Bioactive Norditerpenoids and Neolignans from the Roots of *Salvia miltiorrhiza*[†]

Ling-Zhi Li,^a Xiao Liang,^b Xue Sun,^a Xiao-Li Qi,^a Jian Wang,^c Qing-Chun Zhao,^d and Shao-

Jiang Song^{* a}

^a School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. E-mail: songsj99@163.com

^b College of Pharmacy, Liaoning University, Shenyang 110036, P. R. China.

^c School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.

[†]Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x

^d Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, P. R. China.

Supporting Information

Table of Contents

1. Supplementary Figures

S 1	HRESIMS spectrum of 1	4
S2	IR spectrum of 1	5
S3	¹ H NMR spectrum of 1 tested in	6
S4	13 C NMR spectrum of 1 tested in C ₅ D ₅ N	7
S5	HSQC spectrum of 1 tested in C ₅ D ₅ N	8
S6	HMBC spectrum of 1 tested in C_5D_5N	9
S7	Single-crystal X-ray structure of 1	10
S 8	HRESIMS spectrum of 2	11
S9	IR spectrum of 2	12
S10	¹ H NMR spectrum of 2 tested in CD ₃ OD	13
S11	¹³ C NMR spectrum of 2 tested in CD ₃ OD	14
S12	HSQC spectrum of 2 tested in CD ₃ OD	15
S13	HBMC correlations and spectrum of 2 tested in CD ₃ OD	16
S14	NOESY spectrum of 2 tested in CD ₃ OD	17
S15	HRESIMS spectrum of 3	18
S16	IR spectrum of 3	19
S17	¹ H NMR spectrum of 3 tested in CD ₃ OD	20
S18	¹³ C NMR spectrum of 3 tested in CD ₃ OD	21
S19	HSQC spectrum of 3 tested in CD ₃ OD	22
S20	HMBC spectrum of 3 tested in CD ₃ OD	23
S21	NOESY spectrum of 3 tested in CD ₃ OD	24
S22	HRESIMS spectrum of 4	25
S23	IR spectrum of 4	26
S24	¹ H NMR spectrum of 4 tested in DMSO- <i>d6</i>	27
S25	¹³ C NMR spectrum of 4 tested in DMSO- <i>d6</i>	28
S26	HSQC spectrum of 4 tested in DMSO-d6	29
S27	HMBC spectrum of 4 tested in DMSO-d6	30
S28	NOESY spectrum of 4 tested in DMSO-d6	31
S29	HRESIMS spectrum of 5 tested in CD ₃ OD	32
S30	¹ H NMR spectrum of 5 tested in CD ₃ OD	33
S31	¹³ C NMR spectrum of 5 tested in CD ₃ OD	34
S32	HMBC spectrum of 5 tested in DMSO- <i>d6</i>	35
S33	Single-crystal X-ray data of 1	36
S34	The chiral HPLC chromatogram of 1	47
S35	The chiral HPLC chromatogram of 2	47
S36	The chiral HPLC chromatogram of 3	48
S37	The chiral HPLC chromatogram of 4	48
S38	The CD spectra of 1 in MeOH	49
S39	The CD spectra of 1a in MeOH.	50

S41	The CD spectra of 2a in MeOH.	52
S42	The CD spectra of 2b in MeOH.	53
S43	The CD spectra of 3a in MeOH.	54
S44	The CD spectra of 3b in MeOH.	55
S45	The calculated CD spectra of 3a and 3b in MeOH.	56
S46	The CD spectra of 4a in MeOH.	57
S47	The CD spectra of 4b in MeOH.	58
S48	The calculated CD spectra of 4a and 4b in MeOH.	59
S49	ES-MS spectrum of 1.	60
S50	ES-MS spectrum of 2	63
S51	ES-MS spectrum of 3 .	66
S52	ES-MS spectrum of 4.	69

Supplementary Tables

Conformations of 1a and 1b.	71
Conformations of 2a and 2b	72
Conformations of 3a and 3b	73
Conformations of 4a and 4b	74
The toxic effect of isolates in H9c2 cells after 24 h incubation	75
The cytoprotective effects of the isolates assessed using LDH leakage assays	76
The toxic effect of isolates in LPS-induced N9 cell viability	77
	Conformations of 1a and 1b Conformations of 2a and 2b Conformations of 3a and 3b Conformations of 4a and 4b The toxic effect of isolates in H9c2 cells after 24 h incubation The cytoprotective effects of the isolates assessed using LDH leakage assays The toxic effect of isolates in LPS-induced N9 cell viability

