Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Groove modification of siRNA duplex to elucidate siRNA-protein interactions using 7-bromo-7-deazaadenosine and 3-bromo-3-deazaadenosine as chemical probes

Noriko Saito-Tarashima, Hirotaka Kira, Tomoya Wada, Kazuya Miki, Shiho Ide, Naoshi

Yamazaki, Akira Matsuda, and Noriaki Minakawa*

Table of Contents

Synthesis of Br ³ C ³ and C ³ derivatives	S2–S8
Supplementary Table and Figures	
Scheme S1	S2
Figure S1	S9
Figure S2	S10
Figure S3	S11
Table S1	S12
Copy of NMR spectrum	S13–S32

Chemistry

Scheme S1 Synthesis of Br³C³A and C³A phosphoramidite units. Reagents and conditions; a) DMTrCl, pyridine; b) TBDMSCl, imidazole, DMF; c) NH₃/MeOH, 120 °C; d) PacCl, Et₃N, CH₃CN; e) TBAF, THF; f) TBDMSCl, AgNO₃, pyridine, THF; g) 2-cyanoethyl N,N-diisopropylchlorophosphoramidite, *i*Pr₂NEt, DMAP, CH₂Cl₂; h) NBS, CH₂Cl₂

5-Ethynyl-1-(5-*O*-dimethoxytrityl-β-D-ribofuranosyl)imidazole-4-carbonitrile (S2). To a solution of S1^{17d} (474 mg, 1.9 mmol) in pyridine (15 mL) was added DMTrCl (780 mg, 2.3 mmol), and the reaction mixture was stirred for 40 h at room temperature. The reaction was quenched by addition of ice, and the solvent was removed *in vacuo*. The residue was partitioned between AcOEt and H₂O, the organic layer was washed with brine, dried (Na₂SO₄) and concentrated *in vacuo*. After being co-evaporated with toluene three times, the residue was purified by a neutralized silica gel column, eluted with MeOH in CHCl₃ (0–3%), to give S2 (820 mg, 78%) as a yellow foam. FAB-LRMS m/z 522 (MH⁺); FAB-HRMS calcd for C₃₂H₂₉N₃O₆ 551.20528, found 551.2023; ¹H NMR (CDCl₃) δ 7.77 (1 H, s), 7.39–7.18 (9 H, m), 6.84–6.82 (4 H, m), 5.80 (1 H, d, *J* = 4.0 Hz), 4.43 (1 H, dd, *J* = 4.0 and 4.8 Hz), 4.35 (1 H, dd, *J* = 4.8 and 8.3 Hz), 4.21 (1 H, dd, *J* = 3.5, 8.3 and 3.5 Hz), 3.78 (6 H, s), 3.76 (1 H, s), 3.50 (1 H, dd, *J* = 3.5 and 10.5 Hz), 3.20 (1 H, dd J = 3.5 and 10.5 Hz), 3.31 (1 H, br s, exchangeable with D₂O), 2.80 (1 H, br s, exchangeable with D₂O); ¹³C NMR (CDCl₃) δ 158.71, 144.19, 137.06, 135.40, 135.33, 130.04, 128.11, 128.06, 127.18, 121.70, 119.80, 113.36, 113.33, 91.54, 90.64, 86.99, 83.89, 75.89, 70.66, 68.16, 62.77, 55.30.

