Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

SUPPLEMENTARY MATERIAL

BELONGING TO THE PAPER

Regioselective Transition Metal- and Halogen-Free Direct Dithiolation at $C(sp^3)$ **-H of Nitrotoluenes with Diaryl Disulfides**

Shailesh Kumar, Rahul Kadu, Sangit Kumar*

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal

By-pass Road, Bhauri, Bhopal 462 066, India

sangitkumar@iiserb.ac.in

Contents

General experimental details	S2
Synthesis of (4-Nitrophenyl)dithioacetals	S3-S8
Synthesis of (2-nitroaryl)dithioacetals	S9-S10
Synthesis of unsymmetrical sulfides	S11-S12
Synthesis of dithio- and diselenoacetals	S12-S13
Synthesis of 4-Nitrobenzaldehyde	S14
Synthesis of 7-(bis(phenylthio)methyl)-1H-indole	S15
Synthesis of 1,2-bis(4-nitrophenyl)ethan-1-one	S16
¹ H NMR, ¹³ C NMR spectra of synthesized compounds	S17-S49
Crystallographic data for compounds 6, 14 and 29	S50-S64
References	S65

General Experimental Details

All reactions were carried out in oven-dried glassware with magnetic stirring. Nitrotoluenes used in this study were purchased from commercial suppliers and used without further purification. Various diphenyl disulfides used were prepared from corresponding thiols. Solvents screened in this report were used as purchased from suppliers. Silica gel (230-400 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates. All NMR experiments were carried out on Bruker 400/500 MHz spectrometers in DMSO d_6 or CDCl₃ and NMR chemical shifts are reported in ppm referenced to the solvent peaks of CDCl₃ (7.26 ppm for ¹H and 77.16 (\pm 0.06) ppm for ¹³C, respectively) or DMSO-d₆ (3.31 ppm for H₂O, 2.47 ppm for ¹H and 39.50 ppm for ¹³C, respectively). The ⁷⁷Se NMR spectra were obtained at 76.31 MHz in CDCl₃ or DMSO-d₆. Chemical shifts are reported relative to dimethyl selenide (⁷⁷Se) (0 ppm). High resolution mass spectra (HRMS), electrospray mass spectra (ESMS), and low resolution mass spectra (LRMS) are reported for ions of ⁸⁰Se. High Resolution mass analysis is performed on quadruple-time of flight (Q-TOF) Bruker MicroTOF-Q II mass spectrometer equipped with an ESI source (-ve/+ve) and APCI (-ve/+ve). Single crystal X-ray data for compounds 6 and 14 were collected on Bruker D8 VENTURE diffractometer equipped with CMOS Photon 100 detector and Mo-K α radiation ($\lambda = 0.71073$ Å) was used.

Scheme S1 General Procedure for Dithiolation of nitrotoluenes

To a single neck flask, KO'Bu (112 mg, 1 mmol) was added in one portion to the solution of the the diphenyl disulfide (109 mg, 0.5 mmol) and 4-nitrotoluene (137 mg, 1 mmol) in DMSO (2 mL) at room temperature. The resulted reaction mixture was stirred at room temperature for 6 hours. Next, saturated aqueous NaCl solution (15 mL) was added and the resulting mixture was extracted with ethyl acetate (3×20 mL). The organic layers were combined, dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The crude product was purified by column chromatography by using dichloromethane/hexane (10/90). The desired compound **1** was obtained in yield (106 mg, 60%).

((4-nitrophenyl)methylene)bis(phenylsulfane) (1). Light yellow liquid, Yield 106 mg (60%); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.73 Hz, 2H), 7.43 (d, J = 8.73 Hz, 2H), 7.34-7.32 (m, 4H), 7.26-7.24 (m, 6H), 5.42 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 147.1, 133.2, 133.1, 129.1, 128.8, 128.6, 123.7, 59.8. HRMS-ES⁻ m/z: 352.0460 (calculated for C₁₉H₁₅NO₂S₂ - H⁺: 352.0483).

((**4-nitrophenyl**)**methylene**)**bis**((**4-methoxyphenyl**)**sulfane**) (**2**). Colourless liquid, Yield 126 mg (61%); ¹H NMR (500 MHz, CDCl₃) δ 8.10-8.08 (m, 2H), 7.38-7.36 (m, 2H), 7.30-7.27 (m, 4H), 6.82-6.79 (m, 4H), 5.21 (s, 1H), 3.80 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 160.4, 147.7, 147.2, 136.3, 128.8, 123.5, 123.4, 114.6, 61.8, 55.3. HRMS-APCI⁻ *m*/*z*: 412.0672 (calculated for C₂₁H₁₉NO₄S₂ - H⁺: 412.0676).

((4-nitrophenyl)methylene)bis(p-tolylsulfane) (3). Light yellow solid, Yield 138 mg (72%); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.76 Hz, 2H), 7.41 (d, *J* = 8.76 Hz, 2H), 7.23 (d, *J* = 8.03 Hz, 4H), 7.06 (d, *J* = 8.03 Hz, 4H), 5.34 (s, 1H), 2.31 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 147.2, 138.9, 133.7, 129.9, 129.5, 128.8, 123.6, 60.5, 21.2. HRMS-ES⁺ *m/z*: 404.0747 (calculated for C₂₁H₁₉NO₂S₂ + Na⁺: 404.0749).

((4-nitrophenyl)methylene)bis((4-fluorophenyl)sulfane) (4). Light yellow liquid, Yield 133 mg (68%); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.75 Hz, 2H), 7.37 (d, J = 8.75 Hz, 2H),

7.32-7.29 (m, 4H), 6.97-6.92 (m, 4H), 5.26 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2 (d, ¹*J*_{C-F} = 250.2 Hz), 147.4, 146.7, 136.3 (d, ³*J*_{C-F} = 8.50 Hz), 128.7, 127.9 (d, ⁴*J*_{C-F} = 3.45 Hz), 123.7, 116.3 (d, ²*J*_{C-F} = 22.0 Hz), 61.2. HRMS-ES⁻ *m*/*z*: 388.0301 (calculated for C₁₉H₁₃F₂NO₂S₂ - H⁺: 388.0272).

((4-nitrophenyl)methylene)bis((4-chlorophenyl)sulfane) (5). Light yellow solid, Yield 112 mg (53%); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.71 Hz, 2H), 7.42 (d, J = 8.71 Hz, 2H), 7.26-7.21 (m, 8H), 5.33 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 146.3, 135.2, 134.8, 131.2, 129.4, 128.7, 123.8, 60.2. HRMS-APCI⁻ m/z: 419.9657 (calculated for C₁₉H₁₃Cl₂NO₂S₂ - H⁺: 419.9681).

