Supporting Information

Radical-Radical Cross Coupling Reactions of Photo-excited Fluorenones

Simmi Sharma, Shaista Sultan, Shekariah Devari and Bhahwal Ali Shah.

General information

Reagents and solvents used were generally AR grade. Thin layer chromatography was performed on silica gel coated plates. ¹H spectra were recorded on FT-NMR 500 and 400 MHz instruments. Chemical data for ¹H NMR are reported in parts per million (ppm) downfield from tetramethylsilane and are internally referenced to the residual proton in the NMR solvent (CDCl₃, 7.26 ppm). Integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and coupling constant (Hz). Carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 100 MHz or 125 MHz. Chemical data for ¹³C NMR are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent.

General experimental procedure for decarboxylative radical addition to 9-fluorenone. 9fluorenone (1 mmol) was taken in an oven-dried round bottom flask and dissolved in 1 ml of DMF followed by the addition of carboxylic acid (2.0 mmol, 2 equiv.) and CsF (3.0 mmol, 3 equiv.). The stirred reaction mixture was irradiated under 27W CFL for 48 h at room temperature. The reaction was monitored by TLC. After completion, the reaction mixture was diluted with cold water and extracted with ethyl acetate (3 x 20 ml). The combined organic layers were concentrated under vacuum and dried with NaSO₄. The crude product was purified by silica gel column chromatography using ethyl acetate/hexane to give pure product.

9-benzyl-9H-fluoren-9-ol (**2a**).ⁱ The title compound was prepared according to general procedure described above using phenyl acetic acid (272.2 mg, 2.0 mmol) and 9-fluorenone (180.0 mg, 1.0 mmol) in DMF, and purified by column chromatography (5% EtOAc /hexane) yields pure compound **2a** (163 mg, 60%). White solid; m. p. 143-144 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 7.5 Hz, 2H), 7.34 – 7.21 (m, 6H), 7.16 –7.09 (m, 3H), 6.98 – 6.94 (m, 2H), 3.28 (s, 2H), 2.20 (s, 1H); ¹³C NMR (125 MHz, (CDCl₃) δ 148.2 (2C), 139.3(2C), 136.3, 130.8

(2C), 128.9 (2C), 127.6 (2C), 127.5 (2C), 126.5, 124.3 (2C), 119.9 (2C), 82.3, 45.8. HRMS $(m/z)[M+H-H_2O]^+$ calculated for $[C_{20}H_{15}]^+$ 255.1168; found 255.1170. Solid, M.P.

9-(4-bromobenzyl)-9H-fluoren-9-ol (2b). The title compound was prepared according to general procedure described above using *p*-bromophenylacetic acid (430.2mg, 2.0mmol) and 9-fluorenone (180.0mg, 1.0mmol) in DMF, and purified by column chromatography (5% EtOAc/hexane) yields pure compound **2b** (193 mg, 55%). White solid; m. p. 130 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 6.8 Hz, 2H), 7.36 – 7.30 (m, 4H), 7.27 (d, *J* = 6.4 Hz, 2H), 7.23(d, *J* = 8.3 Hz, 2H), 6.82 (d, *J* = 8.2 Hz, 2H), 3.26 (s, 2H), 2.14 (s, 1H), 1.57 (s, 1H); ¹³C NMR (125 MHz, (CDCl₃) δ 146.8 (2C), 138.2 (2C), 134.2, 131.3 (2C), 129.5 (2C), 128.1 (2C), 126.6 (2C), 123.1 (2C), 119.5, 118.9 (2C), 81.2, 44.1. HRMS (m/z) [M + H-H₂O]⁺ calculated for [C₂₀H₁₄Br]⁺ 333.0273; found 333.0276.

9-(4-(trifluoromethyl)benzyl)-9H-fluoren-9-ol (**2c**). The title compound was prepared according to general procedure described above using *p*-trifluoreomethylphenylacetic acid (204.1 mg, 1.0 mmol) and 9-fluorenone (90.0mg, 0.5mmol) in DMF, and purified by column chromatography (5% EtOAc/hexane) yields pure compound **2c** (88 mg, 52%). White solid; m. p. 135-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (t, *J* = 11.5 Hz, 2H), 7.35-7.19 (m, 8H), 7.02 (t, *J* = 7.5 Hz, 2H), 3.30 (s, 2H), 2.10 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 147.8(2C), 140.4, 139.2 (2C), 131.0 (2C), 129.2 (2C), 128.7, 128.5, 127.7 (2C), 124.3 (2C), 124.1 (2C), 120.1 (2C), 82.2, 45.5. HRMS (m/z) [M + H-H₂O]⁺ calculated for [C₂₁H₁₄F₃]⁺ 323.1042; found 323.1042.

