Supplementary Material for:

Computation-Guided Improved One-Pot Synthesis of Macrocyclic Cation-Binding Aromatic Pyridone Pentamers[†]

Vicky Ziman Zeng,^a Haibin Su^b and Tianhu Li*^c

^a Singapore American School, 40 Woodlands Street 41, Singapore 738547
^bDivision of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore, 639798
^c Division of Chemistry and Biological Chemistry, 21 Nanyang Link, Nanyang Technological University, Singapore 637371. Tel: (+) 65-6513-7364; E-mail: thli@ntu.edu.sg

General Remarks	52
Scheme S1. One-pot synthesis of 1-6 from the corresponding monomers 1a-6a	53
¹ H NMR and HR-MS data for 1a-6a and 1-6	S 3
Figure S1: Computed structures for 7-BOP conjugates $7A_1$ -7B ₂ with relative energies	55
Figure S2: Computed structures for 7-BOP conjugates 7B ₃ -7B ₈ with relative energies	56
Figure S3. Computed structures for 7 in $7A_1$ -7B ₂ with relative energies	S 7
Figure S4. Computed structures for 7 in $7B_3$ - $7B_8$ with relative energies	58
¹ H NMR Spectra for 1a-6a and 1-6	S 9

General Remarks

All the reagents were obtained from commercial suppliers and used as received unless otherwise noted. Aqueous solutions were prepared from distilled water. The organic solutions from liquid extractions were dried over anhydrous Na₂SO₄ for a minimum of 15 minutes before filtration. Reactions were monitored by thin-layer chromatography (TLC) on silica gel pre-coated glass plate (0.225 mm thickness, 60F-254, E. Merck). Flash column chromatography was performed using pre-coated 0.2 mm silica plates from Selecto Scientific. Chemical yields refer to pure isolated substances. Mass spectra were obtained using the Instrumentation includes Finnigan MAT95XL-T and Micromass VG7035. ¹H NMR spectra were recorded on Bruker ACF300 (300 MHz) and ACF500 (500 MHz) spectrometers. The solvent signal of CDCl₃ was referenced at $\delta = 7.26$ ppm, and DMSO-*d*₆ at 2.50 ppm. Coupling constants (*J* values) are reported in Hertz (Hz). ¹H NMR data are recorded in the order: chemical shift value, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad), number of protons that gave rise to the signal and coupling constant, where applicable.

Scheme S1: One-pot synthesis of 1-6 from the corresponding monomers 1a-6a.

For synthesis of **1a-6a**, see: Z. Y. Du, C. L. Ren, R. J. Ye, J. Shen, Y. J. Lu, J. Wang and H. Q. Zeng, *Chem. Commun.*, **2011**, *47*, 12488-12490.

Careful comparisons of our ¹H NMR data and spectra as well as the corresponding HR-MS with those published by Zeng and his co-workers (*Chem. Commun.*, **2011**, *47*, 12488-12490) suggest the successful synthesis of monomers **1a-6a** and high purity of pentamers **1-6**.

1a: ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 2.1 Hz, 1H), 7.09 (d, J = 2.1 Hz, 1H), 3.71 (d, J = 7.5 Hz, 2H), 2.20 – 2.04 (m, 1H), 0.96 (s, 3H), 0.94 (s, 3H). HRMS-ESI: calculated for [M+Na]⁺ (C₁₀H₁₄O₃N₂Na): m/z 233.0902, found: m/z 233.0896.

2a: ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 2.0 Hz, 1H), 7.12 (d, *J* = 2.2 Hz, 1H), 3.91 (t, *J* = 7.3 Hz, 2H), 1.83 (t, *J* = 7.1 Hz, 2H), 1.36 – 1.05 (m, 10H), (t, *J*= 6.9 Hz, 3H). HRMS-ESI: calculated for [M+Na]⁻ (C₁₄H₂₂O₃N₂): *m/z* 289.1528, found: *m/z* 289.1517.

3a: ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.50 (d, *J* = 2.1 Hz, 1H), 7.47 – 7.27 (m, 6H), 5.49 (s, 2H), 5.34 (s, 2H). HRMS-ESI: calculated for [M+Na]⁻ (C₁₃H₁₂O₃N₂Na): *m/z* 267.0746, found: *m/z* 267.0738.

4a:¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 2.2 Hz, 1H), 7.16 (d, J = 2.2 Hz, 1H), 4.08 – 4.03 (m, 2H), 3.75 – 3.71 (m, 2H), 3.48 (q, J = 7.0 Hz, 2H), 1.16 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.71, 167.43, 139.17, 138.85, 120.06, 111.89, 68.66, 67.09, 58.94, 14.88. HRMS-ESI: calculated for [M-H]⁻(C₁₀H₁₃O₄N₂): m/z 225.085, found: m/z 225.0932.

5a: ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 2.2 Hz, 1H), 7.21 (d, J = 2.2 Hz, 1H), 4.10 – 4.05 (m, 2H), 3.84 – 3.80 (m, 2H), 3.62 – 3.58 (m, 2H), 3.51 – 3.48 (m, 2H), 3.35 (s, 3H). HRMS-ESI: calculated for [M-H]⁻(C₁₁H₁₅O₅N₂): m/z 255.0981, found: m/z 255.0987.