((4-nitrophenyl)methylene)bis((4-bromophenyl)sulfane) (6). Light yellow needles, mp 105 °C, Yield 115 mg (45%); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.74 Hz, 2H), 7.43 (d, *J* = 8.74 Hz, 2H), 7.38 (d, *J* = 8.51 Hz, 4H), 7.17 (d, *J* = 8.51 Hz, 4H), 5.34 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 146.2, 134.8, 132.3, 131.8, 128.7, 123.9, 123.3, 59.9. HRMS-APCI⁻ *m/z*: 507.8671 (calculated for C₁₉H₁₃Br₂NO₂S₂ - H⁺: 507.8687).

((4-nitrophenyl)methylene)bis((2-bromophenyl)sulfane) (7). Yellow semi-solid, Yield 153 mg (60%); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.74 Hz, 2H), 7.60 (d, J = 8.74 Hz, 2H), 7.55 (dd, J = 7.87 Hz, J = 1.24 Hz, 2H), 7.44 (dd, J = 7.70 Hz, J = 1.54 Hz, 2H), 7.18 (dd, J = 7.50 Hz, J = 1.24 Hz, 2H), 7.11 (dd, J = 7.60 Hz, J = 1.54 Hz, 2H), 5.78 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 145.8, 134.8, 134.1, 133.4, 129.9, 129.0, 128.0, 127.8, 123.9, 56.9. HRMS-ES⁺ m/z: 531.8643 (calculated for C₁₉H₁₃Br₂S₂NO₂ + Na⁺: 531.8647).

2,2'-(((4-nitrophenyl)methylene)bis(sulfanediyl))dianiline (8). Dark brown viscous liquid, Yield 88 mg (46%); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.73 Hz, 2H), 7.41 (d, *J* = 8.73 Hz, 2H), 7.16-7.10 (m, 4H), 6.67 (d, *J* = 8.03 Hz, 2H), 6.57 (d, *J* = 7.50 Hz, 2H), 5.08 (s, 1H), 4.21 (bs, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 148.0, 147.2, 137.4, 131.4, 128.5, 123.6, 118.4, 115.4, 115.2, 57.8. HRMS-APCI⁻ *m/z*: 382.0658 (calculated for C₁₉H₁₇N₃O₂S₂ - H⁺: 382.0678)

((4-nitrophenyl)methylene)bis((2,5-dichlorophenyl)sulfane) (9). Light grey semi-solid, Yield 125 mg (51%); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.68 Hz, 2H), 7.60 (d, *J* = 8.68 Hz, 2H), 7.42 (d, *J* = 2.39 Hz, 2H), 7.30 (d, *J* = 8.60 Hz, 2H), 7.17 (dd, *J* = 8.60 Hz, *J* = 2.39 Hz, 2H), 5.77 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 144.8, 135.1, 133.8, 133.6, 133.0, 130.9, 129.8, 128.8, 124.1, 56.2. HRMS-ES⁺ *m*/*z*: 511.8875 (calculated for C₁₉H₁₁Cl₄S₂NO₂ + Na⁺: 511.8878).

((**4-nitrophenyl)methylene)bis(naphthalen-1-ylsulfane**) (**10**). Yellow semi-solid, Yield 145 mg (64%) ; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.50 Hz, 2H), 8.01 (d, *J* = 8.70 Hz, 2H), 7.83 (d, *J* = 8.20 Hz, 4H), 7.61 (d, *J* = 7.10 Hz, 2H), 7.47 (d, *J* = 7.50 Hz, 2H), 7.37-7.30 (m, 6H), 5.35 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 147.3, 134.7, 134.2, 130.3, 130.1, 128.8, 128.7, 127.1, 126.4, 125.5, 125.2, 123.6, 60.2. HRMS-ES⁺ *m/z*: 476.0748 (calculated for C₂₇H₁₉S₂NO₂ + Na⁺: 476.0749).

2,2'-(((4-nitrophenyl)methylene)bis(sulfanediyl))dithiophene (**11).** Cream viscous liquid, Yield 62 mg (34%); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.77 Hz, 2H), 7.39 (dd, *J* = 5.34 Hz, *J* = 1.07 Hz, 2H), 7.35 (d, *J* = 8.77 Hz, 2H), 7.05 (dd, *J* = 3.58 Hz, *J* = 1.08 Hz, 2H), 6.95 (dd, *J* = 5.30 Hz, *J* = 3.67 Hz, 2H), 5.18 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 146.1, 136.6, 131.8, 130.2, 128.8, 127.7, 123.6, 63.9. HRMS-APCI⁺ *m/z* 363.9567 (calculated for C₁₅H₁₁NO₂S₄– H⁺ : 363.9589).

2,2'-(((4-nitrophenyl)methylene)bis(sulfanediyl))bis(benzo[*d*]thiazole) (12). Cream semisolid, Yield 80 mg (34%); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.76 Hz, 2H), 7.90 (d, *J* = 8.76 Hz, 2H), 7.87 (d, *J* = 8.23 Hz, 2H), 7.74 (d, *J* = 7.76 Hz, 2H), 7.42 (t, *J* = 7.15 Hz, 2H), 7.32 (t, *J* = 7.15 Hz, 2H), 7.19 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 152.8, 145.1, 139.3, 135.7, 129.2, 126.4, 125.1, 124.0, 122.4, 121.2, 55.4. HRMS-ES⁺ *m*/*z* : 489.9784 (calculated for C₂₁H₁₃N₃O₂S₄ + Na⁺ : 489.9783).

((4-nitrophenyl)methylene)bis(phenylselane) (13). Light yellow liquid, Yield 152 mg (68%); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.75 Hz, 2H), 7.42-7.40 (m, 4H), 7.33 (d, J = 8.75Hz, 2H), 7.27 (d, J = 7.30 Hz, 2H), 7.23-7.19 (m, 4H), 5.49 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 146.8, 135.0, 129.8, 129.2, 128.9, 128.8 123.5, 41.8. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 481.5. HRMS-APCI⁺ m/z : 447.9361 (calculated for C₁₉H₁₅NO₂Se₂ – H⁺ : 447.9353).

((2-nitrophenyl)methylene)bis(phenylsulfane) (14).¹ Brown crystals, mp 84 °C, Yield 80 mg (45%); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.10 Hz, 1H), 7.79 (d, J = 8.10 Hz, 1H), 7.53 (d, J = 7.80 Hz, 1H), 7.36-7.33 (m, 5H), 7.24-7.21 (m, 6H), 6.42 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 134.6, 133.3, 133.2, 132.9, 130.7, 129.1, 128.6, 128.4, 124.5, 54.5. HRMS-ES⁺ m/z : 354.0617 (calculated for C₁₉H₁₅NO₂S₂ + H⁺ : 354.0613).