S1 HRESIMS spectrum of 1

S2 IR spectrum of 1

5

S3 ¹H NMR spectrum of 1 tested in C₅D₅N

S4 ¹³C NMR spectrum of 1 tested in C₅D₅N

S5 HSQC spectrum of 1 tested in C₅D₅N

S6 HMBC spectrum of 1 tested in C₅D₅N

S7 Single-crystal X-ray structure of 1

S8 HRESIMS spectrum of 2

Compound Mass Spectrum List Report

 Sum Formula
 Sigma
 m/z
 Err [ppm]
 Mean Err [ppm]
 Err [mDa]
 rdb
 N Rule
 e

 C 17 H 12 Na 1 O 5
 0.022
 319.0577
 0.54
 0.52
 0.17
 11.50
 ok
 even

S9 IR spectrum of 2

S10 ¹H NMR spectrum of 2 tested in CD₃OD

S11 ¹³C NMR spectrum of 2 tested in CD₃OD

S12 HSQC spectrum of 2 tested in CD₃OD

15

S13 HMBC spectrum of 2 tested in CD₃OD

S14 NOESY spectrum of 2 tested in CD₃OD

17

S15 HRESIMS spectrum of 3

S16 IR spectrum of 3 tested in CD₃OD

DS-17 SONG HORK, 4 29/10/2008 14:22:48

S17 ¹H NMR spectrum of 3 tested in CD₃OD

S 19 HSQC spectrum of 3 tested in CD₃OD

S20 HMBC spectrum of 3 tested in CD₃OD

4

AV-600-HMBC Sample:DS-17

S21 NOESY spectrum of 3 tested in CD₃OD

S22 HRESIMS spectrum of 4

S23 IR spectrum of 4

S24 ¹H NMR spectrum of 4 tested in DMSO-d6

S25 ¹³C NMR spectrum of 4 tested in DMSO-d6

S26 HSQC spectrum of 4 tested in DMSO-d6

AV-600-HSQC Sample:DS-8

S27 HMBC spectrum of 4 tested in DMSO-d6

S28 NOESY spectrum of 4 tested in DMSO-d6

S29 HRESIMS spectrum of 5

Mass Spectrum Molecular Formula Report

Analysis Info				Acquisition Date	4/26/2011	1:38:49 AM	
Analysis Name D:Datal20110426/d: Method tune_50-1000_POS_ Sample Name nafa-2 Comment		26\dsg-3.d 'OS_20110328.m	i-3.d 0110328.m		Bruker Cus micrOTOF-	Bruker Customer nicrOTOF-Q 125	
Acquisition Par	ameter						
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Gell RF	Positive 4500 V -500 V 250.0 Vpp	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Va	0.0 ar 18 4.0 Ive So	5 Bar 0 °C) límin urce	
Generate Moleo	ular Formula Par	ameter					
Formula, min.	C17H12O5						
Formula, max. Measured m/z Check Valence	297.075 no	Tolerance Minimum	4 mDa 0	Charge Maximum	1		
Nirogen Rule Filter H/C Ratio	no no	Electron Confi Minimum	guration both 0	Maximum	3		
tons [100 0.0-1-00	
×104-						4145, 0.91181 #5	
1.5-							
		297.0753					
1.0-							
0.5							
		all the late					
0.04	100 200	300 400	500 600	700	800	900 m/	
# m/ 1 297.075	/z I 53 12430						
Sum Formu C 17 H 13 O	la Sigma 5 0.013 297.0	m/z Err [ppm] Mean Err [p 757 1.67	pm] Err [mDa]	rdb N Rule 11.50 ok ev	e"		

S30 ¹H NMR spectrum of 5 tested in MeOD

33

S31 ¹³C NMR spectrum of 5 in MeOD

S32 HMBC spectrum of 5 tested in DMSO-D6

S33 Single-crystal X-ray data of 1

deg.

deg.

deg.

Table 1. Crystal data and structure refinement for shelxl.

