 3.45(6 \mathrm{H}, \mathrm{s}), 2.97-2.90(2 \mathrm{H}, \mathrm{m}), 2.88-2.79$ $(2 \mathrm{H}, \mathrm{m}), 2.39-2.28(4 \mathrm{H}, \mathrm{m}), 1.15(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.13(3 \mathrm{H}, \mathrm{t}, 7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(204.1,204.0),(158.2,158.1),(144.3,144.2),(109.0,108.9),(103.3,103.2), 94.4,(55.90$, 55.89), 49.8, (43.50, 43.48), (25.32, 25.27), (14.14, 14.12); LR-MS (EI) $m / z 598[M]^{+}, 45$ (100\%); HR-MS (EI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{9} \mathrm{~S}_{2}: 598.2270$, found: 598.2272.

GO-Y175

Pale yellow oil; IR (neat) : 2956, 1664, 1594, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(1 \mathrm{H}, \mathrm{d}, J$ $=15.8 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=$ $15.8 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=2.6 \mathrm{~Hz}), 5.16-5.11(8 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.48(6 \mathrm{H}, \mathrm{s}), 3.46(6 \mathrm{H}$, s), $3.16(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 2.45-2.30(2 \mathrm{H}, \mathrm{m}), 1.54-1.45(2 \mathrm{H}, \mathrm{m}), 1.37-1.27(2 \mathrm{H}, \mathrm{m}), 0.85(3 \mathrm{H}, \mathrm{t}, J=$ 7.2 Hz) ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8,158.6,158.3,144.8,142.8,136.5,126.9,109.5,109.3$, 107.2, 103.5, 94.55, 94.49, 56.09, 56.06, 47.3, 44.6, 31.3, 21.9, 13.6; LR-MS (EI) $m / z 564[M]^{+}, 474$ (100\%); HR-MS (EI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{9} \mathrm{~S}: 564.2393$, found: 564.2380.

GO-Y176

Pale yellow oil (diastereo mixture); IR (neat): 2956, 1720, 1596, $1462 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.65(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.63(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{t}, J=$ 2.2 Hz), 5.16-5.09 ($8 \mathrm{H}, \mathrm{m}$), 4.24-4.18 (2H, m), 3.47 ($6 \mathrm{H}, \mathrm{s}$), $3.45(6 \mathrm{H}, \mathrm{s}), 2.96-2.90(2 \mathrm{H}, \mathrm{m}), 2.87-2.79$ $(2 \mathrm{H}, \mathrm{m}), 2.36-2.25(4 \mathrm{H}, \mathrm{m}), 1.45(4 \mathrm{H}, \mathrm{m}), 1.30(4 \mathrm{H}, \mathrm{m}), 0.84(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.83(3 \mathrm{H}, \mathrm{t}, J=7.6$ Hz); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) δ (204.1, 204.0), (158.21, 158.18), (144.46, 144.41), (109.1, 109.0), (103.41, 103.39), (94.43, 94.42), (56.0, 55.9), (49.90, 49.88), (43.9, 43.8), (31.13, 31.11, 31.10, 31.0, two carbon), (21.82, 21.79) 13.5; LR-MS (EI) $m / z 654$ [M] ${ }^{+}$, 56 (100\%); HR-MS (EI) Calcd. for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{9} \mathrm{~S}_{2}$: 654.2896, found: 654.2852.

GO-Y177

pale yellow oil; IR (neat) : 2928, 1664, 1593, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(1 \mathrm{H}, \mathrm{d}, J$ $=16.4 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=$ $16.4 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}), 5.16-5.12(8 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 3.48(6 \mathrm{H}, \mathrm{s}), 3.46(6 \mathrm{H}$, s), $3.16(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 2.43-2.30(2 \mathrm{H}, \mathrm{m}), 1.55-1.46(2 \mathrm{H}, \mathrm{m}), 1.32-1.20(6 \mathrm{H}, \mathrm{m}), 0.85(3 \mathrm{H}, \mathrm{t}, J=$ 6.8 Hz); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8,158.6,158.3,144.8,142.8,136.5,126.8,109.5,109.3$, 107.2, 103.5, 94.53, $94.47,56.1,56.0,47.3,44.6,31.6,31.3,29.1,28.5,22.5,13.9$; LR-MS (EI) m / z $592[\mathrm{M}]^{+}, 56(100 \%)$; HR-MS (EI) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{9} \mathrm{~S}: 592.2706$, found: 592.2690.