5-Ethynyl-1-(2,3-O-di-*tert*-butyldimethylsilyl-5-O-dimethoxytrityl-β-D-ribofuranosyl)i midazole-4-carbonitrile (S3). To a solution of S2 (820 mg, 1.5 mmol) in DMF (15 mL) containing imidazole (613 mg, 9.0 mmol) was added TBDMSCl (678 mg, 4.5 mmol), and the whole mixture was stirred at room temperature. After 20 h, additional imidazole (204 mg, 3.0 mmol) and TBDMSCI (226 mg, 1.5 mmol) was added, and the whole mixture was stirred for further 10 h. The reaction was quenched by addition of ice, and the solvent was removed in vacuo. The residue was partitioned between AcOEt and H₂O the organic layer was washed with brine, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by a neutralized silica gel column, eluted with hexane/AcOEt (1:0-7:1), to give S3 (1.01 g, 87%) as a white foam. FABMS-LR m/z 802 (MNa⁺); FABMS-HR calcd for C₄₄H₅₇N₃NaO₆Si₂ 802.3683, found 802.3682; ¹H NMR (CDCl₃) δ 7.84 (1 H, s), 7.41–7.22 (9 H, m), 6.85–6.83 (4 H, m), 5.75 (1 H, d, J = 6.5 Hz), 4.38 (1 H, dd, J = 6.5 and 4.5 Hz), 4.16 (1 H, ddd, J = 2.5, 3.5 and 4.0 Hz), 4.12 (1 H, dd, J = 2.5 and 4.0 Hz), 3.79 (6 H, s), 3.65 (1 H, s), 3.45 (1 H, dd, J = 4.0 and 10.8 Hz), 3.33 (1 H, dd J = 3.5 and 10.8 Hz), 0.88 and 0.83 (each 9 H, each s), 0.05, -0.01, -0.03, -0.21 (each 3 H, each s); ¹³C NMR (CDCl₃) δ 158.77, 144.19, 137.33, 135.29, 135.26, 130.05, 128.09, 128.05, 127.19, 122.10, 120.07, 113.47, 113.35, 91.10, 89.33, 87.09, 85.64, 77.24, 72.82, 68.57, 63.06, 55.27, 25.76, 25.71, 17.99, 17.83, -4.50, -4.60, -4.64, -5.34.

4-Amino-1-(2,3-*O*-di-*tert*-butyldimethylsilyl-5-*O*-dimethoxytrityl-β-D-ribofuranosyl)im idazo[4,5-*c*]pyridine (S4). A solution of S3 (454 mg, 0.58 mmol) in NH₃/MeOH (saturated at 0 °C, 10 mL) was heated at 120 °C for 7 h in a sealed stainless tube. The solvent was removed *in vacuo*, and the residue was purified by a silica gel column, eluted with hexane/AcOEt (4:1–0:1), to give S4 (405 mg, 87%) as a pale yellow foam. FABMS-LR *m*/*z* 797 (MH⁺); FABMS-HR calcd for $C_{44}H_{61}N_4O_6Si_2$ 797.4130, found 797.4108; ¹H NMR (CDCl₃) δ 7.98 (1 H, s), 7.67 (1 H, d, *J* = 5.7) Hz), 7.48–7.22 (9 H, m), 6.96 (1 H, d, J = 5.7 Hz), 6.85–6.81 (4 H, m), 5.80 (1 H, d, J = 7.3 Hz), 5.13 (2 H, br s, exchangeable with D₂O), 4.51 (1 H, dd, J = 4.7 and 7.3 Hz), 4.21–4.19 (1 H, m), 4.17–4.15 (1 H, m), 3.79 (3 H, s), 3.78 (3 H, s), 3.48 (1 H, dd, J = 3.2 and 10.7 Hz), 3.41 (1 H, dd, J = 3.5 and 10.7 Hz), 0.89 and 0.75 (each 9 H, each s), 0.07, -0.02, -0.12, -0.50 (each 3 H, each s); ¹³C NMR (CDCl₃) δ 158.72, 151.73, 144.33, 141.07, 139.80, 137.97, 135.37, 135.32, 130.12, 128.12, 128.03, 127.86, 127.11, 113.34, 99.39, 88.69, 87.13, 85.77, 75.65, 72.82, 63.33, 55.26, 25.81, 25.68, 18.01, 17.76, -4.55, -4.58, -4.66, -5.67.

4-N-Phenoxyacetylamino-1-(2,3-O-di-tert-butyldimethylsilyl-5-O-dimethoxytrityl-β-D-