9-(4-methoxybenzyl)-9H-fluoren-9-ol (**2d**).ⁱⁱ The title compound was prepared according to general procedure described above using *p*-methoxyphenylacetic acid (166.1 mg, 1.0 mmol) and 9-fluorenone (90.0 mg, 0.5 mmol) in DMF, and purified by column chromatography (5% EtOAc/hexane) yields pure compound **2d** (74 mg, 49 %). White solid; m. p. 135-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (t, *J* = 11.3 Hz, 2H), 7.31 – 7.14 (m, 6H), 6.83 (t, *J* = 11.4 Hz, 2H), 6.60 (d, *J* = 8.6 Hz, 2H), 3.68 (d, *J* = 22.0 Hz, 3H), 3.16 (s, 2H), 2.30 (d, *J* = 38.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 158.1, 148.4 (2C), 139.4 (2C), 131.7 (2C), 128.8 (2C), 128.5, 127.5 (2C), 124.4 (2C), 119.9 (2C), 112.9 (2C), 82.4, 55.1, 44.9.HRMS (m/z) [M+H-H₂O]⁺ calculated for [C₂₁H₁₇O]⁺ 285.1274; found 285.1269.

9-(4-chlorobenzyl)-9H-fluoren-9-ol (2e).ⁱⁱⁱ The title compound was prepared according to general procedure described above using p-chlorophenylacetic acid (170.6 mg, 1.0 mmol) and 9-

fluorenone (90.0 mg, 0.5 mmol) in DMF, and purified by column chromatography (5% EtOAc/hexane) yields pure compound **2e** (81 mg, 53%). White solid; m. p. 132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.4 Hz, 2H), 7.36 – 7.30 (m, 4H), 7.26 (t, *J* = 7.3 Hz, 2H), 7.07 (d, *J* = 8.3 Hz, 2H), 6.87 (d, *J* = 8.3 Hz, 2H), 3.28 (s, 2H), 2.14 (s, 1H); ¹³C NMR (125 MHz, (CDCl₃) δ 146.9 (2C), 138.3 (2C), 133.7, 131.3, 130.9 (2C), 128.0 (2C), 126.6 (2C), 126.5 (2C), 123.1 (2C), 118.9 (2C), 81.2 and 44.0. HRMS (m/z) [M+H-H₂O]⁺ calculated for [C₂₀H₁₄Cl]⁺ 289.0779; found 289.0767.

9-(2-methoxybenzyl)-9H-fluoren-9-ol (2f). The title compound was prepared according to general procedure described above using 2-methoxyphenylacetic acid (166.1 mg, 1.0 mmol) and 9-fluorenone (90.0 mg, 0.5 mmol) in DMF, and purified by column chromatography (5% EtOAc/hexane) yields pure compound **2f** (64 mg, 42%). White solid; m. p. 131-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 –7.48 (m, 2H), 7.31 – 7.13 (m, 7H), 6.87 – 6.74 (m, 3H), 3.80 – 3.72 (m, 1H), 3.69 (s, 3H), 3.28 (d, *J* = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 157.7, 149.0 (2C), 139.2 (2C), 133.0, 128.6 (2C), 128.3, 127.3 (2C), 125.3, 124.3 (2C), 120.5, 119.8 (2C), 110.5, 82.9, 55.4, 40.7. HRMS (m/z) [M + H-H₂O]⁺ calculated for [C₂₁H₁₇O]⁺ 285.1274; found 285.1277.

9-(2-chlorobenzyl)-9H-fluoren-9-ol (2g). The title compound was prepared according to general procedure described above using 2-chlorophenylacetic acid (171 mg, 1.0 mmol) and 9-fluorenone (90.0 mg, 0.5 mmol) in DMF, and purified by column chromatography (5% EtOAc/hexane) yields pure compound **2g** (66 mg, 43%). White solid; m. p. 128-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2H), 7.37 – 7.30 (m, 3H), 7.27 –7.25 (m, 1H), 7.24 – 7.21 (m, 4H), 7.17 – 7.13(m, 2H), 3.47 (s, 2H), 2.20 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 147.2 (2C), 138.0 (2C), 134.4, 133.6, 131.6, 128.2, 128.0 (2C), 127.0, 126.6 (2C), 125.0, 123.1 (2C), 118.9 (2C), 81.17, 40.78. HRMS (m/z) [M+H-H₂O]⁺ calculated for [C₂₀H₁₄Cl]⁺ 289.0779; found 289.0810.

