Electronic supplementary material for:

Characterisation of 6-DMATS_{Mo} from *Micromonospora olivasterospora* leading to identification of divergence in enantioselectivity, regioselectivity and multiple prenylation of tryptophan prenyltransferases

Julia Winkelblech^{a,b}, Xiulan Xie^c, Shu-Ming Li^{a,b}*

^a Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany

^b Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany.

[°] Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Straße, 35032 Marburg, Germany

*Correspondence to Shu-Ming Li: shuming.li@staff.uni-marburg.de;

Telefon: 49(0) 6421 282-2461; Fax: 49(0)6421 282-

Structure elucidation of enzyme products of 6-DMATS _{M0} by NMR analysis	4
Table S1 HPLC conditions for analyses of enzyme assays.	7
Table S2 Enzyme activities of 6-DMATS _{Mo} towards different prenyl donors.	9
$\label{eq:solution} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	ı- 9
Table S4 HR-ESI-MS analysis of the enzyme products of MolI14.36 (6-DMATS _{M0}).	10
Table S5 ¹ H NMR data of the enzyme products of 6-DMATS _{M0} 1a-C6, 1b-C6, 2a-C6, 3a-C6, and 4-C6 in CD ₃ OD.	11
Table S6 ¹ H NMR data of the enzyme products of 6-DMATS _{M0} 5-C5 - 5-C7, 6-C6 and 6-C7 in CD ₃ OD	12
Table S7 ¹ H NMR data of the enzyme products of 6-DMATS _{M0} 7-C5, 7-C7, 8-C6 and 9a-C6 in CD ₃ OD	13
Table S8 ¹ H NMR data of the enzyme products of 5-DMATS _{Sc} 1b-C5, 1b-C7, 1a-C5,C6, 1a-C5,C7, and 1b-C5,C6 in CD ₃ OD.	14
Table S9 Conditions for enzyme assays to identify enzyme products of DMATSs.	15
Table S10 ¹ H NMR data of the enzyme products of 5-DMATS _{Sc} 6b-C6 and 6b-C7 in CD ₃ OD.	16
Fig. S1: SDS-PAGE analysis of 6-DMATS _{Mo} from <i>M. olivasterospora</i> .	17
Fig. S2: HPLC analysis of the reaction mixtures of 6-DMATS _{Mo} with L-tryptophan and analogs	18
Fig. S3: Comparison of the substrate preferences of 6-DMATS _{Mo} , 6-DMATS _{Sa} , and 6-DMATS _{Sv} towards tryptophan and analogs	19
Fig. S4 ¹ H NMR spectrum of 1a-C6 in CD ₃ OD (500MHz)	20
Fig. S5 ¹ H NMR spectrum of 1b-C6 in CD ₃ OD (500MHz)	20
Fig. S6 ¹ H NMR spectrum of 2a-C6 in CD ₃ OD (400MHz)	21
Fig. S7 ¹ H NMR spectrum of 3a-C6 in CD ₃ OD (400MHz)	21
Fig. S8 ¹ H NMR spectrum of 4-C6 in CD ₃ OD (400MHz)	22
Fig. S9 ¹ H NMR spectrum of 5-C5, 5-C6, and 5-C7 as a mixture in CD ₃ OD (500MHz)	22
Fig. S10 ¹ H- ¹ H COSY spectrum of 5-C5 , 5-C6 , and 5-C7 as a mixture in CD ₃ OD (500MHz) (1)	23
Fig. S11 ¹ H- ¹ H COSY spectrum of 5-C5 , 5-C6 , and 5-C7 as a mixture in CD ₃ OD (500MHz) (2)	23
Fig. S12 ¹ H- ¹ H COSY spectrum of 5-C5, 5-C6, and 5-C7 as a mixture in CD ₃ OD (500MHz) (3)	24
Fig. S13 ¹ H- ¹ H COSY spectrum of 5-C5, 5-C6, and 5-C7 as a mixture in CD ₃ OD (500MHz) (4)	24
Fig. S14 Selected ¹ H- ¹ H COSY connectivities of 5-C6	25
Fig. S15 ¹ H NMR spectrum of the mixture of 6-C6 and 6-C7 in CD ₃ OD (500MHz)	25
Fig. S16 ¹ H- ¹ H COSY spectrum of the mixture of 6-C6 and 6-C7 in CD ₃ OD (500MHz) (1)	26
Fig. S17 ¹ H- ¹ H COSY spectrum of the mixture of 6-C6 and 6-C7 in CD ₃ OD (500MHz) (2)	26
Fig. S18 ¹ H- ¹ H COSY spectrum of the mixture of 6-C6 and 6-C7 in CD ₃ OD (500MHz) (3)	27
Fig. S19 Selected ¹ H- ¹ H COSY connectivities of 6-C6	27
Fig. S20 ¹ H NMR spectrum of the mixture of 7-C5 and 7-C7 in CD ₃ OD (400MHz)	28 28
Fig. S21 ¹ H NMR spectrum of 8-C6 in CD ₃ OD (500MHz)	28
Fig. S22 ¹ H NMR spectrum of 9a-C6 in CD ₃ OD (400MHz)	29
Fig. S23 Ion dependency of the 6-DMATS _{Mo} reaction	29
Fig. S24 Determination of the kinetic parameters of 6-DMATS _{Mo} towards L-tryptophan and DMAPP	30
Fig. S25 LC-MS and HPLC analyses of the enzyme assays of tryptophan with FgaPT2.	31
Fig. S26 LC-MS and HPLC analyses of the enzyme assays of 5-methyltryptophan with FgaPT2	32
Fig. S27 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with FgaPT2	33
Fig. S28 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with FgaPT2	34