ribofuranosyl)imidazo[4,5-*c*]**pyridine (S5).** To a solution of **S4** (880 mg, 1.1 mmol) containing Et₃N (0.39 mL, 2.8 mmol) in CH₃CN (10 mL) at 0 °C was added phenoxyacetyl chloride (PacCl) (0.39 mL, 2.8 mmol), and the mixture was stirred for 2 h at room temperature. Then, the reaction mixture was treated with NaOMe (28% solution in MeOH; 0.8 mL). After 10 min, the mixture was diluted with AcOEt and washed with H₂O, the organic layer was washed with brine, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by a neutralized silica gel column, eluted with hexane/AcOEt (3:2–1:1), to give **S5** (933 mg, 91%) as a white foam. FAB-LRMS *m/z* 931 (MH⁺); FAB-HRMS calcd for C₅₂H₆₇N₄O₈Si₂ 931.4499, found 931.4468; ¹H NMR (CDCl₃) δ 9.52 (1 H, br s, exchangeable with D₂O), 8.10 (1 H, s), 8.02 (1 H, d, *J* = 5.5 Hz), 7.47–6.84 (19 H, m), 5.86 (1 H, d, *J* = 7.8 Hz), 4.80 (2 H, br s), 4.58 (1 H, dd, *J* = 7.8 and 4.6 Hz), 4.27 (1 H, d, *J* = 4.6 Hz), 4.18–4.15 (1 H, m), 3.79 (6 H, s), 3.53 (1 H, dd, *J* = 2.8 and 11.0 Hz), 3.46 (1 H, dd, *J* = 3.2 and 11.0 Hz), 0.90 and 0.75 (each 9 H, each s), 0.09, -0.01, -0.11, -0.58 (each 3 H, each s); ¹³C NMR (CDCl₃) δ 158.85, 157.31, 144.33, 143.40, 141.92, 141.21, 138.67, 135.28, 135.18, 130.24, 129.88, 128.21, 127.32, 122.32, 115.17, 113.46, 105.18, 89.00, 87.36, 86.31, 75.67, 72.82, 68.15, 63.31, 60.54, 55.38, 25.91, 25.77, 21.21, 18.14, 17.84, 14.33, -4.47, -5.59.

4-*N*-Phenoxyacetylamino-1-(5-*O*-dimethoxytrityl- β -D-ribofuranosyl)imidazo[4,5-*c*]pyr idine (S6). To a solution of S5 (354 mg, 0.38 mmol) in THF (6 mL) was added a 1 M THF solution of TBAF (1.0 mL, 1.0 mmol) at 0 °C, and the whole mixture was stirred for 15 min at room temperature. The reaction mixture was partitioned between AcOEt and H₂O, the organic

layer was washed with brine, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by a neutralized silica gel column, eluted with MeOH in CHCl₃ (0–3%), to give **S6** (233 mg, 87%) as a pale yellow foam. FAB-LRMS *m*/*z* 703 (MH⁺); FAB-HRMS calcd for C₄₀H₃₉N₄O₈ 703.2768, found 703.2768; ¹H NMR (CDCl₃) δ 9.43 (1 H, br s, exchangeable with D₂O), 7.98 (1 H, s), 7.52–6.76 (20 H, m), 5.82 (1 H, d, *J* = 6.9 Hz), 4.68 (2 H, br s), 4.63 (1 H, dd, *J* = 6.9 and 5.7 Hz), 4.50 (1 H, dd, *J* = 5.7 and 2.9 Hz), 4.30 (1 H, ddd, *J* = 2.9, 3.4 and 6.3 Hz), 3.74 and 3.73 (each 3 H, each s), 3.50–3.44 (2 H, m); ¹³C NMR (CDCl₃) δ 158.71, 157.16, 144.47, 142.21, 140.08, 138.69, 135.64, 135.47, 130.84, 130.32, 130.24, 129.95, 128.32, 128.11, 127.12, 122.51, 115.15, 113.38, 112.40, 104.90, 89.73, 86.90, 84.62, 74.26, 71.28, 67.96, 63.64, 58.63, 55.36, 18.58.