Identification code	shelxl
Empirical formula	C19 H22 04
Formula weight	314. 37
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	triclinic, P-1
Unit cell dimensions	a = 8.424(5) A alpha = 71.63(2)
	b = 9.093(7) A beta = 89.35(2)
	c = 12.323(7) A gamma = 74.44(3)
Volume	860.1(9) A ³
Z, Calculated density	2, 1.214 Mg/m ³
Absorption coefficient	0.084 mm ⁻¹
F (000)	336
Crystal size	0.14 x 0.13 x 0.13 mm
Theta range for data collection	3.15 to 27.48 deg.
Limiting indices	$-10 \le h \le 9$, $-11 \le k \le 11$, $-15 \le 1 \le 15$
Reflections collected / unique	8499 / 3891 [R(int) = 0.0220]
Completeness to theta = 27.48	98.8 %
Max. and min. transmission	0.9895 and 0.9883
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3891 / 0 / 213
Goodness-of-fit on F^2	1.118
-------------------------------	---------------------------
Final R indices [I>2sigma(I)]	R1 = 0.0458, wR2 = 0.1268
R indices (all data)	R1 = 0.0641, wR2 = 0.1355
Largest diff. peak and hole	0.221 and -0.150 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{\circ}4$) and equivalent isotropic displacement parameters (A² $x \ 10^{\circ}3$) for shelxl. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)
C(1)	2222(2)	3226(2)	4136(1)	56(1)
C(2)	1860(3)	4979(2)	3447(2)	78(1)
C(3)	2906(3)	5028(2)	2418(2)	77(1)
C(4)	4817(2)	4404(2)	2690(1)	56(1)
C(5)	5614(3)	3942(3)	1686(1)	75(1)
C (6)	5461 (4)	5731 (2)	2877 (2)	95(1)
C(7)	5259(2)	2981 (2)	3797(1)	43(1)
C (8)	6859(2)	2162(2)	4297(1)	46(1)
C (9)	7163(2)	1104(2)	5413(1)	45(1)
C(10)	5898(2)	838(2)	6135(1)	37(1)
C(11)	4300(2)	1597 (2)	5598(1)	38(1)
C(12)	4022(2)	2551(2)	4461(1)	41(1)
C(13)	2667(2)	1785(2)	6064(1)	46(1)
C(14)	6120(2)	-75(2)	7363(1)	41(1)
C(15)	7453(2)	-606(2)	8097(1)	42(1)
C(16)	9119(2)	-458(2)	7733(1)	45(1)
C(17)	7375(2)	-1357 (2)	9378(1)	59(1)
C(18)	7336(3)	-131 (3)	9981(2)	88(1)
C(19)	8759(3)	-2898(3)	9913(2)	105(1)
0(1)	1495(1)	2811(2)	5229(1)	61(1)

0(2)	2309(1)	1208(2)	7027(1)	61(1)
0(3)	10092(1)	-1479(2)	7453(1)	75(1)
0(4)	9386(1)	891 (2)	7757(1)	62(1)

Table 3. Bond lengths [A] and angles [deg] for shelxl.

C(1)-O(1)	1.456(2)
C(1)-C(12)	1.481(2)
C(1)-C(2)	1.499(3)
C(1)-H(1)	0. 9800
C(2)-C(3)	1.532(3)
С(2)-Н(2А)	0. 9700
C(2)-H(2B)	0. 9700
C(3)-C(4)	1.558(3)
С(3)-Н(ЗА)	0.9700
C(3)-H(3B)	0.9700
C(4)-C(7)	1.521(2)
C(4)-C(5)	1.522(3)
C(4)-C(6)	1. 527 (3)
C(5)-H(5A)	0.9600
C(5)-H(5B)	0.9600
С(5)–Н(5С)	0.9600
C (6) –H (6A)	0.9600
С(6)-Н(6В)	0.9600
С (6) –Н (6С)	0.9600
C(7)-C(12)	1.381(2)
C (7) –C (8)	1. 393 (2)
C (8) –C (9)	1.387(2)
C(8)-H(8)	0. 9300
C (9) –C (10)	1.403(2)
C(9)-H(9)	0. 9300
C(10)-C(11)	1.401(2)