Fig. S29 LC-MS and HPLC analyses of the enzyme assays of 5-methyltryptophan with 5-DMATS
Fig. S30 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 5-DMATS
Fig. S31 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 5-DMATS
Fig. S32 LC-MS and HPLC analyses of the enzyme assays of tryptophan with 5-DMATS _{sc}
Fig. S33 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 5-DMATS _{Sc}
Fig. S34 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 5 -DMATS _{Sc} 40
Fig. S35 LC-MS and HPLC analyses of the enzyme assays of tryptophan with 6-DMATS _{Sa}
Fig. S36 LC-MS and HPLC analyses of the enzyme assays of 5-methyltryptophan with 6-DMATS _{Sa} 42
Fig. S37 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 6-DMATS _{Sa}
Fig. S38 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 6-DMATS _{Sa}
Fig. S39 LC-MS and HPLC analyses of the enzyme assays of tryptophan with 6-DMATSsv
Fig. S40 LC-MS and HPLC analyses of the enzyme assays of 5-methyltryptophan with 6-DMATS _{Sv}
Fig. S41 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 6-DMATS _{Sv} 47
Fig. S42 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 6-DMATS _{Sv}
Fig. S43 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 6-DMATS _{Mo}
Fig. S44 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 6-DMATS _{Mo}
Fig. S45 LC-MS and HPLC analyses of the enzyme assays of tryptophan with 7-DMATS
Fig. S46 LC-MS and HPLC analyses of the enzyme assays of 5-methyltryptophan with 7-DMATS
Fig. S47 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 7-DMATS53
Fig. S48 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 7-DMATS54
Fig. S49 Determination of the kinetic parameters of FgaPT2 towards L- and D-tryptophan
Fig. S50 Determination of the kinetic parameters of 5-DMATS towards L- and D-tryptophan
Fig. S51 Determination of the kinetic parameters of 5-DMATS _{Sc} towards L- and D-tryptophan
Fig. S52 Determination of the kinetic parameters of 6-DMATSsa towards L- and D-tryptophan
Fig. S53 Determination of the kinetic parameters of 6-DMATS _{Sv} towards L- and D-tryptophan
Fig. S54 Determination of the kinetic parameters of 6-DMATS _{Mo} towards D-tryptophan
Fig. S55 Determination of the kinetic parameters of 7-DMATS towards L- and D-tryptophan
Fig. S56 ¹ H NMR spectrum of the isolated enzyme product mixture of 1b-C5, 1b-C6, and -1b-C7 of 5-DMATS _{Sc} in CD ₃ OD (400MHz). 59
Fig. S57 ¹ H NMR spectrum of the mixture of 1a-C5,C6 and 1a-C5,C7 in CD ₃ OD (500MHz)
Fig. S58 ¹ H NMR spectrum of 1b-C5,C6 in CD ₃ OD (500MHz)
Fig. S59 CD spectra of the isolated L- and D-enantiomers
Fig. S60 HPLC chromatogram with CHIRALPAK®Zwix(+) column A) and CD-spectrum B) of 4-methyl-DL- tryptophan (5)
Fig. S61 Determination of the kinetic parameters of 5-DMATS _{Sc} towards 5-methyl-L-tryptophan and 5-methyl-D-tryptophan.
Fig. S62 Determination of the kinetic parameters for 6-DMATS _{Mo} towards 5-methyl-L-tryptophan and 5-methyl-D-tryptophan
Fig. S63 HPLC analysis for identification of the enzyme products of 5-methyltryptophan
Fig. S64 HPLC analysis for identification of the enzyme products of 6-methyltryptophan
Fig. S65 HPLC analysis for identification of the enzyme products of 7-methyltryptophan
Fig. S66 ¹ H NMR spectrum of the isolated enzyme product mixture of 6b-C6 and 6b-C7 of 5-DMATS _{sc} in CD ₃ OD (400MHz)

Structure elucidation of enzyme products of 6-DMATS_{Mo} by NMR analysis

Inspection of the NMR spectra of the isolated peaks revealed the presence of a unique product each from the reaction mixtures of **1a**, **1b**, **2a**, **3a**, **4**, **5**, **8**, and **9a**, whereas three products **5-C5**, **-C6**, and **-C7** were found from that of **5** and two products each **6-C6** and **6-C7** or **7-C5** and **7-C6** from those of **6** and **7** (Table S5-S7, Fig. S4-S22). The presence of the signals for dimethylallyl moieties at $\delta_{\rm H} 3.30 - 3.56$ (d/ or m, 2H-1'), 5.09 - 5.41 (t sept or m, H-2'), 1.74 - 1.83 (s, 3H-4'), 1.68 - 1.75 ppm (s, 3H-5') verified a regular *C*-prenylation in all the structures (Table S5-S7).^{2,3,5-7} In comparison to the enzyme products. The presence of the singlet in the range of $\delta_{\rm H} 7.06 - 7.17$ ppm for H-2 implies the prenylation at the benzene ring.

Comparison of the spectra of **1a**, **1b**, **2a**, **3a**, and **4** with each other (Table S5, Fig. S4-S8) showed similar chemical shifts of the three coupling aromatic protons at δ_H 7.49 - 7.59, 6.89 - 6.91, and 7.14 - 7.15 ppm. The two coupling constants of 8.2 and 1.4 - 1.5 Hz indicates *C5*- or *C6*-prenylation in their structures. Considering the relative positions of the signals of the aromatic protons and comparison of the spectra with those of *C5*- and *C6*-prenylated tryptophan and analogues ^{6,8} led to identification of **1a**-**C6**, **1b**-**C6**, **2a**-**C6**, **3a**-**C6**, and **4**-**C6** to be *C6*-prenylated derivatives. **1a**-**C6**, **2a**-**C6**, and **3a**-**C6** have been identified as enzyme products of **1a**, **2a**, and **3a** with 6-DMATSsa.⁶

Signals for three products **5-C5**, **-C6**, and **-C7** with a ratio of 0.6:1:0.6 were detected in the ¹H NMR spectrum of the isolated peak from the enzyme assay of **5**. Due to different coupling pattern, it was possible to determine the prenylation positions in their structures. The three singlets at $\delta_{\rm H}$ 7.06, 6.96, and 6.60 ppm of the main product **5-C6** verified a *C6*-prenylation in its structure (Table S6, Fig S9). The correlations in ¹H-¹H

COSY confirmed this conclusion and facilitated the assignment of the protons (Fig S10-S14). **5-C5** and **5-C7** were identified as *C5-* and *C7-*prenylated products by interpretation of the ¹H-¹H COSY correlations and by comparison of their coupling pattern with those published previously.^{4,6,8}

Two products 6-C6 and 6-C7 with a ratio of 1:0.4 were identified as products in the reaction mixture of 6 (Table S6, Fig. S15). The chemical shifts and the coupling pattern of the main product 6-C6 were nearly the same as those of 6-DMA-5-methyl-DLtryptophan, the product of 6-DMATS_{Sa} with $6.^{6}$ This result was further confirmed by the interpretation of correlations in ¹H-¹H COSY (Fig S16-S19). Three singlets at $\delta_{\rm H}$ 7.15, 7.35, and 6.76 ppm for three aromatic protons were observed for 6-C7, which are distinct from those of 6-C6 and correspond very well to those of the C7-prenylated product reported previously for TyrPT.¹ Thus, MolI14.36 catalyses mainly a C6prenylation of 6 rather than a C7-prenylation. From the reaction mixture of MolI14.36 with 7, two products 7-C5 and 7-C7 with a ratio of 0.12:1 were isolated as a mixture. The ¹H NMR data of the main product **7-C7** correspond very well to those observed for the C7-prenylated product of **7** reported for 6-DMATS_{Sa.}⁶ Signals of **7-C5** had a very low intensity. The observed three singlets of the indole moiety at $\delta_{\rm H}$ 7.14, 7.45, and 7.07 ppm indicates a C4- or C5-prenylation of 7 (Table S7, Fig S20). Comparison of these data with those of the C5-prenylated derivative proved unequivocally the C5prenylation in 7-C5.⁸ Interpretation of the ¹H NMR spectra of 8-C6 and 9a-C6 revealed the attachment of the dimethylallyl moiety at position C-6 of the indole ring (Table S7, Fig. S21 – S22)