GO-Y178

Pale yellow oil (diastereo mixture); IR (neat): 2927, 1719, 1596, $1457 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.65(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.63(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{t}, J=$ 2.2 Hz), 5.16-5.09 ($8 \mathrm{H}, \mathrm{m}$), 4.24-4.18 ($2 \mathrm{H}, \mathrm{m}$), $3.47(6 \mathrm{H}, \mathrm{s}), 3.45(6 \mathrm{H}, \mathrm{s}), 2.96-2.90(2 \mathrm{H}, \mathrm{m}), 2.86-2.79$ $(2 \mathrm{H}, \mathrm{m}), 2.36-2.24(4 \mathrm{H}, \mathrm{m}), 1.46(4 \mathrm{H}, \mathrm{m}), 1.31-1.18(12 \mathrm{H}, \mathrm{m}), 0.86(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.85(3 \mathrm{H}, \mathrm{t}, J=$ 7.2 Hz); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 204.1, (158.22, 158.19), (144.5, 144.4), (109.1, 109.0), (103.41, 103.37), (94.43, 94.42), (56.0, 55.9), (49.91, 49.87), (43.88, 43.87), (31.44, 31.38, 31.2, two carbon), (29.03, 29.02), (28.41, 28.39), 22.4, 13.9; LR-MS (EI) $m / z 710[M]^{+}, 56(100 \%) ;$ HR-MS (EI) Calcd. for $\mathrm{C}_{37} \mathrm{H}_{58} \mathrm{O}_{9} \mathrm{~S}_{2}$: 710.3522, found: 710.3505.

GO-Y143

Colorless oil; IR $\left(\mathrm{CHCl}_{3}\right): 1692,1666,1592,1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(1 \mathrm{H}, \mathrm{d}, J$ $=16.2 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{t}, J=2.3 \mathrm{~Hz}), 6.73(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=$ $16.2 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}), 5.15-5.11(8 \mathrm{H}, \mathrm{m}), 4.36(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.48(6 \mathrm{H}, \mathrm{s}), 3.46(6 \mathrm{H}$, s), $3.16(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 2.41-2.29(2 \mathrm{H}, \mathrm{m}), 1.54-1.47(2 \mathrm{H}, \mathrm{m}), 1.32-1.22(18 \mathrm{H}, \mathrm{m}), 0.87(3 \mathrm{H}, \mathrm{t}, J=$ 7.0 Hz) ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8,158.6,158.3,144.8,142.8,136.5,126.9,109.5,109.3$, $107.2,103.5,94.6,94.5,56.11,56.08,47.2,44.6,31.9,31.6$, (29.63, 29.61, 29.58, 29.50, 29.3, 29.2, 28.9, eight carbon), 22.7, 14.1; LR-MS (EI) m/z 676 (${ }^{+}$), 474 (100\%); HR-MS (EI) Calcd. for $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{9} \mathrm{~S}: 676.3645$, found : 676.3654 .

Colorless oil (diastereo mixture); IR (CHCl_{3}): 1720, $1595,1462 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.64(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.62(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz})$, $5.12(8 \mathrm{H}, \mathrm{m}), 4.23-4.18(2 \mathrm{H}, \mathrm{m}), 3.48(6 \mathrm{H}, \mathrm{s}), 3.47(6 \mathrm{H}, \mathrm{s}), 2.96-2.90(2 \mathrm{H}, \mathrm{m}), 2.85-2.78(2 \mathrm{H}, \mathrm{m})$, 2.38-2.21 (4H, m), 1.50-1.42 (4H, m), 1.32-1.27 (36H, m), $0.87(6 \mathrm{H}, \mathrm{t}, J=6.76 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(204.21,204.16),(158.31,158.28),(144.6,144.5),(109.2,109.1),(103.51,103.48)$, (94.6, 94.5), (56.07, 56.06), (50.0, 49.9), (43.98, 43.96), (31.9, 31.6, 31.5), 29.63, 29.61, 29.58, 29.50, 29.48, 29.3, 29.2, 28.89, 28.87, 22.7, 14.1; LR-MS (ESI) $m / z 901$ ([M+Na] ${ }^{+}$), (100%), 917 ([M+K] $]^{+}$; HR-MS (ESI) Calcd. for $\mathrm{C}_{49} \mathrm{H}_{82} \mathrm{O}_{9} \mathrm{~S}_{2} \mathrm{Na}: 901.5292$, found: 901.5260 .