((2,4-dinitrophenyl)methylene)bis(phenylsulfane) (15). Dark brown viscous liquid, Yield 54 mg (27%); ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 2.26 Hz, 1H), 8.30 (dd, J = 8.71 Hz, J = 2.26 Hz, 1H), 8.06 (d, J = 8.71 Hz, 1H), 7.34-7.32 (m, 4H), 7.29-7.24 (m, 6H), 6.39 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 146.8, 141.6, 133.4, 132.3, 132.1, 129.4, 129.1, 127.0, 120.0, 54.1. HRMS-ES⁻ m/z : 397.0311 (calculated for C₁₉H₁₄N₂O₄S₂ - H⁺ : 397.0339).

2,2'-(((2-nitrophenyl)methylene)bis(sulfanediyl))dianiline (16): Dark brown viscous liquid, Yield 71 mg (37%); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.90 Hz, 1H), 7.68 (d, *J* = 8.17 Hz, 1H), 7.61 (t, *J* = 7.20 Hz, 1H), 7.36 (t, *J* = 7.20 Hz, 1H), 7.16 (dd, *J* = 7.70 Hz, *J* = 1.33 Hz, 2H), 7.10 (t, *J* = 7.70 Hz, 2H), 6.64 (d, *J* = 8.08 Hz, 2H), 6.55 (td, *J* = 7.51 Hz, *J* = 1.12 Hz, 2H), 5.87 (s, 1H), 4.20 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 148.0, 137.3, 135.4, 133.0, 131.4, 131.2, 128.5, 123.9, 118.2, 115.1, 52.9. HRMS-ES⁺ *m*/*z* : 384.0863 (calculated for C₁₉H₁₇N₃O₂S₂ + H⁺ : 384.0835).

((2-nitrophenyl)methylene)bis((4-chlorophenyl)sulfane) (17): Brown viscous liquid, Yield 90 mg (43%); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (td, *J* = 8.05 Hz, *J* = 0.95 Hz, 2H), 7.55 (td, *J* = 7.65 Hz, *J* = 0.95 Hz, 1H), 7.39 (td, *J* = 7.65 Hz, *J* = 1.18 Hz, 1H), 7.27-7.19 (m, 8H), 6.34 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 135.0, 134.4, 133.9, 133.3, 131.5, 130.5, 129.3, 129.0, 124.8, 55.0. HRMS-ES⁻ *m*/*z* : 419.9707 (calculated for C₁₉H₁₃Cl₂NO₂S₂ – H⁺ : 419.9681).

(1-(2-nitrophenyl)ethyl)(phenyl)sulfane (18): Colorless liquid, Yield 39 mg (30%); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, J = 7.95 Hz, J = 0.84 Hz, 1H), 7.55 (dd, J = 8.13 Hz, J = 0.97 Hz, 1H), 7.53 (t, J = 7.71 Hz, 1H), 7.31 (t, J = 7.71 Hz, 1H), 7.24-7.17 (m, 5H), 5.05 (q, J = 6.91 Hz, 1H), 1.67 (d, J = 6.91 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 138.2, 133.8, 132.9, 132.6, 129.3, 128.9, 127.73, 127.69, 124.0, 42.1, 22.2. HRMS-ES⁺ m/z : 282.0557 (calculated for C₁₄H₁₃NO₂S + Na⁺ : 282.0559).

(**1-(4-nitrophenyl)ethyl)(phenyl)sulfane** (**19)**:² Colorless oil, Yield 55 mg (43%); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.79 Hz, 2H), 7.37 (d, *J* = 8.79 Hz, 2H), 7.22-7.17 (m, 5H), 4.35 (q, *J* = 7.06 Hz, 1H), 1.64 (d, *J* = 7.06 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 146.9, 133.6, 133.2, 128.9, 128.1, 127.9, 123.6, 47.7, 21.7.

(**2,4-dichlorophenyl**)(**4-nitrobenzyl**)**sulfane** (**20**)**:** Yellow liquid, Yield 75 mg (48%); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.65 Hz, 2H), 7.42-7.40 (m, 3H), 7.11 (s, 2H), 4.15 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 144.2, 136.4, 133.8, 132.5, 132.1, 129.9, 129.7, 127.5, 123.8, 37.5.

(**nitromethyl**)(**phenyl**)**sulfane** (21):³ Light yellow oil, Yield 27 mg (32%); ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.48 (m, 2H), 7.37-7.35 (m, 3H), 5.44 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 132.2, 131.7, 129.6, 129.2, 79.5.

General Procedure for Synthesis of thio- and selenoacetals 22-25.

Diphenyl disulfide (110 mg, 0.5 mmol) was taken in DMSO in a 10 ml round bottom flask followed by addition of KO'Bu (197 mg, 1.75 mmol). The reaction mixture was placed in a preheated oil bath at 100 °C and heated for 24 h. Then reaction mixture was poured in brine and extracted with dichloromethane (3 x 5 mL), dried over sodium sulfate and evaporated over rotary evaporator. Purification by chromatography (dichloromethane/hexane: 3/97) resulted in the pure product **22**.

bis(phenylthio)methane (22):⁴ Yield 29 mg (25%); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.40 (m, 4H), 7.32-7.28 (m, 4H), 7.25-7.23 (m, 2H), 4.33 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 135.0, 130.7, 129.0, 127.2, 40.6. LRMS-GC *m*/*z* : 232.0 (calculated for C₁₃H₁₂S₂: 232.0).

bis(pyridin-2-ylthio)methane (23):⁴ Yield 27 mg (23%); ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 4.2 Hz, 2H), 7.47 (td, J = 7.9 Hz, J = 1.8 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 7.01 – 6.98 (m, 2H), 5.05 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 149.5, 136.0, 122.5, 119.7, 30.7. LRMS-GC m/z : 234.0 (calculated for C₁₁H₁₀N₂S₂: 234.0).

bis(phenylselanyl)methane (24):⁴ Light Yellow liquid, Yield 106 mg (65%); ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.51 (m, 4H), 7.72-7.26 (m, 6H), 4.22 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 133.0, 130.8, 129.2, 127.6, 21.0. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 345.5. LRMS-GC m/z : 327.9 (calculated for C₁₃H₁₂Se₂: 327.9).

bis((4-methoxyphenyl)selanyl)methane (25). Orange semi-solid, Yield 116 mg (60%); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.77 Hz, 4H), 6.80 (d, J = 8.77 Hz, 4H), 4.06 (s, 2H), 3.79 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 135.9, 120.8, 114.8, 55.3, 23.7. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 336.5 HRMS-ES⁺ m/z : 426.9110 (calculated for C₁₅H₁₆O₂Se₂ + K⁺ : 426.9115).

bis(phenylselanyl)methane- d_2 (26): Yield 50 mg (30%); ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.46 (m, 4H), 7.33-7.18 (m, 6H), 3.43 (bs, H₂O), 2.47 (DMSO). HRMS-GC⁺ m/z : 329.9387 (calculated for C₁₃H₁₀D₂Se₂ : 329.9395).

