Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Regioselective synthesis of functionalized dihydroisoquinolines from *o*-alkynylarylaldimines via Reformatsky Reaction

Tohasib Yusub Chaudhari, ^b Urvashi, ^a Sandeep K. Ginotra, ^c Pooja Yadav, ^a Gulshan Kumar, ^a Vibha Tandon*^{a,b}

S. No.	Index	Page no.
1.	X-ray Crystal Structure and data of 3a and 3m	S1-S6
2.	¹ H, ¹³ C NMR and HRMS spectra of compounds 1a-1n	S7-S34
3.	¹ H, ¹³ C NMR and HRMS spectra of 3a-3zc , 4a and 5	S35-S96
4.	Spectra of Mechanistic Experiments	S97-S102

^a Department of Chemistry, University of Delhi, New Delhi-110007.

^b Special Centre for Molecular Medicine, Jawahar Lal Nehru University, New Delhi-110067.

^c Syngene International Ltd, Biocon Park, Plot # 2 & 3, Phase IV, Bommasandra, Jigani Link Road, Bengaluru, Karnataka-560099, India.

1. X-ray crystal structure

1.1 X-ray crystal structure data of (3a)

The single crystal X-ray data ^[S1] of the given compound was collected on an Oxford Xcalibur CCD diffractometer using graphite monochromated MoK α -radiation (λ = 0.71073Å) at 293(2) K. The multi-scan correction was applied to it. The structure was solved by the direct method using SIR-92 and refined by full matrix least-square refinement technique on F¹ using SHELXL97.² The hydrogen atom were placed into the calculated position and included in the last cycle of the refinement. All the calculations were done using Win GX software package.³ The main crystallographic data and structural refinement details of **3a** and **3m** are given in Table S1 & S2 respectively. Atomic coordinates, bond lengths, bond angles, and thermal parameters for compound **3a** and **3m** have been deposited at the Cambridge Crystallographic Data Centre (CCDC, deposit no.1062612 and 1420734)

Fig. 1s. X-ray crystallographic ORTEP diagram of compound 3a

Fig. 2s. Hydrogen bonding in the crystal lattice of (3a).

Table S1. Crystal data and structure refinement for 3a.

Г	
Empirical Formula	$C_{25}H_{22}Br_1N_1O_2$
Formula Weight	448.35
Temperature	293(2) K
Wavelength	0.71073Å
Crystal system	Monoclinic
Space group	I 2/a
a [Å]	20.6230(12)
b [Å]	11.9083(4)
c [Å]	17.8031(7)
α [°]	90.00
β [°]	97.506
λ [°]	90.00
Volume [Å ^{3]}	4334.7(3)
Z	8
Density (calculated) [Mg/m ³]	1.374
Absorption coefficient [mm ⁻¹]	1.917
F(000)	1840
Crystal size [mm ³]	0.05 x 0.04 x 0.02
Theta range for data collection [°]	2.94 to 25.00
Index ranges	$-24 \le h \le 24$, $-14 \le k \le 12$, -21 $\le 1 \le 21$
Reflections collected / unique	16314 / 3823
1 tollocations collected / dilique	10511/ 5025

R(int)	0.0584
Completeness of Theta at 25 °C (%)	99.8
Absorption Correction	Semi-empirical from equivalents
Max. and Min. transmission	25.00 and 3.00
Refinement method	Full-matrix least square on F ²
Data/ restraints/ parameters	3823/0/266
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma (I)] ^{a,b}	$R_1 = 0.0669, {}^{w}R_2 = 0.1346$
R indices (all data)	$R_1 = 0.1130, {}^{w}R_2 = 0.1536$
Largest diff. peak and hole [Å ⁻³]	0.456 and -0.333 e.Å ⁻³
${}^{a}R = \sum (\ Fo\ - \ Fc\) / \sum \ Fo\ ; {}^{b}R_{W} =$	$\frac{1}{\{\sum[w(F_o^2 - F_c^2)^2]/\sum[w(F_o^2)^2]\}^{1/2}}$

1.2 X-ray crystal structure data (3m)

 $\textbf{Fig. 3s.} \ \textbf{X-ray crystallographic ORTEP diagram of compound 3m}$

Fig. 4s. Hydrogen bonding in the crystal lattice of (3m).

Table S2. Crystal data and structure refinement for (3m).