4-N-Phenoxyacetylamino-1-(2-O-tert-butyldimethylsilyl-5-O-dimethoxytrityl-β-D-ribof uranosyl)imidazo[4,5-c]pyridine (S7). To a solution of S6 (303 mg, 0.43 mmol) in pyridine (4 mL) was added AgNO₃ (146 mg, 0.86 mmol). After being stirred for 1 h at room temperature under exclusion of light, a solution of TBDMSCl (110 mg, 0.73 mmol) in THF (6 mL) was added, and the whole mixture was stirred at the same temperature. After being stirred for 24 h, insoluble materials of the reaction mixture were filtered off through a celite and the filtrate was diluted with CHCl₃. The organic layer was washed with saturated aqueous NaHCO₃, followed by H₂O, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was co-eveporated with toluene three times, and the residue was purified by a neutralized silica gel column, eluted with hexane/AcOEt (5/1-3/1), to give S7 (193 mg, 53%) as a white foam along with its 3'-O-TBDMS derivative. FAB-LRMS m/z817 (MH⁺); FAB-HRMS calcd for $C_{46}H_{53}N_4O_8Si$ 817.3633, found 817.3621; ¹H NMR (CDCl₃) δ 9.52 (1 H, br s, exchangeable with D_2O), 8.08 (1 H, s), 7.93 (1 H, d, J = 6.0 Hz), 7.43–6.82 (19 H, m), 5.83 (1 H, d, J = 7.3 Hz), 4.80 (2 H, br s), 4.76 (1 H, dd, J = 7.3 and 5.0 Hz), 4.39–4.37 (1 H, m), 4.35-4.32 (1 H, m), 3.79 and 3.78 (each 3 H, each s), 3.57 (1 H, dd, J = 2.3 and 11.0 Hz), 3.50(1 H, dd, J = 2.8 and 11.0 Hz), 2.81 (1 H, d, J = 1.4 Hz), 0.82 (9 H, s), -0.12 and -0.37 (each 3 H, 1.0 Hz))each s); ¹³C NMR (CDCl₃) δ 158.86, 157.30, 144.37, 143.48, 141.75, 141.53, 138.62, 135.25, 135.14, 130.33, 129.92, 128.28, 128.19, 127.37, 122.37, 115.17, 113.45, 104.87, 89.19, 87.28, 84.75, 74.87, 71.69, 68.16, 63.58, 60.56, 55.39, 25.80, 25.64, 21.22, 17.95, 14.35, -5.17, -5.38.

4-*N*-Phenoxyacetylamino-1-[2-*O*-*tert*-butyldimethylsilyl-3-*O*-(*N*,*N*-diisopropylamino-2cyanoethoxyphosphino)-5-*O*-dimethoxytrityl-β-D-ribofuranosyl]imidazo[4,5-*c*]pyridine (S8).

To a solution of S7 (580 mg, 0.71 mmol) in CH₂Cl₂ (10 mL) containing DMAP (catalytic) and *N*,*N*-diisopropylethylamine mL, 2.84 (0.49)mmol) was added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.40 mL, 1.78 mmol) at 0 °C, and the reaction mixture was stirred at room temperature for 3 h. The reaction was guenched by addition of ice, and the mixture was diluted with CHCl₃. The organic layer was washed with saturated aqueous NaHCO₃, followed by brine, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by a neutralized silica gel column, eluted with hexane/AcOEt (3:1-2:1), to give S8 (498 mg, 69%) as a white foam. FAB-LRMS m/z 1017 (MH⁺); FAB-HRMS calcd for C₅₅H₇₀N₆O₉PSi 1017.4705, found 1017.4705; ³¹P NMR (CDCl₃) δ 152.64, 149.44.

4-Amino-7-bromo-1-(2,3-O-di-*tert*-butyldimethylsilyl-5-O-dimethoxytrityl-β-D-ribofur anosyl)imidazo[4,5-c]pyridine (S9). To a solution of S4 (398 mg, 0.5 mmol) in CH₂Cl₂ (10 mL) was added N-bromosuccinimide (NBS) (178 mg, 1.0 mmol) at -15 °C, and the reaction mixture was stirred for 15 min at the same temperature. The reaction was quenched by addition of cyclohexene (0.1 mL), and the solvent was removed in vacuo. The residue was partitioned between AcOEt and H₂O, the organic layer was washed with brine, dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by a neutralized silica gel column, eluted with hexane/AcOEt (3:1-1:2), to give **S9** (302 mg, 61%) as a pale yellow foam. FAB-LRMS m/z 875, 877 (MH⁺); FAB-HRMS calcd for C44H60BrN4O6Si2 875.3235, found 875.3206; 1H NMR (CDCl3) & 8.24 (1 H, s), 7.90 (1 H, s), 7.45–7.22 (9 H, m), 6.95 (1 H, d, J = 4.6 Hz), 6.89–6.81 (4 H, m), 5.39 (2 H, br s, exchangeable with D_2O , 4.47 (1 H, dd, J = 4.6 and 7.5 Hz), 4.17–4.09 (2 H, m), 3.79 (6 H, s), 3.50 (1 H, dd, J = 3.4 and 10.9 Hz), 3.32 (1 H, dd, J = 2.9 and 10.9 Hz), 0.90 and 0.74 (each 9 H, each 9 H)s), 0.06, -0.03, -0.11, -0.42 (each 3 H, each s); ¹³C NMR (CDCl₃) δ 158.78, 151.15, 144.51, 143.82, 139.67, 136.07, 135.55, 135.48, 130.14, 128.83, 128.30, 128.19, 128.13, 127.23, 113.46, 90.71, 87.15, 85.91, 85.69, 78.29, 73.29, 63.42, 60.54, 55.39, 25.87, 25.72, 21.21, 18.07, 17.91, 14.34, -4.34, -4.55, -5.48.

