Green synthesis of 1-deoxynojirimycin derivatives by reductive amination in water and "borrowing hydrogen" without solvent

Kai Zhao, Gang Zhou, Huifang Nie and Weiping Chen *

I. Experimental Details:

General:

All the air or moisture sensitive reactions and manipulations were performed under an inert atmosphere in oven-dried glassware.The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV-400 spectrometer using TMS as an internal reference. Coupling constant (J) values are given in Hz. Optical rotation analyses were performed on a Perkin-Elmer Model 343 Polarimeter. HRMS were recorded on a ZAB-HS spectrometer with ES ionization (ESI). All commercially available reagents were used as received. Complexed 17e, ${ }^{1}$ $\left[\operatorname{IrCp} * I_{2}\right]_{2},{ }^{2}$ and $\left[\mathrm{Cp} * \operatorname{Ir}\left(\mathrm{NH}_{3}\right)_{3}\right] \mathrm{I}_{2}{ }^{3}$ were prepared according to literature's procedure.

1. General procedure for Reductive Amination:

17e
Compound $7(10 \mathrm{mmol})$ and complexe $\mathbf{1 7 e}(13.0 \mathrm{mg}, 0.2 \% \mathrm{mmol})$ were charged under argon-atomsphere in a three necked bottle with reflux device. Amine (20 mmol) was then introduced with vigorous stirring for 15 min . To the mixture was added $\mathrm{HCOOH}-\mathrm{HCOONa}$ buffer $(\mathrm{pH}=3.60)$, prepared from $\mathrm{HCOOH}(88 \%, 14$ $\mathrm{mL}), \mathrm{HCOONa} \cdot 2 \mathrm{H}_{2} \mathrm{O}(24.5 \mathrm{~g})$ and water $(26 \mathrm{~mL})$. The resulting mixture was bubbled with argon for 15 min at room temperature, and was heated at $90^{\circ} \mathrm{C}$ for 24 h with stirring. The reaction mixture was allowed to cool to room temperature and diluted with ethyl acetate. The organic layer was washed with water and saturated brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and the product was purified by SiO_{2} column chromatography (Eluent: Hexane: $\mathrm{EtOAc}=2: 1 \sim 1: 1$).
(2R,3R,4R,5S)-6-(benzylamino)-1,3,4,5-tetrakis(benzyloxy)hexan-2-ol (13a)

13a

Colorless oil. Yield: $68.0 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=7.45-7.20$ (m, $25 \mathrm{H}), 4.78-4.48(\mathrm{~m}, 8 \mathrm{H}), 4.08(\mathrm{dd}, \mathrm{J}=10.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, \mathrm{J}=6.4,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92(\mathrm{dd}, \mathrm{J}=10.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, \mathrm{J}=6.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.59(\mathrm{~m}$, $4 \mathrm{H}), 2.84(\mathrm{dd}, \mathrm{J}=12.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, \mathrm{J}=12.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl} 3): \delta=140.32,138.50,138.27,138.22,138.14,128.44,128.38,128.34$, $128.13,127.97,127.92,127.83,127.77,127.75,127.69,127.68,126.90,79.46,79.38$, $77.71,74.54,73.46,73.16,73.12,71.38,70.78,53.85,49.04 .[\alpha]_{\mathrm{D}}{ }^{20}=+11.0^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) . \mathrm{HRMS}(\mathrm{ESI}+)$ m / z calculated for $\mathrm{C}_{41} \mathrm{H}_{45} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 632.3371, found: 632.3384 .
(2R,3R,4R,5S)-1,3,4,5-tetrakis(benzyloxy)-6-((4-methoxybenzyl)amino)hexan-2-ol (13a')

13a'

Light yellow oil. Yield: 69.7\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=7.45-$ $7.27(\mathrm{~m}, 20 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, \mathrm{J}=11.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{dd}, \mathrm{J}=11.4,7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.63-4.54(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{dd}, \mathrm{J}=10.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, \mathrm{J}=6.3,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98(\mathrm{dd}, \mathrm{J}=10.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.84-3.79(\mathrm{~m}$, $1 \mathrm{H}), 3.78-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=12.5,4.0 \mathrm{~Hz}$, 1H), $2.73(\mathrm{dd}, \mathrm{J}=12.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=158.67,138.61,138.39,138.35$, $138.24,132.54,129.37,128.49,128.44,128.40,128.15,128.02,127.96,127.80,127.74,127.73,113.79$, $79.59,79.50,77.88,74.62,73.50,73.23,73.14,71.51,70.87,55.32,53.32,48.99 .[\alpha]_{\mathrm{D}}{ }^{20}=+9.6^{\circ}(\mathrm{c}=1$, CHCl_{3}). HRMS (ESI+) m/z calculated for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 662.3476$, found: 662.3481 .