·	
Empirical Formula	$C_{27}H_{26}Cl_1N_1O_2$
Formula Weight	431.94
Temperature	293(2) K
Wavelength	0.71073Å
Crystal system	Triclinic
Space group	P -1
a [Å]	11.187(5)
b [Å]	19.602(5)
c [Å]	21.429(5)
α [°]	89.988(5)
β [°]	89.828(5)
λ [°]	90.021(5)
Volume [Å ^{3]}	4699 (3)
Z	8

Density (calculated) [Mg/m ³]	1.221			
Absorption coefficient [mm ⁻¹]	0.185			
F(000)	1824			
Crystal size [mm ³]	0.05 x 0.04 x 0.02			
Theta range for data collection [°]	3.04 to 25.00			
Index ranges	$-13 \le h \le 13, -23 \le k \le 23, -16 \le 1$ ≤ 25			
Reflections collected / unique	24698 / 13207			
R(int)	0.0252			
Completeness of Theta at 25 °C (%)	79.7			
Absorption Correction	Semi-empirical from equivalents			
Refinement method	Full-matrix least square on F ²			
Data/ restraints/ parameters	13207/0/1117			
Goodness-of-fit on F ²	0.740			
Final R indices [I>2sigma (I)] ^{a,b}	$R_1 = 0.0596, {}^{w}R_2 = 0.1870$			
R indices (all data)	$R_1 = 0.0979, {}^{w}R_2 = 0.2280$			
Largest diff. peak and hole [Å-3]	0.459 and -0.234 e.Å ⁻³			
$aR = \sum (\ Fo\ - \ Fc\) / \sum \ Fo\ ; {}^bR$	$_{W} = \{ \sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}$			

References:

- 1. G.M. Sheldrick, ActaCrystallogr., Sect. A, 1990,46, 467.
- 2. G.M. Sheldrick, *SHELXL-97*, *Computer program for crystal structure refinement* University of Göttingen, Germany, **1997**.
- 3. L. J. Farrugia, WinGX Version 1.80.05, An integrated system of Windows Programsfor the Solution, Refinement and Analysis of Single Crystal X-Ray Diffraction Data; Department of Chemistry, University of Glasgow (1997-2009).

References

[S1]. CCDC. 1062612 (**3a**) and 1420734 (**3m**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

2. ¹H, ¹³C NMR and HRMS spectra of compounds 1a-1n:

¹H NMR in CDCl₃

(E)-4-Bromo-N-(2-(phenylethynyl)benzylidene)aniline (1a)

¹³C NMR in CDCI₃

(*E*)-4-Bromo-*N*-(2-(phenylethynyl)benzylidene)aniline (**1a**)

HRMS: (E)-4-Bromo-N-(2-(phenylethynyl)benzylidene)aniline (1a)

$^{1}\mathrm{H}\ \mathrm{NMR}$ in $\mathrm{CD_{3}CN}$

(E)-4-bromo-N-(2-(phenylethynyl)benzylidene)aniline $(\mathbf{1a})$

 $^{13}\mathrm{C}$ NMR in $\mathrm{CD_3CN}$

(E)-4-bromo-N-(2-(phenylethynyl)benzylidene)aniline (1a)

¹H NMR in CDCI₃

(E)-4-Fluoro-N-(2-(phenylethynyl)benzylidene)aniline (1b)

(E)-4-Fluoro-N-(2-(phenylethynyl)benzylidene)aniline (1b)

HRMS: (E)-4-Fluoro-N-(2-(phenylethynyl)benzylidene)aniline (1b)

¹H NMR in CDCI₃

(E)-4-Chloro-N-(2-(phenylethynyl)benzylidene)aniline (1c)

¹³C NMR in CDCI₃

(E)-4-Chloro-N-(2-(phenylethynyl)benzylidene)aniline (1c)

HRMS:(E)-4-Chloro-N-(2-(phenylethynyl)benzylidene)aniline (1c)

^IH NMR in CDCI₃

(E)-4-Methyl-N-(2-(phenylethynyl)benzylidene)aniline (1d)

¹³C NMR in CDCI₃

$(\textit{E}) \hbox{-} 4 \hbox{-} Methyl-\textit{N-} (2 \hbox{-} (phenylethynyl) benzylidene) aniline \textbf{(1d)}$