7-Bromo-4-*N***-phenoxyacetylamino-1-(2,3-***O***-di***-tert***-butyldimethylsilyl-5-***O***-dimethoxyt rityl-β-D-ribofuranosyl)imidazo[4,5-***c*]**pyridine (S10).** In the similar manner as described for **S5**, **S9** (703 mg, 0.8 mmol) in CH₃CN was treated with Et₃N (0.25 mL, 2.8 mmol) and PacCl (0.25 mL, 1.8 mmol), followed by NaOMe (28% solution in MeOH; 0.5 mL) to give **S10** (735 mg, 91%) as a white foam. ESI-LRMS *m*/*z* 1031, 1033 (MNa⁺); ESI-HRMS calcd for C₅₂H₆₅BrN₄NaO₈Si₂ 1031.3417, found 1031.3406; ¹H NMR (CDCl₃) δ 9.59 (1 H, br s, exchangeable with D₂O), 8.39 (1 H, s), 8.36 (1 H, s), 7.45–6.85 (19 H, m), 4.80 (2 H, br s), 4.47 (1 H, dd, *J* = 4.1 and 7.3 Hz), 4.18– 4.04 (2 H, m), 3.79 (6 H, s), 3.55 (1 H, dd, *J* = 3.2 and 12.4 Hz), 3.32 (1 H, dd, *J* = 2.8 and 12.4 Hz), 0.90 and 0.72 (each 9 H, each 3), 0.06, -0.04, -0.12, -0.46 (each 3 H, each s); ¹³C NMR (CDCl₃) δ 171.29, 166.19, 158.78, 157.21, 144.46, 143.98, 142.71, 141.69, 141.50, 137.03, 135.41, 135.33, 131.78, 130.11, 129.88, 129.62, 128.81, 128.29, 128.18, 128.06, 127.23, 122.36, 115.12, 113.59, 113.45, 111.37, 97.23, 87.17, 86.7, 86.11, 85.91, 78.41, 73.19, 68.10, 63.24, 60.50, 55.35, 29.81, 25.82, 25.65, 21.16, 18.02, 17.82, 14.29, 0.09, -4.38, -4.56, -4.59, -5.48.

7-Bromo-4-*N***-phenoxyacetylamino-1-**(*5-O***-dimethoxytrityl-β-D-ribofuranosyl)imidazo** [**4,5-***c*]**pyridine (S11).** In the similar manner as described for **S6**, **S10** (735 mg, 0.73 mmol) in THF (10 mL) was treated with 1 M THF solution of TBAF (1.8 mL, 1.8 mmol) to give **S11** (583 mg, quant) as a pale yellow foam. ESI-LRMS *m/z* 803, 805 (MNa⁺); ESI-HRMS calcd for $C_{40}H_{37}BrN_4NaO_8$ 803.1687, found 803.1688; ¹H NMR (DMSO-*d*₆) δ 8.63 (1 H, s), 8.30 (1 H, s), 7.46–6.80 (18 H, m), 6.57 (1 H, d, *J* = 3.7 Hz), 5.77 (1 H, d, *J* = 5.5 Hz), 5.30 (1 H, d, *J* = 6.0 Hz), 4.87 (2 H, br s), 4.61 (1 H, ddd, *J* = 3.7, 5.5 and 6.0 Hz), 4.27 (1 H, dt, *J* = 5.5 and 9.2 Hz), 4.16– 4.08 (1 H, m), 3.70 (6 H, s), 3.21–3.17 (2 H, m); ¹³C NMR (DMSO-*d*₆) δ 166.83, 158.09, 157.79, 144.78, 142.89, 142.59, 136.75, 135.46, 129.71, 129.56, 127.89, 127.67, 126.74, 121.21, 114.67, 113.21, 97.78, 88.34, 85.61, 82.98, 79.22, 74.14, 69.84, 67.04, 63.19, 55.04.