9-benzhydryl-9H-fluoren-9-ol (2h).^{iv} The title compound was prepared according to general procedure described above using diphenyl acetic acid (212.2 mg, 1.0mmol) and 9-fluorenone (90.0 mg, 0.5 mmol) in DMF, and purified by column chromatography (5% EtOAc/hexane) yields pure compound **2h** (101 mg, 58%). White solid; m. p. 183 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.4 Hz, 2H), 7.37 – 7.31 (m, 4H), 7.25 (dd, *J* = 13.8, 6.3 Hz, 2H), 7.22 – 7.14 (m, 6H), 7.02 (t, *J* = 7.5 Hz, 2H), 6.73 (d, *J* = 7.5 Hz, 2H), 4.37 (s, 1H), 2.33 (s, 1H); ¹³C

S3

NMR (125 MHz, CDCl₃) δ 148.0 (2C), 140.7 (2C), 139.8 (2C), 130.2 (4C), 128.9 (2C), 127.9 (4C), 127.3 (2C), 126.7 (2C), 125.4 (2C), 119.8 (2C), 84.4, 60.3. HRMS (m/z) [M+H-H₂O]⁺ calculated for [C₂₆H₁₉]⁺ 331.1481; found 331.1474.

9-(1-phenylpropyl)-9H-fluoren-9-ol (2i). The title compound was prepared according to general procedure described above using 2-phenylbutyric acid (164.2 mg, 1.0 mmol) and 9-fluorenone (90.0 mg, 0.5 mmol) in DMF, and purified by column chromatography (5% EtOAc/hexane) yields pure compound **2i** (67 mg, 45%). White solid; m. p. 181-182 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.56 (m, 1H), 7.51 – 7.47 (m, 1H), 7.41 (dd, *J* = 7.3, 1.0 Hz, 1H), 7.37 – 7.26 (m, 2H), 7.24 – 7.13 (m, 3H), 7.10 – 7.04 (m, 3H), 6.87 (dt, *J* = 4.1, 3.2 Hz, 2H), 3.25 (dd, *J* = 12.1, 2.9 Hz, 1H), 2.22 (s, 1H), 1.93 – 1.54 (m, 2H), 0.65 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.7, 149.5, 141.8, 141.2, 140.1, 131.4(2C), 130.4, 130.0, 129.0, 128.8(2C), 128.6, 128.0, 126.0, 125.7, 121.2, 121.1, 85.9, 58.2, 23.2, 13.9. HRMS (m/z) [M+H-H₂O]⁺ calculated for [C₂₂H₁₉]⁺ 283.1481; found 283.1464.

9-benzyl-2-fluoro-9H-fluoren-9-ol (2j). The title compound was prepared according to general procedure described above using phenyl acetic acid (136.1 mg, 1.0 mmol) and 2-fluoro-9-fluorenone (99.0 mg, 0.5 mmol) in DMF, and purified by column chromatography (5% EtOAc/hexane) yields pure compound **2j** (69 mg, 48%). White solid; m. p. 144-145 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.44 (m, 2H), 7.35-7.29 (m, 2H), 7.27-7.24 (m, 1H), 7.19 – 7.11 (m, 3H), 7.03 – 6.93 (m, 4H), 3.27 (d, *J* = 13.9 Hz, 2H), 2.19 (d, *J* = 14.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 161.6 (d, *J* = 245 Hz), 148.3 (d, *J* = 312 Hz), 137.5, 134.7, 134.1, 129.7 (2C), 128.1, 126.6 (2C), 126.2, 125.6, 123.2, 120.0, 119.9 (d, *J* = 8.7 Hz), 118.6, 114.7 (d, *J* = 22.5 Hz), 110.9 (d, *J* = 23.7 Hz), 81.1, 44.8. HRMS (m/z) [M+H-H₂O]⁺ calculated for [C₂₀H₁₄F]⁺ 273.1074; found 273.1084.

Methyl 9-benzyl-9-hydroxy-9H-fluorene-2-carboxylate (**2k**). The title compound was prepared according to general procedure described above using phenylacetic acid (136.1 mg, 1.0 mmol) and methyl 9-oxo-9-fluorene-2-carboxylate (119.0 mg, 0.5 mmol) in DMF, and purified by column chromatography (10% EtOAc/hexane) yields pure compound **2k** (61 mg, 37%). White solid; m. p. 147-148 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01– 7.94 (m, 1H), 7.48– 7.52 (m, 1H), 7.31–7.26 (m, 5H), 7.12–7.02 (m, 3H), 6.85 (dd, *J* = 7.9 Hz, 1.3 Hz, 5H), 3.88 – 3.83 (m, 3H), 3.62 (s, 1H), 3.38 – 3.23 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 149.1, 148.5, 143.9, 138.2, 135.8, 130.9, 130.6 (2C), 129.1, 128.7, 128.3, 127.6 (2C), 126.5, 125.4, 124.6,