HRMS: (E)-4-Methyl-N-(2-(phenylethynyl)benzylidene)aniline (1d)

¹H NMR in CDCI₃

(E)-4-Methoxy-N-(2-(phenylethynyl)benzylidene)aniline (1e)

HRMS: (E)-4-Methoxy-N-(2-(phenylethynyl)benzylidene)aniline (1e)

$^1\mathrm{H}~\mathrm{NMR}$ in CDCI_3

(E)-N-(2-(phenylethynyl)benzylidene)aniline (1f)

13 C NMR in CDCI $_3$

(E)-N-(2-(phenylethynyl)benzylidene)aniline (1f)

HRMS:(E)-N-(2-(phenylethynyl)benzylidene)aniline (1f)

¹H NMR in CDCI₃

(E)-4-bromo-N-(2-(cyclopropylethynyl)benzylidene)aniline (1g)

¹³C NMR in CDCI₃

(E)-4-Bromo-N-(2-(cyclopropylethynyl)benzylidene)aniline (1g)

HRMS: (E)-4-Bromo-N-(2-(cyclopropylethynyl)benzylidene)aniline (1g)

(*E*)-4-Fluoro-*N*-(2-(pent-1-yn-1-yl)benzylidene)aniline **(1h)**

$^{13}\mathrm{C}\ \mathrm{NMR}$ in CDCI_3

(E)-4-Fluoro-N-(2-(pent-1-yn-1-yl)benzylidene)aniline (1h)

HRMS: (E)-4-fluoro-N-(2-(pent-1-yn-1-yl)benzylidene)aniline (1h)

¹H NMR in CDCl₃ Br CF₃

 $(E)\hbox{-}4-bromo-N-(2-((4-(trifluoromethyl)phenyl)ethynyl)benzylidene)aniline~({\bf 1i})$

13C NMR in CDCI₃ Br CF₃

(E)-4-bromo-N-(2-((4-(trifluoromethyl)phenyl)ethynyl)benzylidene)aniline (1i)

 $\pmb{HRMS}{:}\ (E)\text{-}4\text{-}bromo\text{-}N\text{-}(2\text{-}((4\text{-}(trifluoromethyl)phenyl)ethynyl)benzylidene)} aniline\ (\pmb{1i})$

¹H NMR in CDCl₃

(E)-4-Fluoro-N-(2-(p-tolylethynyl)benzylidene)aniline (1j)

(E)-4-Fluoro-N-(2-(p-tolylethynyl)benzylidene)aniline (1j)

HRMS: (E)-4-Fluoro-N-(2-(p-tolylethynyl)benzylidene)aniline (1j)

Compound Table Compound Label Cpd 4: C22 H16 F N		RT	Mass 313,1252		Formula	MFG Formula C22 H16 F N	MFG Diff (ppm) 4.65	DB Formula C22 H16 F N
				-	C22 H16 F N			
Оре				<u> </u>				
	Llabol	m/z		RT	Algorithm	Mass		
		314.1325	VALUE OF THE PARTY	11	Find by Molecular Feature	313.1252		
		51 112526	1020					
6 - 5 -	([C	* 314,132 22 H16 F N	25 V]+H)+					
3-								
2-								
1					500 550 600 650 700 vs. Mass-to-Charge (m/z)			

¹H NMR in CDCI₃

(E)-4-chloro-N-(5-fluoro-2-(p-tolylethynyl)benzylidene)anilin**e (1k)**

$^{13}\mathrm{C}\ \mathrm{NMR}$ in CDCI_3

 $(\textit{E}) \hbox{-} 4 \hbox{-} Chloro-\textit{N-} (5 \hbox{-} fluoro-2 \hbox{-} (\textit{p-} tolylethynyl) benzylidene) aniline \textbf{(1k)}$

HRMS: (E)-4-Chloro-N-(5-fluoro-2-(p-tolylethynyl)benzylidene)aniline (1k)

¹H NMR in CDCl₃

(E)-N-(5-Fluoro-2-(phenylethynyl)benzylidene)aniline (11)

(E)-N-(5-Fluoro-2-(phenylethynyl)benzylidene)aniline(11)

HRMS: (E)-N-(5-Fluoro-2-(phenylethynyl)benzylidene)aniline(11)