Reference List

- 1 A. Fan, H. Chen, R. Wu, H. Xu, and S.-M. Li, *Appl. Microbiol. Biotechnol.*, 2014, **98**, 10119-10129.
- 2 A. Fan and S.-M. Li, *Tetrahedron Lett*, 2014, 55, 5199-5202.
- 3 A. Kremer and S.-M. Li, Appl. Microbiol. Biotechnol., 2008, 79, 951-961.
- 4 J. D. Rudolf and C. D. Poulter, ACS Chem. Biol., 2013, 8, 2707-2714.
- 5 S. Takahashi, H. Takagi, A. Toyoda, M. Uramoto, T. Nogawa, M. Ueki, Y. Sakaki, and H. Osada, *J. Bacteriol.*, 2010, **192**, 2839-2851.
- 6 J. Winkelblech and S.-M. Li, Chembiochem., 2014, 15, 1030-1039.
- 7 X. Yu and S.-M. Li, Methods Enzymol., 2012, 516, 259-278.
- 8 X. Yu, Y. Liu, X. Xie, X.-D. Zheng, and S.-M. Li, *J. Biol. Chem.*, 2012, **287**, 1371-1380.

Condition 1			
Column	Multospher 120 RP-18 column (250×4 mm, 5 µm, C+S		
	Chromatography Servic	e, Langerwehe, Germany)	
Flow rate	1 ml*min ⁻¹		
Solvent A	water		
Solvent B	methanol		
Elution profile	solvent B in A $[v/v]$	duration [min]	
P	from 40 % to 100 %	15 min	
	100 %	5 min	
	40 %	5 min	
Condition 2	10 / 0		
Column	CHIRAL PAK @ Zwiy(+)) column (150 \times 3 mm 3 µm Chiral	
Column	technologies Europe D	picel Group Illkirch Cedex France)	
Flow rota	0.5 ml*min ⁻¹	aler Gloup, Inklich Cedex, Flance)	
Flow fale	$0.5 \text{ mm} \cdot \text{mm}$	- mM disthetening 50 mM family asid	
Solvent A	water.inethanol (1.1), 2.	Jamina 50 mM farmia agid	
Solvent B	methanol, 25 mM diethy	Jamine, 50 mivi formic acid	
Elution profile	solvent B in A [v/v]	duration [min]	
		25 min	
	100 %	5 min	
<u> </u>	0 %	5 min	
Condition 3		1 (250 2 5 6) 6	
Column	Multospher 120-C18 co	1000 mm, 250 x, 2 mm, 5 mm; C+S	
F1	Chromatography Servic	e, Langenteld, Germany))	
Flow rate	0.5 ml*min ⁻¹		
Solvent A	water, $0.1 \% (v/v)$ form	c acid	
Solvent B	acetonitrile, $0.1 \% (v/v)$	formic acid	
Elution profile	solvent B in A $[v/v]$	duration [min]	
	from 5 % to 100 %	40 min	
	100 %	10 min	
	5 %	5 min	
Condition 4			
Condition 4			
Column	Eclipse XDB-C18 colur	nn (5 µm, 4.6 x 150 mm, Agilent)	
Column Flow rate	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹	nn (5 µm, 4.6 x 150 mm, Agilent)	
Column Flow rate Solvent A	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflue	nn (5 μm, 4.6 x 150 mm, Agilent) proacetic acid	
Column Flow rate Solvent A Solvent B	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v)	nn (5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid	
Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v]	nn (5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min]	
Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v] 30 %	nn (5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min	
Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A $[v/v]$ 30 % from 30 % to 45 %	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min	
Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 %	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min	
Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 %	nn (5 µm, 4.6 x 150 mm, Agilent) proacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 5 min	
Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 %	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 5 min 5 min	
Column Flow rate Solvent A Solvent B Elution profile Condition 5	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 %	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 5 min 9 (3.5 µm, 4.6 x 150 mm, Agilent)	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 % Eclipse Plus-C18 column $0.5 \text{ ml}^*\text{min}^{-1}$	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 5 min 1 (3.5 µm, 4.6 x 150 mm, Agilent)	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 % Eclipse Plus-C18 colum $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu-	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min min 5 min 10 min 5 min 5 min 20 min 5 min 7 mi	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 % Eclipse Plus-C18 colum $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v)	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min min 5 min 10 min 5 min 10 min	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30% to 45% 100 % 30 % Eclipse Plus-C18 colum $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v]	nn (5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min min 10 (3.5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min]	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30% to 45% 100 % 30 % Eclipse Plus-C18 colum $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 %	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 7 min 10 min 5 min 10	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30% to 45% 100 % 30 % Eclipse Plus-C18 colum $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % From 30% to 35%	nn (5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 7 min 7 min 7 min 7 min 8 min 9 m	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 % Eclipse Plus-C18 colum $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % From 30 % to 35 % 100 %	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 7 min 10 min 5 min 10 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 30 min 5 min	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 % Eclipse Plus-C18 colum $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % From 30 % to 35 % 100 % 30 %	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 7 min 10 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 30 min 5 min 5 min 30 min 5 min 5 min 30 min 5 min 7	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 % Eclipse Plus-C18 colum $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % From 30% to 35% 100 % 30 %	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min n (3.5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 5 min 5 min	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile Condition 6 Column	Eclipse XDB-C18 colur $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % from 30% to 45% 100 % 30 % Eclipse Plus-C18 colum $0.5 \text{ ml}^*\text{min}^{-1}$ water, 0.5% (v/v) triflu- acetonitrile, 0.5% (v/v) solvent B in A [v/v] 30 % From 30% to 35% 100 % 30 % Eclipse Plus C18 column	nn (5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min min (3.5 µm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 30 min 5 min 30 min 5 min 4.6 x 150 mm, Agilent)	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile Condition 6 Column Flow rate	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A $[v/v]$ 30 % from 30 % to 45 % 100 % 30 % Eclipse Plus-C18 colum 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A $[v/v]$ 30 % From 30 % to 35 % 100 % 30 % Eclipse Plus-C18 colum 0.5 ml*min ⁻¹	nn (5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min min (3.5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 30 min 5 min 5 min 30 min 5 min 7 min	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile Condition 6 Column Flow rate Solvent A	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 % Eclipse Plus-C18 colum 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v] 30 % From 30 % to 35 % 100 % 30 % Eclipse Plus-C18 colum 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 %	nn (5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 7 min 10 min 5 min 10	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile Condition 6 Column Flow rate Solvent A Solvent A	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 % Eclipse Plus-C18 colum 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v] 30 % From 30 % to 35 % 100 % 30 % Eclipse Plus-C18 colum 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) triflu- 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- 0.5 ml*min ⁻¹	nn (5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 7 min 10 min 5 min 10	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile Condition 6 Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 % Eclipse Plus-C18 colum 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v] 30 % From 30 % to 35 % 100 % 30 % Eclipse Plus-C18 colum 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v)	nn (5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 7 min 7 min 7 min 9 m	
Column Flow rate Solvent A Solvent B Elution profile Condition 5 Column Flow rate Solvent A Solvent B Elution profile Condition 6 Column Flow rate Solvent A Solvent B Elution profile	Eclipse XDB-C18 colur 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v] 30 % from 30 % to 45 % 100 % 30 % Eclipse Plus-C18 colum 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v] 30 % From 30 % to 35 % 100 % 30 % Eclipse Plus-C18 colum 0.5 ml*min ⁻¹ water, 0.5 % (v/v) triflu- acetonitrile, 0.5 % (v/v) solvent B in A [v/v]	nn (5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 7 min 10 m (3.5 μm, 4.6 x 150 mm, Agilent) oroacetic acid trifluoroacetic acid duration [min] 5 min 30 min 5 min 5 min 10 min 5 min 10 min 1	