7-Bromo-4-*N***-phenoxyacetylamino-1-(2-***O***-tert-butyldimethylsilyl-5-***O***-dimethoxytritylβ-D-ribofuranosyl)imidazo**[**4**,**5**-*c*]**pyridine (S12).** In the similar manner as described for **S7**, **S11** (583 mg, 0.75 mmol) in pyridine (4 mL) was treated with TBDMSCl (147 mg, 0.98 mmol) in the presence of AgNO₃ (253 mg, 1.5 mmol) in THF (6 mL) to give a mixture of **S12** and its 3'-*O*-TBDMS derivative. To a solution of resulting mixture in MeOH (20 mL) was added Et₃N (0.1 mL), and the whole mixture was stirred for 20 min at room temperature. Then, the reaction mixture was partitioned between AcOEt and H₂O, the organic layer was washed with brine, dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by a neutralized silica gel column, eluted with hexane/AcOEt (4:1–1:1), to give **S12** (409 mg, 61%) as a white foam. ESI-LRMS *m*/*z* 917, 919 (MNa⁺); ESI-HRMS calcd for C₄₆H₅₁BrN₄NaO₈Si 917.2552, found 917.2551; ¹H NMR (CDCl₃) δ 9.44 (1 H, br s, exchangeable with D₂O), 8.38 (1 H, s), 8.36 (1 H, s), 7.43–6.84 (19 H, m), 4.80 (2 H, br s), 4.68 (1 H, dd, *J* = 5.0 and 1.8 Hz), 4.33 (1 H, ddd, *J* = 4.6, 2.3 and 2.8 Hz), 4.30 (1 H, dd, *J* = 1.8 and 4.6 Hz), 3.80 (6 H, s), 3.57 (1 H, dd, *J* = 2.3 and 11.0 Hz), 3.39 (1 H, dd, *J* = 2.8 and 11.0 Hz), 2.85 (1 H, br s), 0.82 (9 H, s), -0.09 and -0.29 (each 3 H, each s); ¹³C NMR (CDCl₃) δ 158.85, 157.22, 144.49, 144.10, 142.89, 141.79, 141.58, 136.81, 135.40, 135.32, 130.25, 130.02, 129.24, 128.36, 128.23, 128.09, 128.01, 127.89, 127.30, 122.42, 115.16, 113.61, 113.50, 113.40, 113.27, 87.16, 86.78, 84.58, 78.67, 72.24, 68.15, 63.74, 56.37, 25.70, 25.63, -4.65, -5.09, -5.23.

7-Bromo-4-*N*-phenoxyacetylamino-1-[2-*O*-tert-butyldimethylsilyl-3-*O*-(*N*,*N*-diisopropy lamino-2-cyanoethoxyphosphino)-5-*O*-dimethoxytrityl-β-D-ribofuranosyl]imidazo[4,5-*c*]pyri dine (S13). In the similar manner as described for S8, S12 (309 mg, 0.35 mmol) in CH₂Cl₂ (4 mL) containing DMAP (catalytic) and *N*,*N*-diisopropylethylamine (240 mL, 1.4 mmol) was treated with 2-cyanoethyl *N*,*N*-diisopropylchlorophosphoramidite (0.24 mL, 0.86 mmol) to give S13 (287 mg, 74%) as a white foam. ESI-LRMS *m*/*z* 1095, 1097 (MH⁺); ESI-HRMS calcd for C₅₅H₆₉BrN₆O₉PSi 1095.3811, found 1095.3811; ³¹P NMR (CDCl₃) δ 152.72, 149.12. Figure S1 Structural aspects of siRNA duplexes based on CD spectra. A series of siR1 (A),siR2 (B), and siR3 (C).

CD spectra were obtained at 25 °C on a Jasco J1500. An aliquot containing annealed siRNA duplex (1.5 μ M) in a buffer of 10 mM Na cacodylate (pH 7.0) containing 100 mM NaCl was prepared, and sample spectra were subtracted from the buffer spectrum. Molar ellipticity was calculated from equation [θ] = θ/cl , where θ is the relative intensity, *c* is sample concentration, and *l* is cell path length in centimeters.