GO-Y179

Pale yellow oil; IR (neat): 2927, 1663, 1593, $1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(1 \mathrm{H}, \mathrm{d}, J$ $=16.0 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=$ $16.0 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}), 5.17-5.11(8 \mathrm{H}, \mathrm{m}), 4.44(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.48(6 \mathrm{H}, \mathrm{s}), 3.46(6 \mathrm{H}$, s), $3.45(2 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz}), 3.30(3 \mathrm{H}, \mathrm{s}), 3.17(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.58(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8,158.6,158.4,144.8,142.9,136.4,126.8,109.5,109.3,107.2,103.6,94.54$, 94.48, 71.6, 58.6, 56.09, 56.08, 47.2, 44.8, 30.9; LR-MS (EI) m/z 566 [M] ${ }^{+} 474$ (100\%); HR-MS (EI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{10} \mathrm{~S}: 566.2186$, found: 564.2179.

GO-Y180

Pale yellow oil (diastereo mixture); IR (neat): 2926, 1718, 1596, $1458 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.65-6.58(6 \mathrm{H}, \mathrm{m}), 5.16-5.09(8 \mathrm{H}, \mathrm{m}), 4.30-4.25(2 \mathrm{H}, \mathrm{m}), 3.47(6 \mathrm{H}, \mathrm{s}), 3.45(6 \mathrm{H}, \mathrm{s})$, 3.44-3.36(4H, m), 3.29 (3H, s), 3.28 (3H, s), 2.96-2.91 ($2 \mathrm{H}, \mathrm{m}$), 2.87-2.80 ($2 \mathrm{H}, \mathrm{m}$), 2.57-2.47 ($4 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(203.8,203.79),(158.4,158.3),(144.2,144.1),(109.23,109.18)$, (103.64, 103.61), (94.6, 94.5), (71.7, 71.6), 58.6, (56.12, 56.10), 49.9, (44.2, 44.1), (30.84, 30.79); LR-MS (FAB) $m / z 658[M]^{+}, 45(100 \%)$; HR-MS (FAB) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{11} \mathrm{~S}_{2}: 658.2482$, found: 658.2448 .

GO-Y184

Colorless oil; IR $\left(\mathrm{CHCl}_{3}\right): 2933,1663,1593,1452 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(1 \mathrm{H}, \mathrm{d}, J$ $=16.4 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=$ $16.4 \mathrm{~Hz}), 6.61(2 \mathrm{H}, \mathrm{t}, J=2.6 \mathrm{~Hz}), 5.17-5.12(8 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.48(6 \mathrm{H}, \mathrm{s}), 3.47(6 \mathrm{H}$, s), $3.31(2 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}), 3.29(3 \mathrm{H}, \mathrm{s}), 3.16(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 2.46-2.41(1 \mathrm{H}, \mathrm{m}), 2.38-2.34(1 \mathrm{H}$, m), 1.63-1.56 (4H, m); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8,158.6,158.3,144.7,142.9,136.5,126.8$, $109.5,109.3,107.2,103.5,94.6,94.5,72.2,58.5,56.11,56.09,47.2,44.5,31.4,28.7,25.8$; LR-MS (FAB) $m / z 594[\mathrm{M}]^{+}, 45(100 \%)$; HR-MS (FAB) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{10} \mathrm{~S}: 714.3108$, found: 714.3113.

GO-Y185

Colorless oil (diastereo mixture); IR $\left(\mathrm{CHCl}_{3}\right)$: 2931, 1719, $1595,1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.65(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.63(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{t}, J=$ $2.1 \mathrm{~Hz}), 5.16-5.09(8 \mathrm{H}, \mathrm{m}), 4.23-4.18(2 \mathrm{H}, \mathrm{m}), 3.47(6 \mathrm{H}, \mathrm{s}), 3.46(6 \mathrm{H}, \mathrm{s}), 3.29-3.31(4 \mathrm{H}, \mathrm{m}), 3.29(3 \mathrm{H}$, s), $3.28(3 \mathrm{H}, \mathrm{s}), 2.96-2.90(2 \mathrm{H}, \mathrm{m}), 2.85-2.78(2 \mathrm{H}, \mathrm{m}), 2.49-2.25(4 \mathrm{H}, \mathrm{m}), 1.60-1.48(8 \mathrm{H}, \mathrm{m}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(204.1,204.0),(158.3,158.3),(144.4,144.4),(109.11,109.05)$, (103.50, 103.46), (94.50, 94.48), (72.10, 72.08), 58.4, (56.1, 56.0), (49.93, 48.89), 43.9, (31.24, 31.18), (28.62, 28.59), (25.72, 25.71); LR-MS (FAB) $m / z 714$ [M] ${ }^{+}, 45$ (100\%); HR-MS (FAB) Calcd. for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{11} \mathrm{~S}_{2}$: 594.2499, found: 594.2507.