Table S1 HPLC conditions for analyses of enzyme assays.

	from 30 % to 35 %	15 min	
	from 35 % to 70 %	25 min	
	100 %	5 min	
	30 %	5 min	
Condition 7			
Column	CHIRALPAK®Zwix(+) column (150 × 3 mm, 3 µm, Chiral technologies Europe, Daicel Group, Illkirch Cedex, France)		
Flow rate	0.5 ml*min ⁻¹		
Solvent A	methanol		
Elution profile	solvent A	duration [min]	
	100 %	25 min	
Condition 8			
Column	Multospher 120 RP-18 c	olumn (250×10 mm, 5 μm, C+S	
	Chromatography Service	, Langerwehe, Germany)	
Flow rate	2.5 ml*min ⁻¹		
Solvent A	water		
Solvent B	methanol		
Elution profile	solvent B in A [v/v]	duration [min]	
	60 %	5 min	
	from 60 % to 100 %	25 min	
	100 %	5 min	
	60 %	5 min	
Condition 9			
Column	Multospher 120 RP-18 c	olumn (250×10 mm, 5 µm, C+S	
	Chromatography Service	, Langerwehe, Germany)	
Flow rate	$2.5 \text{ ml}^{*}\text{min}^{-1}$		
Solvent A	water		
Solvent B	methanol		
Elution profile	solvent B in A [v/v]	duration [min]	
	from 70 % to 100 %	20 min	
	100 %	5 min	
	70 %	5 min	

prenyl donor	relative conver	relative conversion yield [%]		
	(4 µM, 4 h,	(6 µM, 6 h,		
	1 mM donor)	2 mM donor)		
DMAPP	100	100		
GPP	7.8	11.7		
FPP	≤0.5	≤0.5		

Table S2 Enzyme activities of 6-DMATS_{Mo} towards different prenyl donors.

The enzyme assays were analyzed on HPLC under condition 1. The conversion yields of L-tryptophan in the presence of DMAPP at 51.2 % (1 mM DMAPP) or 98.3 % (2 mM DMAPP) were defined as 100 % relative activity.

Table S3 Comparison of enzyme activities of 6-DMATS_{Mo}, 6-DMATS_{Sa} and 6-DMATS_{Sv} towards tryptophan-containing cyclic dipeptides.

substrate	relative conversion yield [%]		
	6-DMATS _{Mo}	6-DMATS _{Sv}	6-DMATS _{Sa}
<i>cyclo</i> -L-Trp-Gly	7.1±0.5	0.8±0.2	1.8±0.3
cyclo-L-Trp-L-Leu	1.3±0.2	1.3±0.1	9.1±1.2
cyclo-L-Trp-L-Trp	2.7±0.3	2.5±0.1	13.3±0.01
cyclo-L-Trp-L-Phe	2.0±0.01	2.3±0.4	6.9±0.8
<i>cyclo</i> -L-Trp-L-Ala	4.4±0.1	0.8 ± 0.01	1.7±0.1
cyclo-L-Trp-L-His	≤0.5	≤0.5	≤0.5
<i>cyclo</i> -L-Trp-L-Tyr	0.9±0.1	1.6±0.1	17.8±14.8
L-Trp	100.0±5.00	100.0±0.1	100.0±10.1

The enzyme assays contained 0.5 mM aromatic substrate and 1 mM DMAPP were incubated at 37 °C for 2 h with 1 μ M of the purified protein of 6-DMATS_{Mo}, 6-DMATS_{Sa} and 6-DMATS_{Sv}, respectively. Relative product yields were measured in duplicate on HPLC with Multospher 120 RP-18 column. The conversion yields of 6-DMATS_{Mo}, 6-DMATS_{Sv} and 6-DMATS_{Sa} with L-tryptophan at 86.6, 99.5 and 90.3 % were defined as 100 % of relative activity, respectively.

	HR-ESI-MS of the prenylated			
Product	products ([M+H ⁺])			
Trouter	Calculated	Measured	Deviation	
			[ppm]	
1a-C6	273.1598	273.1601	-1.1	
1b-C6	273.1598	273.1590	2.9	
2a-C6	287.1754	287.1775	-7.3	
3a-C6	287.1754	287.1757	-1.0	
4-C6	287.1754	287.1757	-1.0	
5-C5, 5-C6, 5-C7	287.1754	287.1768*	-4.9	
6-C6, 6-C7	287.1754	287.1766*	-4.2	
7-C5, 7-C7	287.1754	287.1768*	-4.9	
8-C6	287.1754	287.1762	-2.8	
9a-C6	291.1503	291.1519	-5.5	

Table S4 HR-ESI-MS analysis of the enzyme products of MolI14.36 (6-DMATS_{Mo}).

*Mass obtained from a product mixture.