C(10)-C(14)	1.465(2)
C(11)-C(12)	1.379(2)
С(11)-С(13)	1.472(2)
C(13)-O(2)	1.2081(19)
C(13)-O(1)	1.352(2)
С(14) – С(15)	1.330(2)
С(14)-Н(14)	0.9300
С(15)-С(16)	1.496(2)
С(15)-С(17)	1.518(2)
C(16)-O(3)	1.2002(19)
C(16) - O(4)	1.314(2)
С(17) –С(18)	1.516(3)
С (17) –С (19)	1.522(3)
С(17)-Н(17)	0.9800
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
С(19)-Н(19А)	0.9600
С(19)-Н(19В)	0.9600
С(19)-Н(19С)	0.9600
0(4) - H(4)	0.8200
0(1)-C(1)-C(12)	103.35(12)
0(1)-C(1)-C(2)	117.58(14)
C(12)-C(1)-C(2)	109.25(15)
0(1)-C(1)-H(1)	108.8
C(12)-C(1)-H(1)	108.8
C(2) - C(1) - H(1)	108.8
C(1)-C(2)-C(3)	105.09(15)
С(1)-С(2)-Н(2А)	110. 7
С(3)-С(2)-Н(2А)	110. 7

110.7

C(1) - C(2) - H(2B)

C(3) - C(2) - H(2B)	110.7
H(2A)-C(2)-H(2B)	108.8
C(2) - C(3) - C(4)	116.45(15)
С(2)-С(3)-Н(ЗА)	108.2
С(4)-С(3)-Н(ЗА)	108.2
С(2)-С(3)-Н(3В)	108.2
C(4)-C(3)-H(3B)	108.2
H(3A)-C(3)-H(3B)	107.3
C(7) - C(4) - C(5)	111.26(14)
C(7) - C(4) - C(6)	106.98(14)
C(5) - C(4) - C(6)	109.57(18)
C(7) - C(4) - C(3)	110.28(14)
C(5) - C(4) - C(3)	109.10(15)
C(6) - C(4) - C(3)	109.61(17)
C(4)-C(5)-H(5A)	109.5
C(4) - C(5) - H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
С(4)-С(6)-Н(6А)	109.5
C(4) - C(6) - H(6B)	109.5
H(6A) –C(6) –H(6B)	109.5
C(4) - C(6) - H(6C)	109.5
H(6A) –C(6) –H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
С (12) –С (7) –С (8)	114.74(12)
С(12) – С(7) – С(4)	119.73(14)
C(8) - C(7) - C(4)	125.01(14)
C(9) - C(8) - C(7)	121.97(13)
C(9) - C(8) - H(8)	119.0
C(7)-C(8)-H(8)	119.0

C(8) - C(9) - C(10)	122.77(13)
C(8)-C(9)-H(9)	118.6
C(10)-C(9)-H(9)	118.6
C(11) -C(10) -C(9)	114.25(12)
C(11)-C(10)-C(14)	119.64(12)
C(9)-C(10)-C(14)	126.05(12)
C(12)-C(11)-C(10)	121.96(12)
C(12)-C(11)-C(13)	106.11(12)
C(10)-C(11)-C(13)	131.38(13)
C(11) -C(12) -C(7)	123.42(13)
C(11)-C(12)-C(1)	110.10(13)
C(7)-C(12)-C(1)	125.85(13)
0(2)-C(13)-0(1)	120.92(13)
0(2)-C(13)-C(11)	129.67(14)
0(1)-C(13)-C(11)	109.39(13)
C(15)-C(14)-C(10)	130.24(13)
C(15)-C(14)-H(14)	114.9
C(10)-C(14)-H(14)	114.9
C(14) -C(15) -C(16)	122.85(12)
C(14) -C(15) -C(17)	122.00(13)
C(16) – C(15) – C(17)	115.11(12)
0(3) - C(16) - O(4)	124.52(14)
0(3)-C(16)-C(15)	122.60(16)
0(4)-C(16)-C(15)	112.88(12)
С (18) –С (17) –С (15)	110.14(15)
С (18) –С (17) –С (19)	111.30(18)
С (15) –С (17) –С (19)	113.29(16)
С(18)-С(17)-Н(17)	107.3
С(15)-С(17)-Н(17)	107.3
С(19)-С(17)-Н(17)	107.3
С(17) – С(18) – Н(18А)	109.5
С(17)-С(18)-Н(18В)	109.5

H(18A)-C(18)-H(18B)	109.5
С(17) – С(18) – Н(18С)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
С(17) – С(19) – Н(19А)	109.5
С(17)-С(19)-Н(19В)	109.5
H(19A)-C(19)-H(19B)	109.5
С(17) – С(19) – Н(19С)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(13) - O(1) - C(1)	110.06(12)
C(16) - O(4) - H(4)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for shelxl. The anisotropic displacement factor exponent takes the form: $-2 \text{ pi}^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]$