(2R,3R,4R,5S)-1,3,4,5-tetrakis(benzyloxy)-6-((2-(benzyloxy)ethyl)amino)hexan-2-ol (13b)

Light yellow oil. Yield: 67.2%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.51-7.23$

$(\mathrm{m}, 25 \mathrm{H}), 4.87-4.50(\mathrm{~m}, 10 \mathrm{H}), 4.21-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.58$
$(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 2.93-2.69(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.49,138.41,138.32,138.29,138.23,128.46,128.43,128.39,128.13,128.05$, $127.92,127.81,127.76,127.72,127.65,79.46,79.01,77.90,74.49,73.47,73.37$, $73.33,73.18,71.45,70.90,69.45,49.83,49.30 .[\alpha]_{\mathrm{D}}{ }^{20}=+15.6^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$.

HRMS (ESI +) m/z calculated for $\mathrm{C}_{43} \mathrm{H}_{49} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 676.3633$, found: 676.3629 .
(2R,3R,4R,5S)-1,3,4,5-tetrakis(benzyloxy)-6-(butylamino)hexan-2-ol (13c)

13c

Colorless oil. Yield: $61.7 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.63-7.03(\mathrm{~m}$, 20H), $4.90-4.52(\mathrm{~m}, 8 \mathrm{H}), 4.26-3.67(\mathrm{~m}, 6 \mathrm{H}), 2.94-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.77$ (m, $1 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.60,138.37,138.26,128.50,128.47$, 128.44, 128.41, 128.15, 128.08, 127.93, 127.83, 127.77, 127.73, 79.58, 79.22, 77.96, $74.53,73.48,73.37,73.33,71.52,70.97,50.07,49.77,32.22,20.53,14.15 .[\alpha]_{D}{ }^{20}=$ $+16.1^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. HRMS (ESI +) m/z calculated for $\mathrm{C}_{38} \mathrm{H}_{47} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 598.3527$, found: 598.3532.
(2R,3R,4R,5S)-1,3,4,5-tetrakis(benzyloxy)-6-(hexylamino)hexan-2-ol (13d)
Light yellow oil. Yield: $62.3 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.33(\mathrm{~m}$,

13d $20 \mathrm{H}), 4.96-4.43(\mathrm{~m}, 8 \mathrm{H}), 4.19-3.63(\mathrm{~m}, 6 \mathrm{H}), 2.96-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.65(\mathrm{~m}$, $1 \mathrm{H}), 2.49(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.55,138.30,138.22,128.48,128.46,128.45,128.42$, $128.38,128.12,128.06,127.90,127.81,127.76,127.74,127.71,79.52,79.12,77.88$, $74.47,73.47,73.35,73.32,71.45,70.93,50.06,31.84,30.01,27.06,22.71,14.17$. $[\alpha]_{\mathrm{D}}{ }^{20}=+14.7^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. HRMS $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 626.3840$, found: 626.3844.
(2R,3R,4R,5S)-1,3,4,5-tetrakis(benzyloxy)-6-(octylamino)hexan-2-ol (13e)

13e

Light yellow oil. Yield: 63.7%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.41-7.32$ (m, $20 \mathrm{H}), 4.93-4.51(\mathrm{~m}, 8 \mathrm{H}), 4.21-3.61(\mathrm{~m}, 6 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.65(\mathrm{~m}$, $1 \mathrm{H}), 2.50(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.21(\mathrm{~m}, 12 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.58,138.34,138.24,128.48,128.46,128.43,128.39$, 128.13, 128.06, 127.91, 127.81, 127.75, 127.71,79.56, 79.20, 77.93, 74.50, 73.47, $73.37,73.32,71.49,70.95,50.10,31.94,30.11,29.62,29.39,27.42,22.77,14.23$. $[\alpha]_{\mathrm{D}}{ }^{20}=+14.1^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. HRMS $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{42} \mathrm{H}_{55} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 654.4153$, found: 654.4167.