Comp	6-DMA-L-Trp (1a-C6)	6-DMA-D-Trp (1b-C6)	6-DMA-L-abrine (2a-C6)	6-DMA-L-β-homo-Trp (3a-C6)	6-DMA-α-methyl-DL–Trp (4-C6)
	$\begin{array}{c} 12\\ \text{COOH}\\ 10\\ 4'\\ 2'\\ 5'\\ 3'\\ 1'\\ 7\\ 8\\ H\\ 1\end{array}$	$\begin{array}{c} 12 \\ \text{COOH} \\ 10 \\ 11 \\ 11 \\ 4' \\ 2' \\ 6 \\ 5' \\ 3' \\ 1' \\ 7 \\ 8 \\ H \\ 2 \\ 7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 12 \\ COOH \\ 10 \\ 11 \\ 13 \\ 4' \\ 5' \\ 3' \\ 1' \\ 7 \\ 8 \\ 1 \\ 1 \\ 12 \\ 1 \\ 13 \\ 1 \\ 13 \\ 1 \\ 13 \\ 1 \\ 13 \\ 1 \\ 1$	$\begin{array}{c} 12 \\ 10 \\ 11 \\ 13 \\ 14 \\ -2 \\ -3' \\ -1' \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -$	$\begin{array}{c} & 13 \\ 10 & 11/12 \\ & 5 & 4 \\ & 3 & \text{NH}_2 \\ 4' & 2' & 6 \\ & 5' & 3' & 1' & 7 & 8 \\ & 5' & 3' & 1' & 7 & 8 \\ & & 1 \end{array}$
Pos.	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J	δ_{H_i} multi, J
2	7.12, s	7.13, s	7.14, br s	7.09, s	7.12, s
4	7.59, d, 8.2	7.57, d, 8.1	7.58, dd, 8.2, 0.8	7.49, dd, 8.2, 0.6	7.56, d, 8.2
5	6.89, dd, 8.2, 1.4	6.90, dd, 8.1	6.89, dd, 8.2, 1.5	6.89, dd ,8.2, 1.5	6.88, dd ,8.2, 1.5
7	7.15, d, 1.4	7.16, s	7.14, br s	7.15, dd, 1.5, 0.6	7.14, s
10	3.49, dd, 15.2, 4.0, 0.8	3.49, dd, 15.2, 4.8	3.42, ddd, 15.4, 4.8, 0.8	2.51, dd, 16.7, 4.0	3.12, d, 15.0
	3.12, dd, 15.2, 9.4	3.17, dd, 15.2, 9.0	3.23, ddd, 15.4, 7.8, 0.6	2.34, dd , 16.7, 8.9	3.31-3.36, m*
11	3.84, dd, 9.4, 4.0	3.95, m	3.71, dd, 7.8, 4.8	3.46-3.50, m	-
12	-	-	-	3.02, d, 7.1	-
13	-	-	2.66, s	-	1.51, s
1′	3.41, d, 7.3	3.41, d, 7.3	3.41, d, 7.4	3.42, d, 7.3	3.41, d, 7.4
2′	5.35, tsept, 7.3, 1.4	5.35, tsept, 7.3, 1.4	5.34, tsept, 7.4, 1.5	5.36, tsept, 7.3, 1.5	5.36, tsept, 7.4, 1.5
4′	1.74, br s	1.75, br s	1.74, s	1.75, s	1.75, br s
5′	1.74, br s	1.75, br s	1.74, s	1.75, s	1.75, br s

Table S5 ¹H NMR data of the enzyme products of 6-DMATS_{Mo} 1a-C6, 1b-C6, 2a-C6, 3a-C6, and 4-C6 in CD₃OD

Chemical shifts (δ) are given in ppm and coupling constants (*J*) in Hz. *Signals are overlaying with solvent signal.

Comp.	5-DMA-4-methyl-DL-Trp (5-C5)	6-DMA-4-methyl-DL-Trp (5-C6)	7-DMA-4-methyl-DL-Trp (5-C7)	6-DMA-5-methyl-DL-Trp (6-C6)	7-DMA-5-methyl-DL-Trp (6-C7)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 12 \\ 13 \\ 4 \\ 5 \\ 5 \\ 5 \\ 3' \\ 1' \\ 7 \\ 8 \\ 1 \\ 1 \\ 7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c} $	$\begin{array}{c} 12\\ 10\\ 10\\ 11\\ 13\\ 5'\\ 3'\\ 5'\\ 3'\\ 1'\\ 7\\ 8\\ 1\\ 7\\ 1 \end{array}$	$12 \\ COOH \\ 10 \\ -11 \\ -10 \\ -11 \\$
Pos.	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J
2	7.09, s	7.06, s	7.15, s	7.08, s	7.15, s
4	-	-	-	7.47, s	7.35, s
5	-	6.96, s	6.76, d, 7.3	-	-
6	6.90, d, 8.2	-	6.69, d, 7.3	-	6.76, s
7	7.10, d, 8.2	6.60, s	-	7.14, s	-
10	3.53-3.61, m	3.73, m	3.53-3.61, m	3.47, dd, 15.1, 3.8	3.56-3.59, m
	3.02-3.12, m	3.05, dd, 16.0, 11.1	3.02-3.12, m	3.07, dd, 15.1, 9.6	3.07, m
11	3.74-3.82, m	3.73, m	3.74-3.82, m	3.83, dd, 9.6, 3.8	3.5-3.54, m
13	2.58, s	2.69, s	2.70, s	2.36, s	2.40, s
1′	3.30-3.36*	3.34, d, 7.4	3.39, d, 7.1	3.37, d, 7.1	3.35-3.37, m
2′	5.20, tsept, 7.0, 1.5	5.33, tsept, 7.4, 1.5	5.40, tsept, 7.1, 1.5	5.25, tsept, 7.1, 1.6	5.41, m
4′	1.74, br s	1.74, br s	1.74, br s	1.75, s	1.75, s
5′	1.74, br s	1.74, br s	1.74, br s	1.74, s	1.74, s

Table S6 ¹H NMR data of the enzyme products of 6-DMATS_{Mo} 5-C5 - 5-C7, 6-C6 and 6-C7 in CD₃OD

Chemical shifts (δ) are given in ppm and coupling constants (*J*) in Hz.*Signals are overlaying with solvent signal.

Comp	5-DMA-6-methyl-DL-Trp	7-DMA-6-methyl-DL-Trp	6-DMA-7-methyl-DL-Trp	6-DMA-5-Fluoro-L-Trp
Comp	(7-C5)	(7-C7)	(8-C6)	(9a-C6)
	4'	12 _{COOH} 10 <i></i> √11	12	12 COOH 10 / 11
		5 4 9 3 NH ₂	соон 10{11	F_{5} 4 9 3 NH_2
	1' - 4 - 9 - 3 NH ₂	13 6 78 N	4' 2' 5 ⁴ 9 3 ['] NH ₂	4' 2' 6 8 N 2
	5 2 13 6 8 N			5' ^{3'} 1' ^{7°} 5
	1	3' 2	5'' ' <mark> </mark> 1 13	
		4' 5'		
Pos.	δ_{H_i} multi, J	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J
2	7.14, s	7.13, s	7.14, s	7.17, s
4	7.45, s	7.43, d ,8.2	7.44, d, 8.0	7.36, d, 11.0
5	-	6.89, d, 8.2	6.88, d, 8.0	-
6	-	-	-	-
7	7.07, s	-	-	7.15, d, 6.4
10	3.48-3.52, m	3.48, dd, 15.3, 4.0	3.46-3.64, m	3.39-3.43, m
	3.03-3.09, m	3.10, dd, 15.3, 9.5	3.09, dd, 15.3, 9.4	3.12, dd, 15.3, 9.1
11	3.83, dd, 9.8, 3.9	3.83, dd, 9.5, 4.0	3.81, dd, 9.4, 4.0	3.81, dd, 9.1, 3.9
13	2.34, s	2.34, s	2.39, s	-
1′	3.42, d,7.1	3.56, d, 6.7	3.42, d, 7.2	3.40, d, 7.5
2′	5.24, m	5.09, tsept, 6.7, 1.4	5.20, m	5.32, m
4′	1.78, s	1.83, s	1.77, s	1,74, s
5′	1.73, s	1.68, s	1.71, s	1.73, s

Table S7 ¹H NMR data of the enzyme products of 6-DMATS_{Mo} **7-C5**, **7-C7**, **8-C6** and **9a-C6** in CD₃OD.