¹H NMR in CDCl₃

(E)-N-(5-Fluoro-2-(phenylethynyl)benzylidene)-4-methoxyaniline (1m)

HRMS: (E)-N-(5-Fluoro-2-(phenylethynyl)benzylidene)-4-methoxyaniline (1m)

¹H NMR in CDCl₃

(E)-N-(5-Methoxy-2-(phenylethynyl)benzylidene)aniline (1n)

13C NMR in CDCl₃ MeO

(E)-N-(5-Methoxy-2-(phenylethynyl)benzylidene)aniline (1n)

HRMS: (E)-N-(5-Methoxy-2-(phenylethynyl)benzylidene)aniline (1n)

3. 1 H, 13 C NMR and HRMS Spectra of 3a-3zc, 4a and 5:

¹H NMR in CDCI₃

ethyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3a)

O Br

Ethyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3a)

HRMS: Ethyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3a)

Ethyl 2-(2-(4-fluorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3b)

Ethyl 2-(2-(4-fluorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3b)

HRMS:ethyl 2-(2-(4-fluorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3b)

Ethyl 2-(2-(4-chlorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3c)

Ethyl 2-(2-(4-chlorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3c)

HRMS: Ethyl 2-(2-(4-chlorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate(3c)

TH NMR in CDCI₃

13C NMR in CDCI₃

Ethyl 2-(3-phenyl-2-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)acetate (3d)

HRMS: Ethyl 2-(3-phenyl-2-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)acetate (3d)

Ethyl 2-(2-(4-methoxyphenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3e)

Ethyl 2-(2-(4-methoxyphenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3e)

HRMS: Ethyl 2-(2-(4-methoxyphenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3e)

Ethyl 2-(2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (3f)

HRMS: Ethyl 2-(2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (3f)

Ethyl 2-(2-(4-bromophenyl)-3-cyclopropyl-1,2-dihydroisoquinolin-1-yl)acetate (3g)

O Br

ethyl 2-(2-(4-bromophenyl)-3-cyclopropyl-1,2-dihydroisoquinolin-1-yl)acetate (3g)

HRMS: Ethyl 2-(2-(4-bromophenyl)-3-cyclopropyl-1,2-dihydroisoquinolin-1-yl)acetate (3g)

$^{13}\mathrm{C}\ \mathrm{NMR}\ \mathrm{in}\ \mathrm{CDCI_3}$

Ethyl 2-(2-(4-fluorophenyl)-3-propyl-1,2-dihydroisoquinolin-1-yl)acetate (3h)

Ethyl 2-(2-(4-fluorophenyl)-3-propyl-1,2-dihydroisoquinolin-1-yl)acetate (3h)

HRMS: Ethyl 2-(2-(4-fluorophenyl)-3-propyl-1,2-dihydroisoquinolin-1-yl)acetate (3h)

ethyl 2-(2-(4-bromophenyl)-3-(4-(trifluoromethyl)phenyl)-1,2-dihydroisoquinolin-1-yl)acetate ($\bf 3i$)

ethyl 2-(2-(4-bromophenyl)-3-(4-(trifluoromethyl)phenyl)-1,2-dihydroisoquinolin-1-yl)acetate (3i)

HRMS: Ethyl 2-(2-(4-bromophenyl)-3-(4-(trifluoromethyl)phenyl)-1,2-dihydroisoquinolin-1-yl)acetate (**3i**)

$^{13}\mathrm{C}\ \mathrm{NMR}\ \mathrm{in}\ \mathrm{CDCI_3}$

tert-Butyl 2-(2-(4-fluorophenyl)-3-(*p*-tolyl)-1,2-dihydroisoquinolin-1-yl)acetate (**3j**)

HRMS: tert-Butyl 2-(2-(4-fluorophenyl)-3-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)acetate (3j)

Compound Label	RT	Mass	Formula	MFG Formula	MFG Diff (ppm)	DB Formula
Cpd 3: C28 H28 F N O2	0.203	429.2121	C28 H28 F N O2	C28 H28 F N O2	-3.93	C28 H28 F N O2
Compound Label	m/z	RT	Algorithm	Mass		
Cpd 3: C28 H28 F N O2	430.2194	0.203	Find by Molecular Fe	ature 429.2121		
x10 5 Cpd 3; C28 H28 F 3.5 ([C2 1.5 1 - 0.5	N O2: +ESI 430.2194 8 H28 F N O		(0.140-0.657 min) Frage	135.0V TC 184.d		

tert-Butyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate

tert-Butyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (**3k**)