GO-Y186

Colorless oil; IR (CHCl_{3}): 2932, 1664, 1593, $1453 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=16.2 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}), 6.73(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=$ $16.2 \mathrm{~Hz}), 6.62-6.60(1 \mathrm{H}, \mathrm{m}), 5.16-5.12(8 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.48(6 \mathrm{H}, \mathrm{s}), 3.46(6 \mathrm{H}, \mathrm{s})$, 3.35-3.27 (5H, m), 3.15 ($2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}$), 2.45-2.31 ($2 \mathrm{H}, \mathrm{m}$), 1.46-1.57 ($4 \mathrm{H}, \mathrm{m}$), 1.37-1.24 (4H, m); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.7,158.5,158.3,144.7,142.8,136.4,126.8,109.5,109.2,107.1$, 103.4, 94.5, 94.4, 72.6, 58.4, 56.00, 55.98, 47.2, 44.6, 31.5, 29.4, 29.0, 28.6, 25.6; LR-MS (FAB) m / z $622[\mathrm{M}]^{+}, 251$ (100\%); HR-MS (FAB) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{10} \mathrm{~S}: 622.2812$, found: 622.2820.

GO-Y187

Colorless oil (diastereo mixture); IR $\left(\mathrm{CHCl}_{3}\right)$: 2931, $1719,1595,1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.64(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.62(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{t}, J=$ $2.2 \mathrm{~Hz}), 5.16-5.09(8 \mathrm{H}, \mathrm{m}), 4.23-4.17(2 \mathrm{H}, \mathrm{m}), 3.47(6 \mathrm{H}, \mathrm{s}), 3.45(6 \mathrm{H}, \mathrm{s}), 3.35-3.32(4 \mathrm{H}, \mathrm{m}), 3.311$ $(3 \mathrm{H}, \mathrm{s}), 3.306(3 \mathrm{H}, \mathrm{s}), 2.95-2.89(2 \mathrm{H}, \mathrm{m}), 2.85-2.78(2 \mathrm{H}, \mathrm{m}), 2.39-2.22(4 \mathrm{H}, \mathrm{m}), 1.54-1.43(8 \mathrm{H}, \mathrm{m})$, 1.32-1.25 ($8 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(204.2,204.1),(158.30,158.26),(144.51,144.46)$, (109.11, 109.05), (103.5, 103.4), 94.5, 72.7, 58.5, (56.10, 56.07), (49.98, 48.95), (43.94, 43.92), (31.5, 31.4), 29.5, 29.1, (28.7, 28.6), 25.7; LR-MS (FAB) $m / z 783[\mathrm{M}+\mathrm{Na}]^{+}, 45$ (100\%); HR-MS (FAB) Calcd. for $\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{11} \mathrm{~S}_{2} \mathrm{Na}$: 783.3816, found: 783.3812 .

GO-Y188

Colorless oil; IR $\left(\mathrm{CHCl}_{3}\right)$: 2928, 1664, 1593, $1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(1 \mathrm{H}, \mathrm{d}, J$ $=16.2 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz}), 6.73(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=$ $16.2 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz}), 5.16-5.11(8 \mathrm{H}, \mathrm{m}), 4.36(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.48(6 \mathrm{H}, \mathrm{s}), 3.46(6 \mathrm{H}$, s), $3.35(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 3.32(3 \mathrm{H}, \mathrm{s}), 3.16(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 2.44-2.30(2 \mathrm{H}, \mathrm{m}), 1.60-1.48(6 \mathrm{H}$, m), 1.33-1.23 (8H, m); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8,158.5,158.3,144.7,142.8,136.4,126.8$, $109.5,109.2,107.1,103.4,94.5,94.4,72.9,58.5,56.1,56.0,47.2,44.6,31.6,29.6,29.37,29.35,29.14$, 29.06, 28.8, 26.0; LR-MS (FAB) $m / z 664$ [M] ${ }^{+}, 251$ (100\%); HR-MS (FAB) Calcd. for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{10} \mathrm{~S}$: 664.3281, found: 664.3277.