General Procedure for Synthesis of 4-Nitrobenzaldehyde⁵

A mixture of dithioacetal **1** (90 mg, 0.25 mmol), H_2O_2 (30%, 80 µl, 1 mmol) and SOCl₂ (36 µl, 0.5 mmol) was stirred in CH₃CN at 25 °C for 24 h. The progress of the reaction was monitored by TLC. After completion, the reaction was quenched by the addition of H₂O (10 mL) and the resulting mixture was extracted with EtOAc (4 x 3 mL). The combined organic phase was dried over anhydrous sodium sulfate, and evaporated. Chromatography on silica gel (DCM/Hexane: 50/50) gave a pure product **27** in 60% yield.

4-Nitrobenzaldehyde (27): Light yellow solid, Yield 38 mg (60%); ¹H NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H), 8.39 (d, *J* = 8.63 Hz, 2H), 8.06 (d, *J* = 8.63 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 151.2, 140.0, 130.5, 124.3.

General Procedure for Synthesis of 7-(bis(phenylthio)methyl)-1*H*-indole⁶

((2-nitrophenyl)methylene)bis(phenylsulfane) **14** (88 mg, 0.25 mmol) was dissolved in THF (3 mL) and the solution cooled to -40 °C. Then vinylmagnesium bromide (0.75 mL, 1.0 M in THF, 3.0 equiv) was added dropwise over 15 min. After completion of the addition, the reaction mixture was stirred at -40 °C. The progress of reaction was monitored by TLC. When all the starting material was consumed, the reaction mixture was quenched with saturated aqueous NH₄Cl solution (5 mL), extracted with ethyl acetate (3×10 mL), the combined organic layers were washed with brine (10 mL) and dried over Na₂SO₄. The crude product was purified by column chromatography (hexane: ethyl acetate. 95:5). Yield 60 mg (70%).

7-(bis(phenylthio)methyl)-1*H***-indole (28):** Dark red semi-solid, Yield 60 mg (70%); ¹H NMR (400 MHz, CDCl₃) δ 9.08 (brs, 1H), 7.55 (d, *J* = 7.64 Hz, 1H), 7.30-7.27 (m, 5H), 7.22-7.18 (m, 6H), 6.91-6.83 (m, 2H), 6.56 (t, *J* = 2.50 Hz, 1H), 5.67 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 134.0, 133.3, 132.8, 129.2, 128.9, 128.1, 124.3, 122.1, 121.3, 121.2, 119.2, 102.7, 59.9. HRMS-ES⁺ *m/z* : 386.0434 (calculated for C₂₁H₁₇NS₂ + K⁺ : 386.0436).

1,2-bis(4-nitrophenyl)ethan-1-one (29): Light brown needles, mp 107 °C, Yield 57 mg (30%); ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.82 Hz, 2H), 8.19 (d, *J* = 8.71 Hz, 2H), 8.15 (d, *J* = 8.85 Hz, 2H), 7.42 (d, *J* = 8.71 Hz, 2H), 4.46 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 150.6, 147.3, 140.7, 140.5, 130.7, 129.4, 124.1, 123.9, 45.4.

S1 ¹H & ¹³C NMR of 1

S2 ¹H & ¹³C NMR of 2

S3 ¹H & ¹³C NMR of 3

S4 ¹H & ¹³C NMR of 4

140 130 120 110 100 f1 (ppm) -10

S5 ¹H & ¹³C NMR of 5

f1 (ppm)

S6 ¹H & ¹³C NMR of 6

110 100 f1 (ppm)

S7 ¹H & ¹³C NMR of 7

S23

S8 ¹H & ¹³C NMR of 8

28.03 -7.59 -7.09 -7.09 -7.09 -7.09 -7.09 -6.65 -6.57 -6.55 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -6.53 -7.59 -6.55 -7.55 -6.55 -7.55 -4.20

S9 ¹H & ¹³C NMR of 9

S25

S10 ¹H & ¹³C NMR of 10

S11 ¹H & ¹³C NMR of 11

S27

S12 ¹H & ¹³C NMR of **12**

S13 ¹H & ¹³C NMR of 13

S14 ⁷⁷Se NMR of 13

985			2				12					11 (Pr. 17)		11111
	1			1	1					· · · ·			· · · ·	
800	750	700	650	600	550	500	450 f1 (ppm)	400	350	300	250	200	150	100

S15 ¹H & ¹³C NMR of 14

110 100 f1 (ppm)

S16 ¹H & ¹³C NMR of 15

S32

S17 ¹H & ¹³C NMR of 16

S18 ¹H & ¹³C NMR of 17

S34

S19 ¹H & ¹³C NMR of 18

S20 ¹H & ¹³C NMR of **19**

S21 ¹H & ¹³C NMR of 20

S37

S22 ¹H & ¹³C NMR of 21

f1 (ppm)

S23 ¹H & ¹³C NMR of 22

S24 ¹H & ¹³C NMR of 23

S25 ¹H & ¹³C NMR of 24

S26 ⁷⁷Se NMR of 24

580 560 540

520 500 480

400 380 360 340 f1 (ppm)

320 300 280

260 240 220

200 180 160

460 440 420

140 120 100

S27 ¹H & ¹³C NMR of 25

S28 ⁷⁷Se NMR of 25

	· · · ·				-				· · ·					· · ·		
750	700	650	600	550	500	450	400	350 f1 (ppm)	300	250	200	150	100	50	0	-50

S29 ¹H NMR of 26

Qualitative Compound Report

S31 ¹H & ¹³C NMR of 27

S47

S32 ¹H & ¹³C NMR of 28

S48

S33 ¹H & ¹³C NMR of 29

0

Ortep view of 6 with 40% ellipsoidal probability and hydrogens are omitted for clarity (CCDC No. 1487922)

Table 1 Crystal data and structure refinement for 6

Tuble I eljstal auta alla stra	
Identification code	SK_543_P (Final)
Empirical formula	$C_{19}H_{13}Br_2NO_2S_2$
Formula weight	511.22
Temperature/K	187.23
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	7.6546(8)
b/Å	29.982(3)
c/Å	8.7107(10)
α/°	90
β/°	108.845(4)
$\gamma/^{\circ}$	90
Volume/Å ³	1892.0(4)
Z	4
$\rho_{calc}g/cm^3$	1.7948
μ/mm^{-1}	4.519
F(000)	1008.0
Crystal size/mm ³	0.3 imes 0.25 imes 0.2
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	5.12 to 54.96
Index ranges	$-9 \le h \le 9, 0 \le k \le 38, 0 \le l \le 11$
Reflections collected	4339
Independent reflections	4339 [$R_{int} = 0.0000, R_{sigma} = 0.0268$]
Data/restraints/parameters	4339/0/235
Goodness-of-fit on F ²	1.069
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0318, wR_2 = 0.0571$
Final R indexes [all data]	$R_1 = 0.0434, wR_2 = 0.0603$
Largest diff. peak/hole / e Å ⁻³	0.63/-0.53