Chemical shifts (δ) are given in ppm and coupling constants (J) in Hz

Comp	5-DMA-D-Trp (1 b-C5)	7-DMA-D-Trp (1b-C7)	5,6-di-DMA-L-Trp (1a-C5,C6)	5,7-di-DMA-L-Trp (1a-C5,C7)	5,6-di-DMA-D-Trp (1b-C5,C6)
	$ \begin{array}{c} 12\\ COOH\\ 10\\ 4'\\ 2'\\ 6\\ 7\\ 8\\ 1 \end{array} $	$ \begin{array}{c} 12\\ 0\\ 10\\ 11\\ 5\\ 9\\ 3\\ NH_2\\ 6\\ 7\\ 8\\ H\\ 2^{*}\\ 5^{*}\\ 4^{*}\\ \end{array} $	$ \begin{array}{c} 4' & 12 \\ 5' & 2' & 10 & 11 \\ 1' & 5 & 4 & 9 & 3 \\ 1'' & 6 & 7 & 8 & 1 \\ 4'' & 3'' & 2'' \\ 5'' & 5'' \end{array} $	$\begin{array}{c} 4^{4} & 12 \\ COOH \\ 4^{3} & 1^{1} & 4 \\ 5^{7} & 2^{7} & 6 \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	$\begin{array}{c} 4' & 12 \\ 5' & 2' & 10 \\ 1' & 5 \\ 4'' & 3'' \\ 4'' & 3'' \\ 5'' \\ 5'' \end{array}$
Pos.	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J
2	7.14, br s	7.19, s	7.08, s	7.15, s	7.10, s
4	7.49, s	7.53, d, 7.1	7.45, s	7.33, br s	7.45, s
5	-	6.98, t, 7.8	-	-	-
6	6.95, dd, 8.5, 1.7	6.91, dd, 7.3	-	6.75, br s	-
7	7.26, d, 8.5	-	7.14, s	-	7.15, s
10	3.50, dd, 15.3, 4.2	3.56, m	3.48, m ^a	3.48, m ^a	3.49, dd, 15.2, 3.9
	3.08, m	3.13, m	3.06, dd, 15.3, 9.6 ^b	3.07, dd, 15.3, 9.6 ^b	3.09, dd, 15.2, 9.6
11	3.84, m	3.81-3.86, m	3.82, dd, 9.6, 4.4	3.82, dd, 9.6, 4.4	3.86, dd, 9.6, 3.9
1′	3.42, m	3.54, d, 7.3	3.42, d, 6.8 °	3.39, m ^c	3.42, d, 6.7 ^g
2′	5.38, m	5.42, m	5.25, t, 6.8 ^d	5.36, t, 7.3 ^f	5.24, t, 6.7 ^h
4′	1.73-1.76, m	1.73-1.76, m	1.74, s ^e	1.75, s ^e	1.74, s ⁱ
5′	1.73-1.76, m	1.73-1.76, m	1.71, s ^e	1.75, s ^e	1.71, s ⁱ
1"	- ´	-	3.39, m ^c	3.39, m ^c	3.38, d, 6.8 ^g
2"	-	-	5.27, t, 7.0 ^d	5.41, t, 7.0 ^f	5.25, t, 6.8 ^h
4"	-	-	1.75, s ^e	1.75, s ^e	1.74, s ⁱ
5"	-	-	1.73, s ^e	1.75, s ^e	1.72, s ⁱ

Table S8 ¹H NMR data of the enzyme products of 5-DMATS_{Sc} 1b-C5, 1b-C7, 1a-C5,C6, 1a-C5,C7, and 1b-C5,C6 in CD₃OD

Chemical shifts (δ) are given in ppm and coupling constants (*J*) in Hz. Signals with the same letters are interchangeable.

Substrate	Protein amount of DMATS	Incubation time
1 mM 1a	0.5 μM FgaPT2	2 h
	8.5 μM 5-DMATS	
	1.4 µM 5-DMATS _{Sc}	
	1.2 μM 6-DMATS _{Sa}	
	3.1 µM 6-DMATS _{Sv}	
	4.0 μM 6-DMATS _{Mo}	
	0.6 μM 7-DMATS	
1 mM 1b	2.0 μM	4 h
	FgaPT2, 5-DMATS, 5-DMATS _{sc} ,	
	6-DMATS _{sa} , 6-DMATS _{sv} , 6-	
	DMATS _{Mo} , 7-DMATS	
0.5 mM 6a	2.7 μM FgaPT2	16 h
	3.0 µM 5-DMATS	
	3.5 µM 5-DMATS _{Sc}	
	3.7 μM 6-DMATS _{Sa}	
	3.5 μM 6-DMATS _{Sv}	
	3.5 μM 6-DMATS _{Mo}	
	2.8 μM 7-DMATS	
0.5 mM 6b	3.5 µM 5-DMATS _{Sc}	
	3.7 μM 6-DMATS _{Sa}	
	3.5 µM 6-DMATS _{sv}	
	3.5 µM 6-DMATS _{Mo}	
	2.8 μM 7-DMATS	
0.5 mM, 7a	2.7 μM FgaPT2	
	3.0 µM 5-DMATS	
	3.5 µM 5-DMATS _{Sc}	
	3.5 μM 6-DMATS _{sv}	
	3.5 μM 6-DMATS _{Mo}	
	2.8 μM 7-DMATS	
0.5 mM, 7b	3.0 µM 5-DMATS	
	3.5 µM 5-DMATS _{sc}	
	3.5 μM 6-DMATS _{Mo}	
0.5 mM, 8a	2.7 μM FgaPT2	
	3.0 µM 5-DMATS	
	$3.5 \mu\text{M} 5\text{-DMATS}_{\text{Sc}}$	
	3.5 μM 6-DMATS _{sv}	
	3.5 μM 6-DMATS _{Mo}	
0.5 mM, 8b	3.0 μM 5-DMATS	
	3.5 µM 5-DMATSsc	
	3.5 μM 6-DMATS _{Mo}	

Table S9 Conditions for enzyme assays to identify enzyme products of DMATSs.

Enzyme assays of 100µl contained 1 mM DMAPP and 5 mM CaCl₂.

Comp	6-DMA-5-methyl-D-Trp	7-DMA-5-methyl-D-Trp (6b-C7)
	(00-00)	(00-27)
	$\begin{array}{c} 12\\ 10\\ 10\\ 11\\ 13\\ 5\\ 4\\ 2\\ 5\\ 5\\ 3\\ 1\\ 7\\ 8\\ 1\\ 1\\ 7\\ 8\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$ \begin{array}{c} 12\\ 0\\ 10\\ 11\\ 13\\ 4\\ 9\\ 3\\ 8\\ 1\\ 2\\ 6\\ 7\\ 8\\ 1\\ 2\\ 5\\ 5\\ 5\\ 5\\ 1 \end{array} $
Pos.	$\delta_{H,}$ multi, J	$\delta_{H,}$ multi, J
2	7.07, s	7.14, s
4	7.47, s	7.34, s
5	-	-
6	-	6.75, s
7	7.13, s	-
10	3.4, dd, 14.9, 3.3	3.47-3.52, m
	3.08, dd, 14.9, 9.7	3.08, m
11	3.83, dd, 9.7, 3.3	3.51-3.54, m
13	2.36, s	2.39, s
1′	3.36, d, 7.2	3.38, m
2′	5.25, tsept, 7.2, 1.6	5.34, m
4′	1.74, s	1.74, s
5′	1.73, s	1.73, s

Table S10 ¹H NMR data of the enzyme products of 5-DMATS_{sc} 6b-C6 and 6b-C7 in CD₃OD.