GO-Y189

Colorless oil (diastereo mixture); IR $\left(\mathrm{CHCl}_{3}\right): 2927,2854,1720,1596,1460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.64(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.62(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{t}, J=$ $2.1 \mathrm{~Hz}), 5.16-5.10(8 \mathrm{H}, \mathrm{m}), 4.22-4.18(2 \mathrm{H}, \mathrm{m}), 3.47(6 \mathrm{H}, \mathrm{s}), 3.46(6 \mathrm{H}, \mathrm{s}), 3.354(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz})$, $3.351(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 3.33(3 \mathrm{H}, \mathrm{s}), 3.32(3 \mathrm{H}, \mathrm{s}), 2.94-2.90(2 \mathrm{H}, \mathrm{m}), 2.85-2.78(2 \mathrm{H}, \mathrm{m}), 2.37-2.23$ $(4 \mathrm{H}, \mathrm{m}), 1.57-1.50(4 \mathrm{H}, \mathrm{m}), 1.49-1.40(4 \mathrm{H}, \mathrm{m}), 1.30-1.23(20 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(204.24,204.18),(158.32,158.28),(144.6,144.5),(109.14,109.09),(103.50,103.46), 94.6$, $72.9,58.5,(56.12,56.10),(50.10,49.97)$, (44.0, 43.9), (31.6, 31.5), (29.6, 29.4, 29.18, 29.16, 29.13,
28.88, 28.86, 26.1, seven carbon); LR-MS (FAB) $m / z 823$ [M-OMe] ${ }^{+}$, 251 (100\%); HR-MS (FAB) Calcd. for $\mathrm{C}_{44} \mathrm{H}_{71} \mathrm{O}_{10} \mathrm{~S}_{2}: 823.4489$, found: 823.4495.

Data of other

1,2-Bis(4-methoxybutyl)disulfane (S2c)
Colorless oil; IR (CHCl_{3}): 2927, 2864, 1449, 1386, $1119 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.39$ $(4 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 3.33(6 \mathrm{H}, \mathrm{s}), 2.71(4 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.80-1.64(8 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) $\delta 72.2,58.5,38.8,28.4,25.9$; LR-MS (EI) $m / z 238[\mathrm{M}]^{+}, 87$ (100\%); HR-MS (EI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}$: 238.1061 , found: 238.1061.

1,2-Bis(6-methoxyhexyl)disulfane (S3c) (~OM Colorless oil; IR (CHCl_{3}): 2929, 2857, 1460, 1387, $1119 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.37$ $(4 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.33(6 \mathrm{H}, \mathrm{s}), 2.68(4 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.69(4 \mathrm{H}$, quint, $J=6.9 \mathrm{~Hz}), 1.58(4 \mathrm{H}$, quint, $\mathrm{J}=7.1 \mathrm{~Hz}$), 1.45-1.36 (8H, m); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 72.7,58.5,39.0,29.4,29.1,28.3,25.7$; LR-MS (EI) m/z $294[\mathrm{M}]^{+}, 83$ (100\%); HR-MS (EI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{~S}_{2}$: 294.1687, found: 294.1668.

1,2-Bis(9-methoxynonyl)disulfane (S4c)
Colorless oil; IR (CHCl_{3}): 2926, 2854, 1462, $1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 3.37$ (4H, t, J $=6.9 \mathrm{~Hz}), 3.33(6 \mathrm{H}, \mathrm{s}), 2.68(4 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.69(4 \mathrm{H}$, quint, $J=6.9 \mathrm{~Hz}), 1.58(4 \mathrm{H}$, quint, $J=7.1$ Hz), 1.45-1.25 (20H, m); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 72.9,58.5,39.2,29.6,29.41,29.39,29.2$, 29.1, 28.5, 26.1; LR-MS (EI) $m / z 378$ ([M] ${ }^{+}, 100 \%$); HR-MS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{~S}_{2}: 378.2626$, found: 378.2621 .