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 6. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom x		У	Z	U(eq)	
Br2	7449.3(4)	3185.74(9)	3196.7(3)	29.83(8)	
Br1	8890.1(4)	5095.29(10)	-8363.3(4)	33.27(8)	
S 1	2001.6(9)	3384.8(2)	-4134.4(8)	26.13(15)	
S2	3546.1(9)	4227.3(2)	-4770.3(8)	24.80(14)	
O1	-2165(3)	3487.1(7)	-12705(2)	41.2(5)	
C17	74(3)	3325.8(8)	-10250(3)	22.0(5)	
C5	7323(3)	4821.9(8)	-7316(3)	23.0(5)	
N1	-1034(3)	3209.4(7)	-11930(3)	27.0(5)	
C2	5028(3)	4436.2(8)	-5820(3)	21.9(5)	
C8	3672(3)	3352.9(8)	-2162(3)	21.8(5)	

C16	-115(3)	3747.2(8)	-9672(3)	23.9(5)
O2	-799(3)	2847.9(7)	-12457(2)	39.6(5)
C13	3952(3)	3709.8(8)	-1084(3)	22.7(5)
C15	944(3)	3856.0(8)	-8098(3)	23.1(5)
C18	1272(3)	3011.5(8)	-9312(3)	22.6(5)
C12	5125(3)	3666.0(8)	493(3)	22.7(5)
C1	3276(3)	3642.5(8)	-5362(3)	21.0(5)
C7	4318(3)	4734.5(8)	-7090(3)	24.0(5)
C9	4580(3)	2950.7(8)	-1649(3)	24.7(5)
C14	2159(3)	3548.1(8)	-7117(3)	19.8(5)
C6	5472(3)	4932.4(8)	-7842(3)	23.8(5)
C11	5977(3)	3256.5(8)	993(3)	21.3(5)
C19	2303(3)	3126.0(8)	-7742(3)	22.3(5)
C4	8064(4)	4527.6(8)	-6066(3)	25.6(5)
C3	6902(4)	4336.4(8)	-5307(3)	25.6(5)
C10	5731(3)	2900.0(8)	-61(3)	24.2(5)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 6. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

				L]·	
Atom	U 11	U22	U 33	U 12	U 13	U23
Br2	26.34(14)	35.18(15)	21.23(14)	1.24(11)	-1.63(10)	-0.60(11)
Br1	26.63(14)	37.34(16)	37.30(17)	-0.34(11)	12.32(12)	9.99(12)
S 1	22.6(3)	34.5(4)	18.7(3)	-7.9(3)	3.1(2)	3.0(3)
S 2	31.9(3)	22.7(3)	22.0(3)	-4.0(3)	11.7(3)	-3.2(2)
01	43.8(12)	45.8(12)	25.2(11)	0.2(10)	-0.9(9)	7.2(9)
C17	22.4(12)	26.2(13)	17.4(12)	-5.3(10)	6.7(10)	0.2(10)
C5	25.7(13)	21.1(12)	23.4(13)	-3.7(10)	9.4(10)	-3.6(10)
N1	28.3(11)	32.2(13)	21.1(11)	-8.4(10)	8.6(9)	2.9(10)
C2	28.3(13)	16.9(12)	20.1(13)	-5.4(10)	7.4(10)	-5.9(9)
C8	19.7(12)	27.7(13)	17.5(12)	-4.2(10)	5.2(10)	2(1)
C16	23.4(12)	27.0(13)	20.8(13)	1.8(10)	6.3(10)	4.9(10)
O2	51.6(13)	34.9(11)	27.5(11)	-10.0(9)	6.3(9)	-8.7(9)
C13	23.9(12)	19.9(12)	24.9(13)	1.5(10)	8.9(10)	4.3(10)
C15	25.9(13)	21.3(12)	23.2(13)	1.7(10)	9.5(11)	-1.8(10)
C18	25.7(13)	20.0(12)	23.9(13)	-3.1(10)	10.3(11)	-2.8(10)
C12	26.0(12)	21.8(12)	20.9(13)	-4.3(10)	8.5(10)	-4.1(10)
C1	22.1(12)	20.3(12)	21.4(13)	-3.2(10)	8.1(10)	-1.2(10)
C7	22.7(12)	24.1(13)	23.0(13)	0.6(10)	4.2(10)	-0.9(10)
C9	27.5(13)	23.2(13)	23.3(13)	-3.9(10)	7.9(11)	-3.7(10)
C14	20.1(12)	23.5(12)	17.1(12)	-2.8(9)	7.9(10)	1.3(9)

C6	26.7(13)	22.3(12)	21.8(13)	0.7(10)	6.7(11)	4.7(10)
C11	17.4(11)	26.9(13)	17.1(12)	-3.3(10)	2.2(9)	-0(1)
C19	20.9(12)	22.0(12)	24.1(13)	2.4(10)	7.2(10)	3.3(10)
C4	23.6(12)	25.2(13)	25.8(14)	2.8(10)	4.8(11)	-0.8(11)
C3	31.8(14)	21.3(12)	20.8(13)	0.9(10)	4.5(11)	1.6(10)
C10	24.0(12)	21.4(12)	25.4(14)	0.8(10)	5.3(11)	1.1(10)

Table 4 Bond Lengths for 6

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br2	C11	1.898(2)	C2	C3	1.390(4)
Br1	C5	1.911(2)	C8	C13	1.393(3)
S 1	C8	1.783(2)	C8	C9	1.391(4)
S 1	C1	1.835(2)	C16	C15	1.387(3)
S2	C2	1.784(3)	C13	C12	1.383(3)
S2	C1	1.820(2)	C15	C14	1.391(3)
01	N1	1.233(3)	C18	C19	1.383(3)
C17	N1	1.477(3)	C12	C11	1.392(3)
C17	C16	1.385(3)	C1	C14	1.517(3)
C17	C18	1.383(3)	C7	C6	1.391(4)
C5	C6	1.381(3)	C9	C10	1.387(4)
C5	C4	1.374(4)	C14	C19	1.396(3)
N1	O2	1.213(3)	C11	C10	1.382(3)
C2	C7	1.390(3)	C4	C3	1.391(4)

Table 5. Bond Angles for 6

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	S 1	C8	103.51(11)	C14	C15	C16	120.8(2)
C1	S 2	C2	103.03(11)	C19	C18	C17	118.2(2)
C16	C17	N1	118.8(2)	C11	C12	C13	118.9(2)
C18	C17	N1	118.9(2)	S2	C1	S 1	105.87(12)
C18	C17	C16	122.3(2)	C14	C1	S 1	106.00(16)
C6	C5	Br1	118.28(19)	C14	C1	S2	116.14(17)
C4	C5	Br1	119.45(19)	C6	C7	C2	120.4(2)
C4	C5	C6	122.3(2)	C10	C9	C8	120.4(2)
C17	N1	01	117.4(2)	C1	C14	C15	122.9(2)
O2	N1	01	124.1(2)	C19	C14	C15	118.9(2)
O2	N1	C17	118.6(2)	C19	C14	C1	118.2(2)
C7	C2	S2	118.94(19)	C7	C6	C5	118.7(2)