Figure S2 Schematic of our hypotheses that direction of RISC assembly might be determined from the interaction between Ago2 and siRNA in minor groove near 5'-end of passenger strand.

Figure S3 Effect of 5'-phosphorylation of siRNAs on strand selection in RNAi. Relative ON-target and Off-target potencies of 5'-phosphorylated siR3, siR8, siR9, and siR10, which have chemical probes at 5'-end in passenger strand. HeLa cells were transfected with all samples at 30 nM. After 24 h of incubation, the relative luciferase activities were analyzed. Error bars indicate standard deviations of three independent experiments. Level of luciferase activity in 5'-phosphorylated native siRNA was set to 1.0.

Table S1Seaquence and MALDI-TOF/MASS analytical data of synthesized ssRNAs. Boldupper case letters represent nucleotide positions incorporating chemical probes; italics are2'-doxynuclotides.

Sequence		Calcd (M–H)	Observed
ssRNA for siR1 5 ' -c A gc A uuuucugcauguuu <i>tt</i> -3 '	$C_{199}H_{246}Br_2N_{62}O_{151}P_{20}$	6695.7	6699.8 (Br ⁷ C ⁷) 6694.6 (Br ³ C ³)
	$C_{199}H_{248}N_{62}O_{151}P_{20}$	6539.8	6538.9 (C ⁷) 6535.1 (C ³)
ssRNA for siR2 5′−aaacaugc A g A aaaugcug <i>tt</i> −3′	$C_{206}H_{252}Br_2N_{82}O_{139}P_{20}$	6873.8	6874.2 (Br ⁷ C ⁷) 6871.2 (Br ³ C ³)
	$C_{206}H_{254}N_{82}O_{139}P_{20}$	6718.0	6717.0 (C ⁷) 6714.0 (C ³)
ssRNA for siR3 5 ' −a A ac A ugcagaaaaugcugtt-3'	$C_{206}H_{252}Br_2N_{82}O_{139}P_{20}$	6873.8	6872.0 (Br ⁷ C ⁷) 6871.5 (Br ³ C ³)
	$C_{206}H_{254}N_{82}O_{139}P_{20}$	6718.0	6714.0 (C ⁷) 6716.8 (C ³)
ssRNA for siR4 5'-c A gcauuuucugcauguuu <i>tt</i> -3'	$C_{198}H_{246}BrN_{63}O_{151}P_{20}$	6618.7	6622.5 (Br ⁷ C ⁷) 6621.7 (Br ³ C ³)
ssRNA for siR5 5'-cagc A uuuucugcauguuutt-3'	$C_{198}H_{246}BrN_{63}O_{151}P_{20}$	6618.7	6613.7 (Br ⁷ C ⁷) 6615.4 (Br ³ C ³)
ssRNA for siR6 5'-aaacaugc A gaaaaugcugtt-3'	$C_{205}H_{252}BrN_{83}O_{139}P_{20}$	6796.9	6800.5 (Br ⁷ C ⁷) 6797.7 (Br ³ C ³)
ssRNA for siR7 5'-aaac A ugcagaaaaugcugtt-3'	$C_{205}H_{252}BrN_{83}O_{139}P_{20}$	6796.9	6799.7 (Br ⁷ C ⁷) 6799.4 (Br ³ C ³)
ssRNA for siR8 5'-a A acaugcagaaaaugcugtt-3'	$C_{205}H_{252}BrN_{83}O_{139}P_{20}$	6796.9	6798.8 (Br ⁷ C ⁷) 6799.5 (Br ³ C ³)
ssRNA for siR9 5 '-A aacaugcagaaaaugcug <i>tt</i> -3 '	$C_{205}H_{252}BrN_{83}O_{139}P_{20}$	6796.9	6799.6 (Br ⁷ C ⁷) 6800.2 (Br ³ C ³)
ssRNA for siR10 5 '−AA ac A ugcagaaaaugcug <i>tt</i> −3 '	$C_{207}H_{252}Br_{3}N_{81}O_{139}P_{20}$	6950.7	6954.1 (Br ⁷ C ⁷) 6953.0 (Br ³ C ³)