C1 · 1	1.0	(()		•	•		1	1.		(T	•	тт
(homical	chitte	1214	ara	auan	1n	nnm	and	counting	constants		i 1n	Н7
Chemical	SIIIIIS	(0)	arc	210011	ш	DDIII	anu	COUDINE	Constants	10	<i>i</i> III	IIZ.
		(-)		0		L L		···· 0		· ·	6 - C	

Fig. S1: SDS-PAGE analysis of 6-DMATS_{M0} from *M. olivasterospora*. Proteins were separated on a 12 % SDS gel and stained with Coomassie Brilliant Blue G-250. Lane 1: molecular mass standard; Lane 2: total protein before IPTG induction; lane 3: total protein after IPTG induction; lane 4: insoluble protein fraction; lane 5: soluble protein fraction; lane 6: flow through fraction; lane 7: wash fraction of Ni-NTA-agarose; lanes 8 and 9: purified His8-tagged recombinant protein.

Fig. S2: HPLC analysis of the reaction mixtures of 6-DMATS_{Mo} with L-tryptophan and analogs. For conditions see legends of Table S2. A Multospher 120 RP-18 column was used and an absorption at 277 nm was illustrated. Product yields are given in parentheses after product numbers.

Fig. S3: Comparison of the substrate preferences of 6-DMATS_{Mo}, 6-DMATS_{Sa}, and 6-DMATS_{Sv} towards tryptophan and analogs. The reaction mixtures contained 0.5 mM aromatic substrate and 1 mM DMAPP were incubated with 1 μ M 6-DMATS_{Mo}, 6-DMATS_{Sa}, or 6-DMATS_{Sv} at 37 °C for 1 h. Relative product yields were measured in duplicate on HPLC with Multospher 120 RP-18 column.

Fig. S4 ¹H NMR spectrum of 1a-C6 in CD₃OD (500MHz)

Fig. S5 ¹H NMR spectrum of 1b-C6 in CD₃OD (500MHz)

Fig. S6 ¹H NMR spectrum of 2a-C6 in CD₃OD (400MHz)

Fig. S7 ¹H NMR spectrum of **3a-C6** in CD₃OD (400MHz)

Fig. S8 ¹H NMR spectrum of 4-C6 in CD₃OD (400MHz)

Fig. S9 ¹H NMR spectrum of **5-C5**, **5-C6**, and **5-C7** as a mixture in CD₃OD (500MHz)

Fig. S10 ¹H-¹H COSY spectrum of **5-C5**, **5-C6**, and **5-C7** as a mixture in CD₃OD (500MHz) (1)

Fig. S11 ¹H-¹H COSY spectrum of **5-C5**, **5-C6**, and **5-C7** as a mixture in CD₃OD (500MHz) (2)

Fig. S12 ¹H-¹H COSY spectrum of **5-C5**, **5-C6**, and **5-C7** as a mixture in CD₃OD (500MHz) (3)

Fig. S13 ¹H-¹H COSY spectrum of **5-C5**, **5-C6**, and **5-C7** as a mixture in CD₃OD (500MHz) (4)

Fig. S14 Selected ¹H-¹H COSY connectivities of 5-C6

Fig. S15 ¹H NMR spectrum of the mixture of 6-C6 and 6-C7 in CD₃OD (500MHz)

Fig. S16 1 H- 1 H COSY spectrum of the mixture of **6-C6** and **6-C7** in CD₃OD (500MHz) (1)

Fig. S17 1 H- 1 H COSY spectrum of the mixture of **6-C6** and **6-C7** in CD₃OD (500MHz) (2)

Fig. S18 1 H- 1 H COSY spectrum of the mixture of **6-C6** and **6-C7** in CD₃OD (500MHz) (3)

Fig. S19 Selected ¹H-¹H COSY connectivities of 6-C6

Fig. S20 ¹H NMR spectrum of the mixture of 7-C5 and 7-C7 in CD₃OD (400MHz)

Fig. S21 ¹H NMR spectrum of 8-C6 in CD₃OD (500MHz)

Fig. S22 ¹H NMR spectrum of 9a-C6 in CD₃OD (400MHz)

Fig. S23 Ion dependency of the 6-DMATS $_{Mo}$ reaction.

The enzyme assays containing 1 mM L-tryptophan, 1 mM DMAPP, 5 mM metal ions and were incubated with 1 μ M of the recombinant protein for 1.5 h. The enzyme activity without additives was defined as 100 %.

Fig. S24 Determination of the kinetic parameters of 6-DMATS_{Mo} towards L-tryptophan and DMAPP. Reaction mixtures contained 229.9 nM 6-DMATS_{Mo}, 5 mM MgCl₂ and were incubated for 30 min at 37 °C. 1 mM L-tryptophan and 1 mM DMAPP were used for determination of the kinetic parameters of DMAPP and L-tryptophan, respectively.

Fig. S25 LC-MS and HPLC analyses of the enzyme assays of tryptophan with FgaPT2. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of Lor D-isomer, or 1 mM of their racemate and were incubated at 37 °C for 1.5 h. UVdetection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S26 LC-MS and HPLC analyses of the enzyme assays of 5-methyltryptophan with FgaPT2. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S27 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with FgaPT2. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S28 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with FgaPT2. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S29 LC-MS and HPLC analyses of the enzyme assays of 5-methyltryptophan with 5-DMATS. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S30 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 5-DMATS. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S31 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 5-DMATS. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S32 LC-MS and HPLC analyses of the enzyme assays of tryptophan with 5-DMATS_{sc}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S33 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 5-DMATS_{Sc}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S34 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 5-DMATS_{sc}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S35 LC-MS and HPLC analyses of the enzyme assays of tryptophan with 6-DMATS_{Sa}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S36 LC-MS and HPLC analyses of the enzyme assays of 5-methyltryptophan with 6-DMATS_{Sa}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S37 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 6-DMATS_{Sa}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S38 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 6-DMATS_{Sa}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S39 LC-MS and HPLC analyses of the enzyme assays of tryptophan with 6-DMATS_{Sv}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S40 LC-MS and HPLC analyses of the enzyme assays of 5-methyltryptophan with 6-DMATS_{sv}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S41 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 6-DMATS_{Sv}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S42 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 6-DMATS_{sv}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S43 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 6-DMATS_{M0}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S44 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 6-DMATS_{M0}. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S45 LC-MS and HPLC analyses of the enzyme assays of tryptophan with 7-DMATS. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S46 LC-MS and HPLC analyses of the enzyme assays of 5-methyltryptophan with 7-DMATS. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S47 LC-MS and HPLC analyses of the enzyme assays of 6-methyltryptophan with 7-DMATS. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S48 LC-MS and HPLC analyses of the enzyme assays of 7-methyltryptophan with 7-DMATS. The enzyme assays contained 1 mM DMAPP, 1 μ M purified protein, and 0.5 mM of L- or D-isomer, or 1 mM of their racemate were incubated at 37 °C for 1.5 h. UV-detection was carried out on a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S49 Determination of the kinetic parameters of FgaPT2 towards L- and D-tryptophan. The reaction mixtures with L-tryptophan contained 1 mM DMAPP, 5 mM CaCl₂, and 36.2 nM of the purified protein and were incubated at 37 °C for 15 min. The reaction mixtures with D-tryptophan contained 1 mM DMAPP, 5 mM CaCl₂, and 905.8 nM of the purified protein and were incubated at 37 °C for 30 min.