Experimental Procedure for ${ }^{1} \mathbf{H}$-NMR studies

${ }^{1}$ H-NMR study to monitor Michael reaction between GO-Y030 and cysteamine (Figure 2a)
GO-Y030 ($5.27 \mathrm{mg}, 0.011 \mathrm{mmol}$) was dissolved with DMSO- $d_{6}(0.55 \mathrm{ml})$ and cysteamine $(5.84 \mathrm{mg}$, $0.075 \mathrm{mmol})$ was dissolved with DMSO- $d_{6}(0.95 \mathrm{ml})$ in screw vial prior to use. The resulting cysteamine solution (0.55 ml of 0.08 M solution in DMSO- $d_{6}, 0.044 \mathrm{mmol}$) was added to GO-Y030 solution (0.55 ml of 0.02 M in DMSO- $d_{6}, 0.11 \mathrm{mmol}$). After 5 min , a proton NMR spectrum of the resulting solution was measured. Then, the solution was got back to screw vial and it stand under air. After 1 h the addition of cysteamine, a proton NMR spectrum of the resulting solution was measured. Then, the solution was got back to screw vial and it stand under air. After 6 h the addition of cysteamine, a proton NMR spectrum of the resulting solution was measured.

Experimental Procedure for Analysis to Monitor retro-Michael reaction

The assay was performed in 96 well plates and alumifoils were used to cover the plate during the measurements. All measurements were done in a Multiscan Spectrum Photometer (Thermo, Finnland) at $25^{\circ} \mathrm{C}$. Before the assay, 10 mM stock solutions of GO-Y030 and GO-Y030-bis-thiol-adducts (or GO-Y030-mono-thiol-adduct) in DMSO were diluted with DMSO to give a concentration of $83 \mu \mathrm{M}$. The resultant $83 \mu \mathrm{M}$ compounds DMSO solution ($100 \mu \mathrm{l}$) were added to each well in 96 well plate. Setted well were diluted with (a) 100 mM Glycine- HCl buffer ($100 \mu \mathrm{l}$), (b) PBS buffer ($100 \mu \mathrm{l}$), (c) 100 mM Tris- HCl buffer ($100 \mu \mathrm{l}$), and (d) $\mathrm{H}_{2} \mathrm{O}$.

Then, the kinetic measurement is started immediately. The wells were covered with foil and measurements were done in duplicates.

UV spectra of GO-Y030 and GO-Y030-bis-thiol-adducts after diluted with $\mathbf{p H} 3$ glycine- HCl

 buffer (Figure S1)

GO-Y137 (pH7.3)

GO-Y140 (pH7.3)

GO-Y146 (pH7.3)

GO-Y139 (pH7.3)

GO-Y142 (pH7.3)

GO-Y174 (pH7.3)

GO-Y137 (pH8.5)

GO-Y140 (pH8.5)

GO-Y146 (pH8.5)

GO-Y139 (pH8.5)

GO-Y142 (pH8.5)

GO-Y174 (pH8.5)

Δ Absorbance at 340 nm after diluted with $\mathbf{p H} 3$ glycine-HCl buffer (Figure $\mathbf{S 4}$)

-GO-Y030-bis-thiol-adducts-

Δ Absorbance at 340 nm after diluted with $\mathbf{p H} 7.3$ phosphate buffer (Figure S5)
-GO-Y030-bis-thiol-adducts-

Δ Absorbance at 340 nm after diluted with pH 8.5 Tris-HCl buffer (Figure S6)
-GO-Y030-bis-thiol-adducts-

UV spectra of GO-Y030-mono-thiol-adducts (Figure S7)

This graph shows that any mono-adducts assessed has $\lambda_{\max }$ at $300 \sim 310 \mathrm{~nm}$. Given this information, it is considered that another mono-adducts has also $\lambda_{\max }$ at $300 \sim 310 \mathrm{~nm}$ is widely .

(Figure S8)

(Figure S9)

UV spectra of GO-Y030-mono-thiol-adducts after diluted with pH 8.5 Tris-HCl buffer
(Figure S10)

Δ Absorbance at 340 nm after diluted with $\mathbf{p H} 3$ glycine- HCl buffer (Figure S11)
-GO-Y030-mono-thiol-adducts-

Δ Absorbance at 340 nm after diluted with $\mathbf{p H} 7.3$ phosphate buffer (Figure S12)
-GO-Y030-bis-thiol-adducts-

Δ Absorbance at 340 nm after diluted with pH 8.5 Tris-HCl buffer (Figure S13) -GO-Y030-bis-thiol-adducts-

ClogP value predicted by ChemDraw (Table S1)

The solubility of GO-Y030 and GO-Y140 (Figure S14)

30 mg in
pH 8 PBS buffer (1 mL)
GO-Y030 GO-Y140

Experimental Procedure for Biological Analysis

Cell culture

Cells of the colorectal carcinoma line HCT116 were cultured in RPMI1640 supplemented with 10% fetal bovine serum (FBS).