	U11	U22	U33	U23	U13	U12
C(1)	48(1)	69(1)	46(1)	-18(1)	-1(1)	-7(1)
C(2)	67(1)	69(1)	69(1)	-7(1)	0(1)	11(1)
C(3)	85(1)	66(1)	51(1)	0(1)	-5(1)	3(1)
C(4)	75(1)	47(1)	39(1)	-8(1)	4(1)	-16(1)
C(5)	95(1)	85(1)	37(1)	-11(1)	11(1)	-23(1)
C(6)	147 (2)	56(1)	81(1)	-10(1)	-4(1)	-42(1)
C(7)	54(1)	44(1)	34(1)	-16(1)	9(1)	-15(1)

C(8)	45(1)	57(1)	39(1)	-16(1)	16(1)	-19(1)
C (9)	36(1)	57(1)	39(1)	-13(1)	8(1)	-11(1)
C(10)	35(1)	42(1)	37(1)	-15(1)	7(1)	-14(1)
C(11)	37(1)	45(1)	36(1)	-18(1)	8(1)	-15(1)
C(12)	43(1)	44(1)	37(1)	-17(1)	3(1)	-9(1)
C(13)	35(1)	64(1)	46(1)	-22(1)	5(1)	-16(1)
C(14)	35(1)	52(1)	37(1)	-12(1)	10(1)	-17(1)
C(15)	37(1)	50(1)	37(1)	-12(1)	6(1)	-13(1)
C(16)	32(1)	61(1)	37(1)	-13(1)	3(1)	-7(1)
C(17)	46(1)	85(1)	37(1)	-4(1)	4(1)	-23(1)
C(18)	83(1)	143(2)	44(1)	-36(1)	18(1)	-35(1)
C(19)	100(2)	104(2)	64(1)	17(1)	-11(1)	-3(1)
0(1)	36(1)	87(1)	53(1)	-21(1)	4(1)	-7(1)
0(2)	40(1)	99(1)	48(1)	-21(1)	15(1)	-29(1)
0(3)	48(1)	80(1)	90(1)	-33(1)	19(1)	-2(1)
0(4)	46(1)	82(1)	73(1)	-35(1)	25(1)	-33(1)

Table 5. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters (A² x 10^{3}) for shelxl.

	Х	У	Z	U(eq)
H(1)	1892	2655	3661	67
H(2A)	2169	5579	3896	94
H(2B)	694	5436	3194	94
H(3A)	2636	6134	1907	92
H(3B)	2582	4392	2004	92
H(5A)	6794	3578	1842	112
H(5B)	5326	4865	1002	112
H(5C)	5225	3093	1579	112

H(6A)	4892	6082	3470	142
H(6B)	5271	6626	2178	142
H(6C)	6624	5319	3102	142
H(8)	7750	2330	3870	56
H(9)	8252	547	5694	54
H(14)	5179	-323	7680	49
H(17)	6329	-1642	9488	71
H(18A)	8369	135	9922	132
H(18B)	7161	-577	10774	132
H(18C)	6453	826	9626	132
H(19A)	8722	-3669	9538	157
H(19B)	8621	-3338	10714	157
H(19C)	9806	-2661	9824	157
H(4)	10291	941	7522	93

Table 6. Torsion angles [deg] for shelx1.

0(1)-C(1)-C(2)-C(3)	175.14(15)
C(12)-C(1)-C(2)-C(3)	57.9(2)
C(1)-C(2)-C(3)-C(4)	-63.2(2)
C (2) -C (3) -C (4) -C (7)	36.4(2)
C (2) -C (3) -C (4) -C (5)	158.91(18)
C (2) -C (3) -C (4) -C (6)	-81.1(2)
C (5) -C (4) -C (7) -C (12)	-128.50(17)
C (6) -C (4) -C (7) -C (12)	111.86(19)
C(3)-C(4)-C(7)-C(12)	-7.3(2)
C (5) -C (4) -C (7) -C (8)	60.2(2)
C (6) -C (4) -C (7) -C (8)	-59.5(2)
C (3) -C (4) -C (7) -C (8)	-178.62(15)
С (12) –С (7) –С (8) –С (9)	-5.3(2)
C (4) -C (7) -C (8) -C (9)	166. 46 (15)