Fig. S50 Determination of the kinetic parameters of 5-DMATS towards L- and D-tryptophan. The reaction mixtures with L -tryptophan contained 1 mM DMAPP, 5 mM CaCl₂, and 99.2 nM of the purified protein and were incubated at 37 °C for 15 min. The reaction mixtures with D-tryptophan contained 1 mM DMAPP, 5 mM CaCl₂, and 396.8 nM of the purified protein and were incubated at 37 °C for 30 min.

Fig. S51 Determination of the kinetic parameters of 5-DMATS_{Sc} towards L- and D-tryptophan. The reaction mixtures with L-tryptophan contained 1 mM DMAPP, 5 mM MgCl₂, and 118.5 nM of the purified protein and were incubated at 37 °C for 15 min. The reaction mixtures with D-tryptophan contained 1 mM DMAPP, 5 mM MgCl₂, and 473.9 nM of the purified protein and were incubated at 37 °C for 15 min.

Fig. S52 Determination of the kinetic parameters of 6-DMATS_{Sa} towards L- and D-tryptophan. The reaction mixtures with L-tryptophan contained 1 mM DMAPP, 5 mM MgCl₂, and 121.7 nM of the purified protein and were incubated at 37 °C for 15 min. The reaction mixtures with D-tryptophan contained 1 mM DMAPP, 5 mM MgCl₂, and 486.6 nM of the purified protein and were incubated at 37 °C for 30 min.

Fig. S53 Determination of the kinetic parameters of 6-DMATS_{Sv} towards L- and D-tryptophan. The reaction mixtures with L-tryptophan contained 1 mM DMAPP, 5 mM MgCl₂, and 231.0 nM of the purified protein and were incubated at 37 °C for 15 min. The reaction mixtures with D-tryptophan contained 1 mM DMAPP, 5 mM MgCl₂, and 461.9 nM of the purified protein and were incubated at 37 °C for 30 min.

Fig. S54 Determination of the kinetic parameters of 6-DMATS_{Mo} towards D-tryptophan. The reaction mixtures contained 1 mM DMAPP, 5 mM MgCl₂, and 459.8 nM of the purified protein and were incubated at 37 °C for 30 min.

Fig. S55 Determination of the kinetic parameters of 7-DMATS towards L- and D-tryptophan. The reaction mixtures with L-tryptophan contained 1 mM DMAPP, 5 mM CaCl₂, and 228.8 nM of the purified protein and were incubated at 37 °C for 15 min. The reaction mixtures with D-tryptophan contained 1 mM DMAPP, 5 mM CaCl₂, and 1.4 μ M of the purified protein and were incubated at 37 °C for 30 min.

Fig. S56 ¹H NMR spectrum of the isolated enzyme product mixture of **1b-C5**, **1b-C6**, and **- 1b-C7** of 5-DMATS_{Sc} in CD₃OD (400MHz).

Fig. S57 ¹H NMR spectrum of the mixture of 1a-C5,C6 and 1a-C5,C7 in CD₃OD (500MHz)

Fig. S58 ¹H NMR spectrum of 1b-C5,C6 in CD₃OD (500MHz)

Fig. S59 CD spectra of the isolated L- and D-enantiomers. The enantiomers were isolated from racemate on a CHIRALPAK®Zwix(+) column and dissolved in water. CD spectra were recorded on a Jasco J-810 CD spectrometer in the wavelength range of 180-350 nm.

Fig. S60 HPLC chromatogram with CHIRALPAK®Zwix(+) column A) and CD-spectrum B) of 4-methyl-DL-tryptophan (**5**).

Fig. S61 Determination of the kinetic parameters of 5-DMATS_{Sc} towards 5-methyl-Ltryptophan and 5-methyl-D-tryptophan. The reaction mixtures with 5-methyl-L-tryptophan contained 1 mM DMAPP, 5 mM MgCl₂ and 7.1 μ M of the purified protein and were incubated at 37 °C for 15 min. The reaction mixtures with 5-methyl-D-tryptophan contained 1 mM DMAPP, 5 mM MgCl₂ and 473.9 nM of the purified protein and were incubated at 37 °C for 15 min.

Fig. S62 Determination of the kinetic parameters for 6-DMATS_{Mo} towards 5-methyl-Ltryptophan and 5-methyl-D-tryptophan. The reaction mixtures contained 1 mM DMAPP, 5 mM MgCl₂ and 459.8 nM of the purified protein and were incubated at 37 °C for 30 min.

Fig. S63 HPLC analysis for identification of the enzyme products of 5-methyltryptophan. The enzyme assays contained 1 mM DMAPP and 0.5 mM of 5-methyl-L-tryptophan (**6a**) and 5-methyl-D-tryptophan (**6b**). Detailed conditions for the incubation mixtures are given in Table S9. For HPLC analysis, an Eclipse XDB-C18 column was used (condition 5 in Table S1). Detection was carried out with a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S64 HPLC analysis for identification of the enzyme products of 6-methyltryptophan. The enzyme assays contained 1 mM DMAPP and 0.5 mM of 6-methyl-L-tryptophan (**7a**) and 6-methyl-D-tryptophan (**7b**). Detailed conditions for the incubation mixtures are given in Table S9. For HPLC analysis, an Eclipse Plus-C18 column was used (condition 5 in Table S1). Detection was carried out with a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S65 HPLC analysis for identification of the enzyme products of 7-methyltryptophan. The enzyme assays contain 1 mM DMAPP and 0.5 mM of 7-methyl-L-tryptophan (**8a**) and 7-methyl-D-tryptophan (**8b**). Detailed conditions for the incubation mixtures are given in Table S9. For HPLC analysis, an Eclipse Plus-C18 column was used (condition 5 in Table S1). Detection was carried out with a Diode Array detector and illustrated for absorption at 277 nm.

Fig. S66 ¹H NMR spectrum of the isolated enzyme product mixture of **6b-C6** and **6b-C7** of 5-DMATS_{sc} in CD₃OD (400MHz).