C2	S 2	121.37(19)	C12	C11	Br2	118.70(18)
C2	C7	119.5(2)	C10	C11	Br2	119.65(18)
C8	S 1	120.97(19)	C10	C11	C12	121.6(2)
C8	S 1	118.97(19)	C14	C19	C18	121.3(2)
C8	C13	119.8(2)	C3	C4	C5	118.5(2)
C16	C17	118.5(2)	C4	C3	C2	120.7(2)
C13	C8	120.3(2)	C11	C10	C9	118.9(2)
	C2 C2 C8 C8 C8 C8 C16 C13	C2 S2 C2 C7 C8 S1 C8 C13 C16 C17 C13 C8	$\begin{array}{cccccc} C2 & S2 & 121.37(19) \\ C2 & C7 & 119.5(2) \\ C8 & S1 & 120.97(19) \\ C8 & S1 & 118.97(19) \\ C8 & C13 & 119.8(2) \\ C16 & C17 & 118.5(2) \\ C13 & C8 & 120.3(2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 6. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 6

Atom	x	у	z	U(eq)
H16	-950(3)	3957.2(8)	-10339(3)	28.7(6)
H13	3334(3)	3984.6(8)	-1434(3)	27.2(6)
H15	837(3)	4144.5(8)	-7686(3)	27.7(6)
H18	1383(3)	2724.6(8)	-9734(3)	27.2(6)
H12	5346(3)	3911.1(8)	1222(3)	27.2(6)
H1	4520(3)	3500.2(8)	-5102(3)	25.2(6)
H7	3038(3)	4803.6(8)	-7446(3)	28.8(6)
H9	4410(3)	2709.5(8)	-2389(3)	29.7(6)
H6	4995(3)	5139.6(8)	-8702(3)	28.6(6)
H19	3125(3)	2913.4(8)	-7077(3)	26.8(6)
H4	9341(4)	4456.3(8)	-5727(3)	30.8(7)
H3	7395(4)	4135.6(8)	-4430(3)	30.7(7)
H10	6341(3)	2624.6(8)	295(3)	29.1(6)

Ortep view of 14 with 40% ellipsoidal probability and hydrogens are omitted for clarity (CCDC No. 1487921)

Table 1 Crystal data and structure refinement for 14

Identification code	SK_01_489 (Final)
Empirical formula	$C_{19}H_{15}NO_2S_2$
Formula weight	353.44
Temperature/K	140.0
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	16.385(2)
b/Å	13.037(2)
c/Å	8.2869(14)
α/°	90
β/°	103.740(6)
γ/°	90
Volume/Å ³	1719.6(5)
Z	4
$\rho_{calc}g/cm^3$	1.3652
μ/mm^{-1}	0.320
F(000)	736.0
Crystal size/mm ³	0.25 imes 0.2 imes 0.15
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	^o 5.12 to 47.06
Index ranges	$-18 \le h \le 17, -14 \le k \le 14, -7 \le l \le 9$
Reflections collected	8283
Independent reflections	2559 [$R_{int} = 0.0607$, $R_{sigma} = 0.0552$]
Data/restraints/parameters	2559/0/216
Goodness-of-fit on F ²	1.051
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0381, wR_2 = 0.0760$
Final R indexes [all data]	$R_1 = 0.0623, wR_2 = 0.0844$
Largest diff. peak/hole / e Å ⁻³	0.38/-0.38

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for 14. U _{eq} is defined as 1/3 of of the trace of the orthogonalised
U1 tensor.

Atom	x	У	Z	U(eq)
S 1	8612.1(4)	9076.8(5)	1423.9(9)	25.4(2)
S2	8325.7(4)	9973.7(6)	4568.9(9)	28.8(2)
01	5456.9(10)	10437.8(14)	1615(2)	31.4(5)
O2	6317.6(10)	10303.3(14)	-10(2)	28.2(5)

C15	6299.0(13)	8992.6(18)	1869(3)	15.9(6)
C19	7366.3(15)	7830.7(19)	3122(3)	21.3(6)
C14	7153.2(13)	8794.2(18)	2428(3)	15.6(6)
N1	6008.6(12)	9984.9(16)	1112(3)	19.7(5)
C1	7822.2(13)	9588.6(19)	2431(3)	18.5(6)
C2	9085.0(14)	10244.3(19)	995(3)	20.7(6)
C8	7450.7(14)	10615(2)	5043(3)	23.2(6)
C3	9807.5(14)	10598(2)	2081(3)	26.3(7)
C7	8746.6(15)	10791(2)	-434(4)	32.1(7)
C11	6067(2)	11601(3)	5701(4)	50.4(9)
C10	6180.1(17)	10573(3)	6002(4)	39.2(8)
C13	7331.7(19)	11652(2)	4738(4)	42.1(8)
C18	6762.5(15)	7113(2)	3222(3)	25.1(6)
C6	9124.4(17)	11693(2)	-775(4)	39.5(8)
C5	9838.5(17)	12048(2)	331(4)	36.3(8)
C16	5679.7(15)	8292(2)	1995(3)	23.0(6)
C17	5913.3(15)	7338(2)	2660(3)	26.7(7)
C12	6639(2)	12137(3)	5068(5)	56.3(10)
C9	6867.8(16)	10078(2)	5679(3)	28.9(7)
C4	10177.2(16)	11500(2)	1742(4)	34.3(8)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 14. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

uispiac	cinent factor	exponent take			$\mathbf{M} = \mathbf{M} = \mathbf{M} = \mathbf{M} + $	
Atom	U 11	U_{22}	U 33	U12	U 13	U23
S 1	19.4(3)	22.0(4)	37.8(5)	-1.3(3)	12.6(3)	-4.8(3)
S2	18.6(3)	37.0(4)	27.5(4)	-0.4(3)	-0.9(3)	-9.4(3)
O1	23.3(10)	30.8(12)	37.3(13)	12.5(9)	1.4(9)	-7.0(9)
O2	25.9(10)	26.5(11)	31.0(12)	-2.1(8)	4.2(9)	11.4(9)
C15	19.4(13)	14.2(14)	14.0(14)	1.1(11)	4.0(11)	0.2(11)
C19	20.1(13)	22.6(16)	20.4(16)	3.6(11)	3.4(11)	-1.1(12)
C14	16.7(13)	16.8(15)	13.5(14)	1.4(10)	3.9(11)	-2.4(11)
N1	15.3(11)	18.4(12)	21.8(13)	0.8(9)	-2.7(10)	-4.3(10)
C1	13.8(12)	18.0(14)	22.6(16)	2.4(10)	2.6(11)	-1.4(12)
C2	14.8(13)	22.3(16)	25.8(16)	0.5(11)	6.4(12)	-3.1(12)
C8	24.5(14)	24.5(17)	18.5(16)	-3.9(12)	1.2(12)	-5.6(12)
C3	21.9(14)	31.2(17)	26.3(17)	-2.1(12)	6.5(12)	-0.9(13)
C7	21.8(14)	42(2)	31.8(19)	2.0(13)	5.7(13)	2.2(15)
C11	55(2)	64(3)	37(2)	24.9(18)	19.8(17)	-2.6(18)
C10	36.5(17)	60(2)	25.4(18)	2.1(16)	16.5(14)	0.4(16)
C13	57(2)	22.4(18)	54(2)	-6.4(15)	27.2(18)	-4.0(15)