2. General procedure for intramolecular alkylation

Method A: Amino alcohol $13(5.0 \mathrm{mmol})$ and $\left[\mathrm{Cp} * \operatorname{Ir}\left(\mathrm{NH}_{3}\right)_{3}\right][\mathrm{I}]_{2}(63.2 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$ were charged under argon-atmosphere in a Schlenk flask. The reaction flask was heated to the $180^{\circ} \mathrm{C}$ under stirring for 24 h , then the reaction mixture was allowed to cool to room temperature and diluted with EtOAc. The organic layer was washed with water and saturated brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and the product was purified by SiO 2 column chromatography (Eluent: Hexane: EtOAc=9:1~4:1).
Method B: Amino alcohol $13(4.0 \mathrm{mmol})$ and solid $\mathrm{NaOH}(40 \mathrm{mg}, 25 \mathrm{~mol} \%)$ were added to a glass flask. Then, the reaction mixture was heated to $180^{\circ} \mathrm{C}$ and vigorously stirred for 48 h under Ar_{2} atmosphere. The reaction mixture was allowed to cool to room temperature and diluted with EtOAc. The organic layer was washed with water and saturated brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and the product was purified by SiO 2 column chromatography (Eluent: Hexane: EtOAc=9:1~4:1).
N-benzyl-2,3,4,6-Tetra- O-benzyl-L-ido-1-deoxynojirimycin (20a)

20a

Colorless oil. Yield: 39.5\% (Method A), 12.4\% (Method B). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.42-7.17(\mathrm{~m}, 25 \mathrm{H}), 4.87(\mathrm{q}, 2 \mathrm{H}), 4.76-4.48(\mathrm{~m}, 6 \mathrm{H}), 4.13-3.88(\mathrm{~m}$, $2 \mathrm{H}), 3.87-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, \mathrm{J}=11.8,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.68$, 139.18, 138.57, 128.36, 128.33, $128.31,128.26,128.22,127.94,127.75,127.54,127.50$, $127.40,126.86,83.12,80.37,79.03,77.23,75.45,73.31,72.85,72.61,64.74,59.86$, 59.08, 48.78, 29.72. $[\alpha]_{\mathrm{D}}{ }^{20}=-4.4^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. HRMS (ESI+ $) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 614.3265, found: 614.3268 .
\mathbf{N}-(4-methoxybenzyl)-2,3,4,6-Tetra-O-benzyl-L-ido-1-deoxynojirimycin (20a')
Colorless oil. Yield: 38.7\% (Method A), 9.6\% (Method B). ${ }^{1} \mathrm{H}$ NMR (400

20a'
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.48-7.30(\mathrm{~m}, 20 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.3$
$\mathrm{Hz}, 2 \mathrm{H}), 4.90(\mathrm{q}, \mathrm{J}=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.80-4.53(\mathrm{~m}, 6 \mathrm{H}), 4.08-3.66(\mathrm{~m}, 9 \mathrm{H}), 3.62$
$(\mathrm{d}, \mathrm{J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{dd}, \mathrm{J}=11.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{t}, \mathrm{J}=13.1,7.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.63,139.24,138.64,138.61,132.03,131.68,129.47,128.39,128.36$, $128.34,128.30,127.98,127.78,127.58,127.55,127.53,127.43,114.37,113.67,83.22,80.40,79.09,75.46$, $73.33,72.88,72.62,64.77,59.62,58.46,55.61,55.29,48.77 .[\alpha]_{\mathrm{D}}{ }^{20}=-1.8^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) . \mathrm{HRMS}(\mathrm{ESI}+)$ m / z calculated for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 644.3371$, found: 644.3370.

20b \mathbf{N}-(2-(benzyloxy)ethyl)-2,3,4,6-Tetra-O-benzyl-L-ido-1-deoxynojirimycin (20b)

Colorless oil. Yield: 31.9\% (Method A), 9.1\% (Method B). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.54-7.31(\mathrm{~m}, 25 \mathrm{H}), 5.06-4.50(\mathrm{~m}, 10 \mathrm{H}), 4.03-3.44(\mathrm{~m}, 8 \mathrm{H}), 3.26-$ $3.05(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.64(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.28,138.79,138.72,138.62,128.64,128.55,128.48,128.42,128.37,128.06$, 127.87, 127.75, 127.70, 127.64, 127.59, 127.52, 83.00, 80.26, 78.94, 75.46, 73.38,

[^0]calculated for $\mathrm{C}_{43} \mathrm{H}_{47} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 658.3527 , found: 658.3525 .