C (7) –C (8) –C (9) –C (10)	-3.1(2)
C (8) -C (9) -C (10) -C (11)	6.4(2)
C (8) -C (9) -C (10) -C (14)	-170.85(14)
C (9) -C (10) -C (11) -C (12)	-1.46(19)
С(14) –С(10) –С(11) –С(12)	175.99(12)
C (9) -C (10) -C (11) -C (13)	-171.76(15)
С(14) –С(10) –С(11) –С(13)	5.7(2)
C(10) -C(11) -C(12) -C(7)	-7.3(2)
С(13) –С(11) –С(12) –С(7)	165.18(13)
C(10) -C(11) -C(12) -C(1)	-178.56(13)
С(13)-С(11)-С(12)-С(1)	-6.12(16)
C (8) -C (7) -C (12) -C (11)	10.4(2)
C(4)-C(7)-C(12)-C(11)	-161.82(13)
C (8) -C (7) -C (12) -C (1)	-179.73(14)
C(4)-C(7)-C(12)-C(1)	8.1(2)
0(1)-C(1)-C(12)-C(11)	9.66(17)
C(2)-C(1)-C(12)-C(11)	135.60(15)
0(1)-C(1)-C(12)-C(7)	-161.38(14)
C (2) -C (1) -C (12) -C (7)	-35.4(2)
C(12)-C(11)-C(13)-O(2)	-178.14(16)
C(10) -C(11) -C(13) -O(2)	-6.7(3)
C(12)-C(11)-C(13)-O(1)	-0.14(17)
C(10) -C(11) -C(13) -O(1)	171.30(14)
С (11) –С (10) –С (14) –С (15)	-164.62(15)
C (9) -C (10) -C (14) -C (15)	12.5(2)
C(10) -C(14) -C(15) -C(16)	-5.6(2)
С(10) –С(14) –С(15) –С(17)	172.21(15)
C(14) -C(15) -C(16) -O(3)	-89.8(2)
C(17) -C(15) -C(16) -O(3)	92.24(19)
C(14) -C(15) -C(16) -O(4)	90.31(18)
C(17) -C(15) -C(16) -O(4)	-87.64(17)
С(14) – С(15) – С(17) – С(18)	-100.14(19)

C (16) –C (15) –C (17) –C (18)	77.84(18)
C (14) –C (15) –C (17) –C (19)	134. 48 (19)
C (16) -C (15) -C (17) -C (19)	-47.5(2)
0(2)-C(13)-O(1)-C(1)	-175. 33 (15)
C(11)-C(13)-O(1)-C(1)	6.46(17)
C(12)-C(1)-O(1)-C(13)	-9.71(17)
C(2)-C(1)-O(1)-C(13)	-130. 12 (17)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for shelx1 [A and deg.].

D-HA	d (D–H)	d (H A)	d (DA)	< (DHA)
$0(4) - H(4) \dots O(2) #1$	0.82	1.85	2.6684(19)	175.1

Symmetry transformations used to generate equivalent atoms:

#1 x+1, y, z

S34.The chiral HPLC chromatogram of 1.

Figure S34. The chiral HPLC chromatogram of 1.

S35.The chiral HPLC chromatogram of 2.

Figure S35.The chiral HPLC chromatogram of 2.

S36.The chiral HPLC chromatogram of 3.

Figure S36. The chiral HPLC chromatogram of 3.

S37.The chiral HPLC chromatogram of 4.

Figure S37. The chiral HPLC chromatogram of 4.

S38 The CD spectra of 1 in MeOH.

S39 The CD spectra of 1a in MeOH.

S40 The CD spectra of 1b in MeOH.

CD spectrum of 1

S41 The CD spectra of 2a in MeOH.

CD spectrum of 2a

S42 The CD spectra of 2b in MeOH.

S43 The CD spectra of 3a in MeOH.

S44 The CD spectra of 3b in MeOH.

S45 The calculated CD spectra of 3a and 3b in MeOH.

S46 The CD spectra of 4a in MeOH.

CD spectrum of 4a

S47 The CD spectra of 4b in MeOH

CD spectrum of 4b

S49 ES-MS spectrum of 1. Ms

S50 ES-MS spectrum of 2.