C18	41.3(16)	15.2(15)	20.0(16)	4.3(12)	9.7(13)	4.2(12)
C6	38.3(17)	44(2)	41(2)	15.1(15)	19.0(16)	19.9(16)
C5	39.9(17)	26.3(18)	52(2)	-2.8(14)	28.5(17)	-1.6(16)
C16	17.1(13)	28.1(17)	24.7(16)	-2.7(12)	6.5(11)	-3.5(13)
C17	31.7(15)	22.5(17)	28.6(18)	-8.8(12)	12.3(13)	0.9(13)
C12	87(2)	25(2)	65(3)	18.9(18)	34(2)	-0.2(17)
C9	38.3(16)	28.7(17)	20.0(16)	-0.2(13)	7.5(13)	1.7(13)
C4	28.4(15)	37.4(19)	40(2)	-11.8(14)	13.3(15)	-10.7(16)

Table 4 Bond Lengths for 14

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S 1	C1	1.825(2)	C2	C7	1.380(4)
S 1	C2	1.782(3)	C8	C13	1.381(4)
S2	C1	1.838(3)	C8	C9	1.386(3)
S2	C8	1.782(3)	C3	C4	1.381(4)
01	N1	1.232(2)	C7	C6	1.389(4)
O2	N1	1.232(3)	C11	C10	1.368(4)
C15	C14	1.390(3)	C11	C12	1.369(5)
C15	N1	1.467(3)	C10	C9	1.379(4)
C15	C16	1.387(3)	C13	C12	1.382(4)
C19	C14	1.391(3)	C18	C17	1.390(3)
C19	C18	1.379(3)	C6	C5	1.383(4)
C14	C1	1.508(3)	C5	C4	1.370(4)
C2	C3	1.385(3)	C16	C17	1.377(4)

Table 5 Bond Angles for 14

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	S 1	C1	99.67(11)	C7	C2	C3	119.5(2)
C8	S 2	C1	98.06(11)	C13	C8	S 2	120.3(2)
N1	C15	C14	120.3(2)	C9	C8	S 2	120.7(2)
C16	C15	C14	123.3(2)	C9	C8	C13	119.0(3)
C16	C15	N1	116.4(2)	C4	C3	C2	120.0(3)
C18	C19	C14	121.6(2)	C6	C7	C2	120.3(3)
C19	C14	C15	116.1(2)	C12	C11	C10	119.7(3)
C1	C14	C15	123.2(2)	C9	C10	C11	120.3(3)
C1	C14	C19	120.6(2)	C12	C13	C8	120.0(3)
O2	N1	O 1	124.0(2)	C17	C18	C19	120.8(2)

.7(3)
.9(3)
.1(2)
.1(2)
.7(3)
.4(3)
.6(3)
.1 .7 .4

Table 6 Hydrogen Atom Coordinates $(\mathring{A}\times 10^4)$ and Isotropic Displacement Parameters $(\mathring{A}^2\times 10^3)$ for 14

Atom	x	у	z	U(eq)
H19	7942.2(15)	7663.1(19)	3537(3)	25.5(8)
H1	7555.9(13)	10204.8(19)	1801(3)	22.1(7)
H3	10048.9(14)	10220(2)	3058(3)	31.6(8)
H7	8253.4(15)	10549(2)	-1187(4)	38.5(9)
H11	5594(2)	11941(3)	5930(4)	60.4(11)
H10	5782.8(17)	10198(3)	6435(4)	47(1)
H13	7725.6(19)	12031(2)	4303(4)	50.6(10)
H18	6928.8(15)	6456(2)	3682(3)	30.1(8)
H6	8893.3(17)	12065(2)	-1763(4)	47.4(10)
H5	10093.7(17)	12670(2)	113(4)	43.6(9)
H16	5102.7(15)	8468(2)	1628(3)	27.7(8)
H17	5499.7(15)	6841(2)	2734(3)	32.1(8)
H12	6559(2)	12851(3)	4853(5)	67.6(12)
H9	6942.5(16)	9364(2)	5895(3)	34.7(8)
H4	10670.7(16)	11742(2)	2495(4)	41.2(9)

Ortep view of 29 with 40% ellipsoidal probability (CCDC No. 1500695) and hydrogens are omitted for clarity

Table 1 Crystal data and structure refinement for 29

Identification code	SK-01-439 (Final)
Empirical formula	$C_{14}H_{10}N_2O_5$
Formula weight	286.24
Temperature/K	140.02
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	13.122(6)
b/Å	12.993(6)
c/Å	7.922(4)
α/°	90
β/°	103.660(12)
γ/°	90
Volume/Å ³	1312.5(10)
Z	4
$\rho_{calc}g/cm^3$	1.449
μ/mm^{-1}	0.112
F(000)	592.0
Crystal size/mm ³	$0.2\times0.15\times0.1$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.476 to 51.602
Index ranges	$-15 \le h \le 15, -15 \le k \le 15, -9 \le l \le 9$
Reflections collected	14834
Independent reflections	2517 [$R_{int} = 0.0967, R_{sigma} = 0.0729$]
Data/restraints/parameters	2517/0/190
Goodness-of-fit on F ²	1.062
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0590, wR_2 = 0.1061$
Final R indexes [all data]	$R_1 = 0.1293, wR_2 = 0.1284$
Largest diff. peak/hole / e Å-3	0.20/-0.23

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters (Å ² ×10 ³) for SK-01-439 (Final). U _{eq} is defined as 1/3 of of the trace of the
orthogonalised U _{IJ} tensor.