6a: ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 2.1 Hz, 1H), 7.42 (d, J = 2.1 Hz, 1H), 4.11 – 4.07 (m, 2H), 3.85 – 3.81 (m, 2H), 3.64 – 3.56 (m, 8H), 3.38 (s, 3H). HRMS-ESI: calculated for [M-H]⁻ (C₁₁H₁₅O₅N₂): m/z 299.1243, found: m/z 299.1252.

1: ¹H NMR (500 MHz, DMSO- d_6 , 55° (δ 13.48 (s, 5H), 8.99 (d, J = 2.3 Hz, 5H), 8.51 (d, J = 2.4 Hz, 5H), 4.05 (d, J = 7.2 Hz, 10H), 2.14 (td, J = 13.8, 6.9 Hz, 5H), 0.87 (d, J = 6.6 Hz, 30H). HRMS-ESI: calculated for $[M+K]^+(C_{50}H_{60}O_{10}N_{10}K)$: m/z 999.4131, found: m/z 999.4125.

2: ¹H NMR (500 MHz, CDCl₃/DMSO- d_6 =1/2, 55°¢ δ 13.55 (s, 5H), 8.89 (d, J = 2.3 Hz, 5H), 8.34 (d, J = 2.3 Hz, 5H), 4.05 (t, J = 7.2 Hz, 10H), 1.82 (s, 10H), 1.47 – 1.03 (m, 50H), 0.79 (t, J = 6.6 Hz, 15H). HRMS-ESI: calculated for [M+K]⁺(C₇₀H₁₀₀O₁₀N₁₀K): m/z 1279.7261, found: m/z 1279.7255.

3: ¹H NMR (500 MHz, DMSO- d_6 , 55° (§ δ 13.42 (s, 5H), 8.99 (s, 5H), 8.68 (s, 5H), 7.54 – 7.31 (m, 25H), 5.42 (s, 10H). HRMS-ESI: calculated for $[M+K]^+(C_{65}H_{50}O_{10}N_{10}K)$: m/z 1169.3348, found: m/z 1169.3341.

4: ¹H NMR (500 MHz, CDCl₃/DMSO- d_6 =1/9, 110°C) δ 13.21 (s, 5H), 8.90 (d, J = 1.5 Hz, 5H), 8.38 (d, J = 1.8 Hz, 5H), 4.35 (t, J = 5.0 Hz, 10H), 3.86 (t, J = 5.0 Hz, 10H), 3.56 (q, J = 6.9 Hz, 10H), 1.17 (t, J = 6.9 Hz, 15H). HRMS-ESI: calculated for [M+K]⁺ (C₅₀H₆₀O₁₅N₁₀K): m/z 1079.3877, found: m/z 1079.3920.

5: ¹H NMR (500 MHz, CDCl₃/DMSO- d_6 =1/9, 110°C) δ 13.29 (s, 5H), 8.94 (s, 5H), 8.42 (s, 5H), 4.37 (t, J = 4.7 Hz, 10H), 3.90 (t, J = 4.8 Hz, 10H), 3.62 (t, J = 4.8 Hz, 10H), 3.48 (t, J = 4.8 Hz, 10H), 3.27 (s, 15H). HRMS-ESI: calculated for [M+K]⁺ (C₅₅H₇₀O₂₀N₁₀K): m/z 1229.4405, found: m/z 1229.4423.

6: ¹H NMR (500 MHz, CDCl₃/DMSO- d_6 =1/9, 110°C) δ 13.09 (s, 5H), 8.77 (s, 5H), 8.26 (s, 5H), 4.31 (d, J = 4.6 Hz, 10H), 4.00 – 3.96 (m, 10H), 3.72 – 3.57 (m, 30H), 3.50 – 3.43 (m, 10H), 3.28 (s, 15H). HRMS-ESI: calculated for [M+K]⁺ (C₆₅H₉₀O₂₅N₁₀K): m/z 1449.5716, found: m/z 1449.5730.

19.3 Kcal/mol

13.8 Kcal/mol

7A₃

7B₁

7A₂

7B₂

41.3 Kcal/mol 33.8 Kcal/mol

Figure S1 Computed structures for **7-BOP** conjugates $7A_1-7B_2$ with relative energies. All the structures were optimzied at the B3LYP/6-31G(d,p) level with single point energy calculation performed at the 6-311+G(2d, p) level.

33.6 Kcal/mol

19.6 Kcal/mol

Figure S2 Computed structures for **7-BOP** conjugates **7B**₃-**7B**₈ with relative energies. All the structures were optimzied at the B3LYP/6-31G(d,p) level with single point energy calculation performed at the 6-311+G(2d, p) level.

Figure S3 Computed structures for 7 in $7A_1-7B_2$ with relative energies. All the structures were optimzied at the B3LYP/6-31G(d,p) level with single point energy calculation performed at the 6-311+G(2d, p) level.

Figure S4 Computed structures for 7 in $7B_3-7B_8$ with relative energies. All the structures were optimzied at the B3LYP/6-31G(d,p) level with single point energy calculation performed at the 6-311+G(2d, p) level.

¹H NMR Spectra for **1a-6a** and **1-6**

S12