Ms²

Ms³

S51 ES-MS spectrum of 3. Ms

Ms³

S52 ES-MS spectrum of 4. Ms

Tables1Conformations of 1a and 1b

no.	conformer	population (%)
1a-1		99.22
1a-2		0.78
1b-1		98.93
1b-2		1.07

Table S1. Conformations of 1a and 1b were Obtained after the Optimization.

Table S2. Conformations of 2a and 2b were Obtained after the Optimization.			
no.	conformer	population (%)	
2a-1		75.68	
2a-2		24.32	
2b-1		75.11	
2b-2		24.89	

2 Conformations of 2a and 2b

of 20 and 2h Obtained after the Optimization Table S2 Confor motio
3 Conformations of 3a and 3b

no.	conformer	population (%)
3a-1		53.51
3a-2		12.71
3a-3		8.88
3a-4		24.91
3b-1		50.30

 Table S3.
 Conformations of 3a and 3b were Obtained after the Optimization.

3b-2	13.55
3b-3	9.35
3b-4	26.80

4 Conformations of 4a and 4a

no.	conformer	population (%)
4a-1		96.55
4a-2		3.45
4b-1		98.97
4b-2		1.03

Table S4. Conformations of 4a and 4b were Obtained after the Optimization.

5 The toxic effect of the isolates in H9c2 cells after 24 h incubation

	CON	Comp. + H_2O_2		
		100µM	50µM	25µM
1a	100±5.78	96.96±3.01	100.47±4.02	101.3±2.24
1b	100±5.78	116.1±5.14*	102.53±2.33	109.26±6.34
2a	100±5.75	91.98±1.76*	90.50±2.04**	95.32±2.66
2b	100±5.75	94.16±1.67	91.79±2.69	97.62±2.77
3a	100±5.75	105.16±1.67	115.21±2.69	105.52±2.77
3b	100±5.75	100.41±6.33	102.87±5.54	101.39±8.39
4a	100±5.78	108.94±4.69	108.305±6.97	103.98±5.66
4b	100±5.78	110.83±9.07	113.01±6.81	112.58±6.92

Table S5The survival rate of the cell H9c2 (%) $(M\pm SD)$

###:P<0.001 Vs Control; *;P<0.05 Vs model; **: P<0.01 Vs model; ***:P< 0.001 Vs model

6 The cytoprotective effects of the isolates assessed using LDH leakage assays

	Con (U/L)	$H_2O_2(200 \ \mu M)$	Comp. + H_2O_2 (U/L)		
		(U/L)	25μΜ	50µM	100µM
Comp.2a	96.67	296.67	273.33	250	226.67
Comp.2b	96.67	296.67	256.67	246.67	240
Comp.3a	96.67	296.67	206.67	253.33	220
Comp.3b	96.67	296.67	246.67	250	230

Table S6 Effects of 2-hour isolates pretreatment on LDH activity in each group

LDH, Lactate dehydrogenase

3b

S The toxic effect of isolates in LPS-induced N9 cell viability

	CON	LPS	Comp. + LPS		
		(1 µg/mL)	0.3µM	3.0µM	30.0µM
Comp.1a	100±1.34	99.34±1.48	100.14±1.79	98.07±1.89	99.75±1.53
Comp.1b	100±4.06	98.12±2.01	100.34±1.11	99.17±1.09	101.2±0.87
Comp.2a	100±1.54	99.46±0.42	103.18±1.74	99.93±0.89	100.00±2.17
Comp.2b	100±2.04	100.52±10.4	100.03±1.67	99.71±1.41	99.52±0.85
Comp.3a	100±1.00	98.90±2.16	100.29±0.85	100.15±0.36	102.15±1.86
Comp.3b	100±0.91	99.26±0.82	98.69±0.60	101.19±1.20	99.55±1.07
Comp.4a	100±0.59	101.79±0.79	99.46±1.15	98.35±0.76	101.31±0.89
Comp.4b	100±1.18	101.57±2.08	98.76±3.33	99.63±0.87	98.56±0.52
MINO	100+2.5	100 35±1 35	_	_	101.28±0.53
	100 2.0	100.00 -1.00			20.0µM

Table S7 The survival rate of the cell N9 (%) $(M \pm SD)$

###:P<0.001 Vs Control; *;P<0.05 Vs model; **: P<0.01 Vs model; ***:P<0.001 Vs mod