HRMS: tert-Butyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3k)

tert-Butyl 2-(2-(4-fluorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3l)

tert-Butyl 2-(2-(4-fluorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3l)

HRMS: tert-Butyl 2-(2-(4-fluorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3l)

HRMS: tert-Butyl 2-(2-(4-chlorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3m)

tert-Butyl 2-(3-phenyl-2-(*p*-tolyl)-1,2-dihydroisoquinolin-1-yl)acetate (**3n**)

HRMS: tert-Butyl 2-(3-phenyl-2-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)acetate (3n)

 $^1\mathrm{H~NMR}$ in $\mathrm{CDCI_3}$

tert-Butyl 2-(2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (30)

$^{13}\mathrm{C}\ \mathrm{NMR}\ \mathrm{in}\ \mathrm{CDCI_3}$

tert-Butyl 2-(2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (30)

HRMS: tert-Butyl 2-(2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (30)

Methyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydro-isoquinolin-1-yl)acetate (**3p**)

$^{13}\mathrm{C}\ \mathrm{NMR}\ \mathrm{in}\ \mathrm{CDCI_3}$

Methyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydro-isoquinolin-1-yl)acetate (**3p**)

HRMS: Methyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydro-isoquinolin-1-yl)acetate (**3p**)

Methyl 2-(2-(4-methoxyphenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3q)

Methyl 2-(2-(4-methoxyphenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3q)

HRMS: Methyl 2-(2-(4-methoxyphenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3q)

Methyl 2-(2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (3r)

13C NMR in CDCI₃

Methyl 2-(2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (3r)

HRMS: Methyl 2-(2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (3**r**)

Methyl 2-(2-(4-bromophenyl)-3-(4-(trifluoromethyl)phenyl)-1,2-dihydroisoquinolin-1-yl)acetate (3s)

$^{13}\mathrm{C}\ \mathrm{NMR}\ \mathrm{in}\ \mathrm{CDCI_3}$

Methyl 2-(2-(4-bromophenyl)-3-(4-(trifluoromethyl)phenyl)-1,2-dihydroisoquinolin-1-yl)acetate (3s)

HRMS: Methyl 2-(2-(4-bromophenyl)-3-(4-(trifluoromethyl)phenyl)-1,2-dihydroisoquinolin-1-yl)acetate (**3s**)

$^1\mathrm{H~NMR}$ in CDCI_3

Methyl 2-(2-(4-fluorophenyl)-3-(*p*-tolyl)-1,2-dihydro -isoquinolin-1-yl)acetate (**3t**)

¹³C NMR in CDCI₃

Methyl 2-(2-(4-fluorophenyl)-3-(*p*-tolyl)-1,2-dihydro -isoquinolin-1-yl)acetate (**3t**)

HRMS: Methyl 2-(2-(4-fluorophenyl)-3-(p-tolyl)-1,2-dihydro-isoquinolin-1-yl)acetate (3t)

Ph O N

Benzyl 2-(2-(4-fluorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (**3u**)

HRMS: Benzyl 2-(2-(4-fluorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3u)

¹H NMR in CDCI₃

Ethyl 2-(2-(4-chlorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)propanoate (3v)

O CI

Ethyl 2-(2-(4-chlorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)propanoate (3v)

HRMS: Ethyl 2-(2-(4-chlorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)propanoate (3v)

¹H NMR in CDCl₃

Ethyl 2-(2-(4-chlorophenyl)-7-fluoro-3-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)acetate (3w)

 $\boldsymbol{HRMS}\text{:}\ Ethyl\ 2\text{-}(2\text{-}(4\text{-}chlorophenyl)\text{-}7\text{-}fluoro\text{-}3\text{-}(p\text{-}tolyl)\text{-}1,2\text{-}dihydroisoquinolin\text{-}1\text{-}yl)acetate}\ (\boldsymbol{3w})$

TH NMR in CDCI₃

 $\label{eq:methyl-2-dihydroisoquinolin-1-yl)} Methyl 2-(2-(4-chlorophenyl)-7-fluoro-3-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)acetate ({\bf 3x})$

¹³C NMR in CDCI₃

Methyl 2-(2-(4-chlorophenyl)-7-fluoro-3-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)acetate (3x)