N-butyl-2,3,4,6-Tetra-O-benzyl-L-ido-1-deoxynojirimycin (20c)

20c

Colorless oil. Yield: 42.3\% (Method A), 11.9\% (Method B). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.57-7.12(\mathrm{~m}, 20 \mathrm{H}), 4.85(\mathrm{dd}, \mathrm{J}=24.1,11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.76-4.62(\mathrm{~m}, 4 \mathrm{H})$, $4.59-4.48(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{dd}, \mathrm{J}=10.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.44(\mathrm{~m}$, 2 H), $3.39(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=11.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{ddd}, \mathrm{J}=12.5,8.8$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{t}, 2 \mathrm{H}), 1.54-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.26,138.78,138.72,138.66,128.41,128.35,128.30,128.00$, $127.83,127.63,127.55,127.49,127.47,127.43,83.20,80.38,78.99,75.39,73.29,73.06,72.71,64.50,59.84$, $54.53,49.93,30.25,20.49,14.10 . \alpha_{\mathrm{D}}{ }^{20}=-14.4^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. HRMS $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 580.3422$, found: 580.3426.

N-hexyl-2,3,4,6-Tetra-O-benzyl-L-ido-1-deoxynojirimycin (20d)

20d

Colorless oil. Yield: 41.8\% (Method A), 10.7\% (Method B). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.37-7.20(\mathrm{~m}, 20 \mathrm{H}), 4.92-4.46(\mathrm{~m}, 8 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.65$ $(\mathrm{m}, 2 \mathrm{H}), 3.63-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.67$ $(\mathrm{m}, 1 \mathrm{H}), 2.55(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 6 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.26,138.79,138.72,138.66,128.46$, $128.41,128.35,128.29,128.00,127.83,127.63,127.55,127.49,127.47,127.43,83.19,80.36,78.97,75.39$, $73.30,73.05,72.72,64.50,59.79,54.83,49.95,31.81,28.01,26.99,22.73,14.16 .[\alpha]_{\mathrm{D}}{ }^{20}=-17.1^{\circ}(\mathrm{c}=$ $1, \mathrm{CHCl}_{3}$).HRMS (ESI +) m/z calculated for $\mathrm{C}_{40} \mathrm{H}_{49} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 608.3735$, found: 608.3738 .

\mathbf{N}-octyl-2,3,4,6-Tetra-O-benzyl-L-ido-1-deoxynojirimycin (20e)
Colorless oil. Yield: 40.6% (Method A), 11.5% (Method B). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.39-7.26(\mathrm{~m}, 20 \mathrm{H}), 4.94-4.46(\mathrm{~m}, 8 \mathrm{H}), 3.84(\mathrm{dd}, \mathrm{J}=10.1,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{ddd}, \mathrm{J}=22.0,16.1,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ $(\mathrm{dd}, \mathrm{J}=11.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.48(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.17(\mathrm{~m}, 12 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.22,138.75,138.69,138.63,128.49,128.43$, $128.38,128.35,128.32,128.26,127.97,127.80,127.60,127.52,127.46,83.16,80.33$, $78.94,75.36,73.27,73.04,72.70,64.47,59.76,54.80,49.92,31.90,29.53,29.36,29.29,27.31,22.71,14.16$. $[\alpha]_{\mathrm{D}}{ }^{20}=-26.3^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. HRMS $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{42} \mathrm{H}_{53} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 636.4048$, found: 636.4042 .

3. General procedure for debenzylation:

To a solution of compounds $20(1 \mathrm{mmol})$ in methanol $(14 \mathrm{~mL})$ was bubbled with nitrogen for 30 min at room temperature, then the solution was added to dried and degased $10 \% \mathrm{Pd} / \mathrm{C}(1.0 \mathrm{~g})$ followed by 0.2 mL TFA. The mixture was stirred at room temperature with a hydrogen balloon for 24 h until TLC monitored the complete consumption of starting material. After filtered with Celite, the residue was washed with methanol for three times and water two time. The combined filtrate was concentrated and coevaporated with MeOH.