Cell growth suppression analysis

HCT116 was obtained from the Cell Resource Center for Biomedical Research (Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan). The growth-suppressive effects of the compounds were measured for 48 h . Cell viability was assayed by quantitation of the uptake and digestion of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2 H - tetrazolium monosodium salt (WST-8) according to the manufacturer's instructions (Dojindo Laboratories, Kumamoto, Japan) by using a 96-well plate reader, SpectraMax M2e (Molecular Devices). The percentage cell growth of the control, which was treated with 0.5% DMSO alone, was calculated and plotted, and then the mean growth inhibitory concentration $\left(\mathrm{GI}_{50}\right)$ value was determined.

GO-Y077-1H
(1)

GO-Y075-1H

GO-Y181-1H

GO-Y181-13C

GO-Y135-1H

GO-Y136-1H

GO-Y137-1H

GO-Y139-1H-CD3OD

GO-Y141-1H

GO-Y142-1H

GO-Y145-1H

GO-Y140-1H

PPM

)

GO-Y173-1H

GO-Y174-1H

PPM

 in in \mathfrak{F}

ल్
9
61

GO-Y175-1H

GO-Y-175-13C

GO-Y176-1H

PPM


```
O
```

GO-Y177-1H

GO-Y178-1H

 N

PPM

$\stackrel{J}{\stackrel{\rightharpoonup}{i}}$

会

శ్లి웅
수숭

GO-Y143-1H

GO-Y144-1H

GO-Y144-13C

M

204.213
204.163
雨忈

GO-Y179-1H

GO-Y180-1H

GO-Y180-13C

$\stackrel{\circ}{8}$
77

GO-Y184-1H

GO-Y184-13C

GO-Y185-1H

GO-Y186-1H

GO-Y187-1H

GO-Y188-1H

GO-Y189-1H

す

GO-Y189-13C

(MeOC4H8S)2 1H

(MeOC6H12S)2-1H

(MeOC9H18S)2-1H

MeO(CH2)9SH- 13C

1) GO-Y030 in DMSO- $d_{6}: \mathrm{CDCl}_{3}(1: 20)$

GO-Y030 in DMSO-d6:CDCl3

2) Reaction mixture $\mathbf{A} \mathbf{5} \mathbf{~ m i n}$ after dilution with $\mathbf{C D C l}_{3}$ GO-Y030+cyst. diluted with CDCl 3 (5 min)

3) Reaction mixture A after dilution with $\mathrm{CDCl}_{3}(\mathbf{2 4} \mathbf{h})$

Note the re-appearance of the enone signals at $\delta 7.63$ and $7.04\left(J=16.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right.$ and H_{b}, respectively).

GO-Y030+cyst. diluted with CDCI3 (24 h)

1) GO-Y030 in DMSO-d 6

 GO-Y030-DMSO-d6

2) GO-Y030 in DMSO-d $\mathbf{d}_{6} \mathbf{5 m i n}$ after the addition of cysteamine (4 eq.)

Note the disappearance of the enone signals at $\delta 7.68$ and $7.30\left(J=16.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right.$ and H_{b}, respectively $)$.
GO-Y030+cyst DMSO-d6 (5 min)

3) GO-Y030 in DMSO-d $6 \mathbf{1 h}$ after the addition of cysteamine (4 eq.)

Note the re-appearance of the enone signals at $\delta 7.68$ and $7.30\left(J=16.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right.$ and H_{b}, respectively $)$.

GO-Y030+cyst. diluted with CDCl3 (1 h)

4) GO-Y030 in DMSO-d $6 \mathbf{6}$ hafter the addition of cysteamine (4 eq.)

Note the re-appearance of the enone signals at $\delta 7.68$ and $7.30\left(J=16.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right.$ and H_{b}, respectively $)$
GO-Y030+cyst DMSO-d6 (6 h)