HRMS: Methyl 2-(2-(4-chlorophenyl)-7-fluoro-3-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)acetate (3x)

TH NMR in CDCI₃

Methyl 2-(7-fluoro-2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (3y)

$^{13}\mathrm{C}\ \mathrm{NMR}\ \mathrm{in}\ \mathrm{CDCl_3}$

Methyl 2-(7-fluoro-2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (3y)

HRMS: Methyl 2-(7-fluoro-2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (3y)

¹H NMR in CDCl₃

 $Benzyl\ 2\hbox{-}(7\hbox{-fluoro-}2\hbox{-}(4\hbox{-methoxyphenyl})\hbox{-}3\hbox{-phenyl-}1,2\hbox{-dihydroisoquinolin-}1\hbox{-yl}) acetate\ (\textbf{3z})$

¹³C NMR in CDCl₃

Benzyl 2-(7-fluoro-2-(4-methoxyphenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3z)

HRMS: Benzyl 2-(7-fluoro-2-(4-methoxyphenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3z)

1H NMR in CDCI₃

Ethyl 2-(7-methoxy-2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (3za)

13C NMR in CDCI₃

Ethyl 2-(7-methoxy-2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (3za)

HRMS: Ethyl 2-(7-methoxy-2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)acetate (**3za**)

TH NMR in CDCI₃

Ethyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)-2-fluoroacetate (3zb)

O F Br

Ethyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)-2-fluoroacetate (3zb)

HRMS: Ethyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)-2-fluoroacetate (3zb)

¹H NMR in CDCI₃

Ethyl 2-fluoro-2-(2-(4-fluorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3zc)

Ethyl 2-fluoro-2-(2-(4-fluorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3zc)

HRMS: Ethyl 2-fluoro-2-(2-(4-fluorophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl)acetate (3zc)

¹H NMR in CD₃CN

2-(4-Bromophenyl)-3-phenylisoquinolin-2-ium (4a)

¹³C NMR in CD₃CN

2-(4-Bromophenyl)-3-phenylisoquinolin-2-ium (4a)

HRMS: 2-(4-Bromophenyl)-3-phenylisoquinolin-2-ium (4a)

¹H NMR in CD₃CN

(2-Ethoxy-2-oxoethyl)zinc(II) bromide (5)

$^{13}\mathrm{C}$ NMR in $\mathrm{CD_3CN}$

(2-Ethoxy-2-oxoethyl)zinc(II) bromide (5)

4. Spectra of Mechanistic Experiments

¹H NMR (Scheme 4 equation c): The NMR given below is a mixture of 5 and 4b. In this, 1a was completely converted to isoquinolinium salt (4b), but as 5 was used in excess hence, unreacted 5 is in mixture and peak of 5 was also observed in reaction. The NMR was recorded without work up in CD₃CN.

 13 C NMR of (Scheme 4 equation c): The NMR given below is a mixture of 5 and 4b. 1a was completely converted to isoquinolinium salt (4b), but as 5 was used in excess hence, unreacted 5 is in mixture and peak of 5 was also observed in reaction. The NMR was recorded without work up in CD₃CN.

Scheme 4 (eq. c): Comparison of spectra of ¹³C NMR in CD₃CN of reaction mixture and constituents separately

Imine peaks (1a) (ppm)	Isoquinolinium (4a) peaks (ppm)	Reformatsky peaks (5) (ppm)	Reaction Mixture (Scheme 4eq. c) peaks (ppm)
160.108			
	152.709		152.4995
152.022			
	147.007		146.797
	142.030		141.839
	139.849		139.713
	139.484		139.360
	133.659		133.516
	132.886		132.829
	131.542		131.447
	131.246		131.142
	131.189		131.065
129.997	129.664		129.559
129.673	129.607		129.492
	128.729		128.624
	128.367		128.272
127.414	127.747		127.585
125.774	125.402		125.316
123.994			
120.015			
		171.463	171.559
		60.853	60.834
		21.046	21.0843
		14.381	14.371

¹H NMR in CDCl₃

Ethyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl-4-d) acetate (3ab)

HRMS: ethyl 2-(2-(4-bromophenyl)-3-phenyl-1,2-dihydroisoquinolin-1-yl-4-d) acetate (3ab)