The residue was purified by flash column chromatography with aluminum oxide $\left(\mathrm{MeOH}: \mathrm{CHCl}_{3}=3: 1 \sim 1\right.$: 1 or $\mathrm{MeOH}: \mathrm{EtOAc}: \mathrm{NH}_{4} \mathrm{OH}=10: 12: 3$) to afford Compound 21.


``` L-ido-1-Deoxynojirimycin (21a)
Colorless oil. Yield: \(90.1 \%\) (from 20a), \(85.8 \%\) (from 20a'). \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\) ): \(\delta=\) \(3.98-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, \mathrm{J}\) \(=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR ( \(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\) ): \(\delta=67.26,67.15,66.25,58.68\), 56.47, 44.99. \([\alpha]_{\mathrm{D}}{ }^{20}=-1.5^{\circ}\left(\mathrm{c}=1, \mathrm{H}_{2} \mathrm{O}\right)\). LRMS: \((\mathrm{ES}+) m / z=164.2[\mathrm{M}+1]\).
```


N-Hydroxyethyl-L-ido-1-deoxynojirimycin (21b)
Colorless oil. Yield: $86.9 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=3.85-3.71(\mathrm{~m}, 3 \mathrm{H})$, $3.68-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.39(\mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.74(\mathrm{~m}$, $3 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=74.32,70.19,69.02,63.43$, 59.01, 55.89, 55.36, 50.51. $[\alpha]_{\mathrm{D}}{ }^{20}=-14.3^{\circ}\left(\mathrm{c}=1, \mathrm{H}_{2} \mathrm{O}\right)$. HRMS: $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$230.0999, found 230.0992.
N-Butyl-L-ido-1-deoxynojirimycin (21c)
Colorless oil. Yield: 91.7\%. ${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}): \delta=4.00-3.85(\mathrm{~m}, 3 \mathrm{H})$, $3.80(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.18(\mathrm{~m}, 1 \mathrm{H})$, $3.16-3.00(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD): $\delta=70.83,70.38,68.45,62.61,57.81,53.65,52.16,26.49,19.76$, 12.70. $[\alpha]_{\mathrm{D}}{ }^{20}=+55.6^{\circ}(\mathrm{c}=1, \mathrm{MeOH})$. HRMS: $(\mathrm{ES}+) m / z=220.2[\mathrm{M}+1]$.

N-Hexyl-L-ido-1-deoxynojirimycin(21d)

Colorless oil. Yield: 94.0\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=3.99-3.73(\mathrm{~m}, 3 \mathrm{H})$, $3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.68(\mathrm{~m}, 4 \mathrm{H})$, $1.71-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.26(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD): $\delta=73.13,71.17,69.36,62.77,56.79,54.13,51.72,31.42,26.54,26.25,22.29$, 13.03. $[\alpha]_{\mathrm{D}}{ }^{20}=+13.4^{\circ}(\mathrm{c}=1, \mathrm{MeOH})$. LRMS: $(\mathrm{ES}+) m / z=248.2[\mathrm{M}+1]$.

N-Octyl-L-ido-1-deoxynojirimycin (21e)
Colorless oil. Yield: 94.3%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=3.94-3.69$ (m, 3H), $3.62-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.86-2.49(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 2 \mathrm{H})$, $1.39-1.23(\mathrm{~m}, 10 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=74.57$, $71.30,69.62,62.44,56.38,54.31,51.37,31.66,29.30,29.11,27.34,27.13,22.41$, 13.42. $[\alpha]_{\mathrm{D}}{ }^{20}=+24.8^{\circ}(\mathrm{c}=1, \mathrm{MeOH})$. LRMS: $(\mathrm{ES}+) \mathrm{m} / \mathrm{z}=276.2[\mathrm{M}+1]$.

References

1. C. Wang, A. Pettman, J. Bacsa, J. Xiao, Angew. Chem. Int. Ed. 2010, 49, 7548-7552.
2. A. J. Blacker, M. J. Stirling, M. I. Page, Org. Process Res. Dev. 2007, 11, 642-648.
3. R. Kawahara, K. Fujita and R. Yamaguchi, J. Am. Chem. Soc. 2010, 132, 15108-15111.

II. Spectra Data:

13a

13a'

13b

13c

13d

13e

20a

Display Report

20a'

20b

Display Report

20c

20d

$20 e$

(

21b

(

苓

[^0]: $73.19,73.04,72.78,69.06,64.73,60.47,54.64,50.26 .[\alpha]_{\mathrm{D}}{ }^{20}=-16.4^{\circ}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) . \mathrm{HRMS}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$