Atom	x	у	Z.	U(eq)
O5	7803.6(14)	6045.7(19)	424(3)	43.4(6)
01	13194.0(14)	6649.6(19)	-88(3)	45.2(6)
N2	8269.3(17)	6173(2)	-732(3)	31.0(6)
C12	9420.0(19)	6264(2)	-244(4)	26.5(7)
C14	11016(2)	6230(2)	1908(4)	28.7(7)
O2	18170.3(15)	4947(2)	4069(3)	45.3(7)

C10	11025(2)	6447(2)	-1093(4)	31.0(8)
O4	7825.8(14)	6210.6(19)	-2272(3)	44.4(7)
O3	18331.8(14)	6597.8(19)	4306(3)	41.0(6)
C1	12748(2)	6402(2)	1040(4)	29.7(8)
C11	9943(2)	6399(2)	-1551(4)	30.3(8)
N1	17804.1(18)	5815(2)	4024(3)	34.7(7)
C9	11569.2(19)	6361(2)	629(4)	25.7(7)
C6	16650(2)	5914(3)	3641(3)	28.9(8)
C7	16225(2)	6792(3)	4142(4)	35.9(8)
C13	9927.0(19)	6184(2)	1476(4)	28.8(7)
C8	15143(2)	6860(3)	3854(4)	34.9(8)
C3	14509(2)	6059(3)	3079(4)	30.8(8)
C5	16045(2)	5110(3)	2851(4)	38.2(9)
C4	14962(2)	5196(3)	2560(4)	39.7(9)
C2	13332.2(19)	6122(3)	2840(4)	35.6(8)

Table 3 Anisotropic Displacement Parameters (Å2×103) for SK-01-439 (Final). TheAnisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$

Atom	U ₁₁	U_{22}	U33	U 23	U ₁₃	U12
O5	25(1)	57.4(19)	50.4(13)	11.8(13)	14(1)	1.9(10)
O1	27.4(11)	58.0(18)	53.4(14)	13.7(13)	16.3(10)	-5.9(11)
N2	23.9(13)	25.5(18)	43.5(16)	-0.9(13)	7.8(12)	2.7(11)
C12	19.1(13)	19(2)	41.3(17)	-0.7(15)	7.0(12)	1.0(11)
C14	26.3(15)	24(2)	34.3(16)	-0.3(15)	4.9(12)	2.3(12)
O2	36.2(13)	44.7(19)	57.2(15)	9.2(13)	15.6(11)	15.6(12)
C10	29.1(16)	29(2)	38.0(18)	4.2(16)	14.2(13)	-0.4(13)
O4	29.8(11)	60(2)	40.2(13)	-6.3(12)	2.1(10)	-1.7(11)
O3	24.7(11)	45.0(18)	54.9(14)	-0.7(13)	12.7(10)	-7.6(11)
C1	27.8(15)	19(2)	43.6(18)	-4.0(15)	11.6(14)	-3.4(13)
C11	29.3(16)	27(2)	34.0(17)	3.9(15)	5.9(13)	-0.1(13)
N1	25.2(14)	45(2)	35.5(15)	5.7(15)	10.9(11)	4.6(14)
C9	21.8(14)	18(2)	39.0(17)	-1.0(14)	9.4(12)	-0.9(11)
C6	20.5(14)	34(2)	32.4(16)	0.9(16)	7.6(12)	0.2(13)
C7	22.4(15)	35(2)	51.0(19)	-3.8(18)	10.2(13)	-4.9(14)
C13	25.1(15)	25(2)	39.1(18)	-2.4(15)	12.7(13)	-0.7(12)
C8	24.7(15)	31(2)	50.8(19)	-6.5(17)	11.9(14)	-0.2(14)
C3	22.0(14)	36(2)	34.0(17)	0.5(16)	6.2(12)	-1.2(14)
C5	35.1(18)	34(2)	48(2)	-9.7(17)	14.4(15)	0.7(15)
C4	31.9(17)	37(2)	49(2)	-12.9(18)	6.3(14)	-7.5(15)
C2	20.3(14)	45(3)	40.5(18)	-0.9(17)	6.0(13)	-5.3(14)

Table 4 Bond Lengths for 29

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O5	N2	1.226(3)	O3	N1	1.221(3)
01	C1	1.222(3)	C1	C9	1.504(4)
N2	C12	1.472(3)	C1	C2	1.496(4)
N2	O4	1.222(3)	N1	C6	1.478(3)
C12	C11	1.381(4)	C6	C7	1.370(4)
C12	C13	1.372(4)	C6	C5	1.371(4)
C14	C9	1.389(4)	C7	C8	1.387(4)
C14	C13	1.390(4)	C8	C3	1.382(4)
O2	N1	1.223(3)	C3	C4	1.377(4)
C10	C11	1.381(4)	C3	C2	1.513(4)
C10	C9	1.387(4)	C5	C4	1.390(4)

Table 5 Bond Angles for 29

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
05	N2	C12	118.4(2)	C14	C9	C1	122.3(3)
04	N2	O5	123.2(2)	C10	C9	C14	119.4(2)
04	N2	C12	118.4(2)	C10	C9	C1	118.3(2)
C11	C12	N2	118.3(2)	C7	C6	N1	118.7(3)
C13	C12	N2	118.8(2)	C7	C6	C5	122.4(3)
C13	C12	C11	122.9(2)	C5	C6	N1	118.8(3)
C9	C14	C13	120.6(3)	C6	C7	C8	118.4(3)
C11	C10	C9	120.9(3)	C12	C13	C14	118.1(2)
01	C1	C9	119.8(3)	C3	C8	C7	120.7(3)
O1	C1	C2	122.4(2)	C8	C3	C2	120.3(3)
C2	C1	C9	117.9(2)	C4	C3	C8	119.3(3)
C10	C11	C12	118.1(3)	C4	C3	C2	120.4(3)
O2	N1	C6	117.5(3)	C6	C5	C4	118.3(3)
03	N1	O2	124.1(3)	C3	C4	C5	120.9(3)
O3	N1	C6	118.3(3)	C1	C2	C3	114.3(2)

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 29

Atom	x	у	Z.	U(eq)
H14	11386	6171	3090	34
H10	11401	6541	-1970	37
H11	9569	6457	-2730	36
H7	16662	7343	4675	43
H13	9545	6099	2346	35
H8	14834	7463	4193	42
H5	16358	4509	2510	46
H4	14528	4652	1996	48
H2A	13074	5447	3145	43
H2B	13174	6639	3660	43

References

- 1. A. Kumar, M. S. Rao and V. K. Rao, Aust. J. Chem., 2010, 63, 135.
- 2. Q. Ding, B. Cao, J. Yuan, X. Liu and Y. Peng, Org. Biomol. Chem., 2011, 9, 748.
- 3. G. A. Blanco and M. T. Baumgartner, *Tetrahedron Lett.*, 2011, **52**, 7061.
- 4. V. Pace, A. Pelosi, D. Antermite, O. Rosati, M. Curini and W. Holzer, *Chem. Comm.*, 2016, **52**, 2639.
- 5. K. Bahrami, M. M. Khodaei, M. Tajik and V. Shakibaian, Chin. Chem. Lett., 2012, 23, 81.
- 6. G. Bartoli, M. Bosco, R. Dalpozzo, G. Palmieri and E. Marcantoni, J. Chem. Soc., Perkin Trans. 1, 1991, 2757.