120.8, 119.6, 82.2, 52.1, 45.8. HRMS (m/z) $[M+H-H_2O]^+$ calculated for $[C_{22}H_{17}O_2]^+$ 313.1223; found 313.1212.

tert-Butyl 2-(9-hydroxy-9H-fluoren-9-yl)pyrrolidine-1-carboxylate (2l). The title compound was prepared according to general procedure described above using boc-1-proline (215.1mg, 1.0mmol) and 9-fluorenone (90.0mg, 0.5mmol) in MeCN, and purified by column chromatography (5% EtOAc /hexane) yields pure compound 2l (84 mg, 48%). White solid, m. p. 150-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 –7.50 (m, 3H), 7.48-7.44 (m, 1H), 7.36 – 7.23 (m, 4H), 4.68 (dd, *J* = 8.1, 5.6 Hz, 1H), 3.26 (dtd, *J* = 13.3, 10.9, 6.9 Hz, 2H), 1.59 (s, 9H), 1.52 – 1.31 (m, 2H), 0.98 – 0.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 148.5, 146.9, 140.8, 139.9, 128.7 (2C), 128.1 (2C), 127.7 (2C), 125.0 (2C), 123.6, 119.7 (2C), 85.4, 81.3, 65.93, 48.7, 28.6 (2C), 23.8. HRMS (m/z) [M+H]⁺ calculated for [C₂₂H₂₆NO₃]⁺ 352.1907; found 352.1911.

1-(2-(9-hydroxy-9H-fluoren-9-yl) pyrrolidin-1-yl) ethan-1-one (2m). The title compound was prepared according to general procedure described above using N-acetyl-1-proline (157.0mg,1.0mmol) and 9-fluorenone (90.0mg, 0.5mmol) in MeCN, and purified by column chromatography (5% EtOAc /hexane) yields pure compound **2m** (73 mg, 50%). White solid; m. p. 169-170 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dt, *J* = 31.5, 11.2 Hz, 3H), 7.37 – 7.18 (m, 5H), 4.95 – 4.80 (m, 1H), 3.50 – 3.06 (m, 2H), 2.26 (d, *J* = 18.3 Hz, 3H), 1.53 – 1.35 (m, 2H), 1.05 – 0.70 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 173.9, 148.4, 146.8, 140.7, 139.8, 128.9, 128.8, 128.2, 127.8, 124.6, 123.5, 119.9, 119.8, 85.2, 66.5, 50.2, 28.3, 24.0, 23.1. HRMS (m/z) [M+H]⁺ calculated for [C₁₉H₂₀NO₂]⁺ 294.1489; found 294.1484.

tert-butyl (1-(9-hydroxy-9H-fluoren-9-yl) ethyl)carbamate (2n). The title compound was prepared according to general procedure described above using boc-1-alanine (189.0 mg, 1.0 mmol) and 9-fluorenone (90.0 mg, 0.5 mmol) in MeCN, and purified by column chromatography (5% EtOAc /hexane) yields pure compound **2n** (54 mg, 33%). Semi solid; ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.51 (m, 4H), 7.39 – 7.23 (m, 4H), 4.69 (s, 1H), 4.37 (s, 1H), 1.45 (s, 9H), 0.71 (s, 3H); ¹³C NMR (125 MHz, (CDCl₃) δ 156.9, 147.1, 145.4, 140.0, 139.5, 134.1, 128.6, 128.6, 127.5, 127.1, 124.0, 123.8, 123.1, 119.8, 119.4, 84.7, 79.7, 53.4, 27.9 and 15.8. HRMS (m/z) [M+H]⁺ calculated for [C₂₀H₂₄NO₃]⁺ 326.1751; found 326.1759.

tert-Butyl 2-(2-fluoro-9-hydroxy-9H-fluoren-9-yl)pyrrolidine-1-carboxylate (20). The title compound was prepared according to general procedure described above using L-boc-proline (215.1 mg, 1.0 mmol) and 2-fluoro-9-fluorenone (99.0 mg, 0.5 mmol) in MeCN, and purified by

column chromatography (5% EtOAc /hexane) yields pure compound **20** (74 mg, 40%). Yellowish white solid; m. p. 153-154 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.48 (m, 3H), 7.35 – 7.21 (m, 2H), 7.16 – 6.96 (m, 2H), 4.72 – 4.56 (m, 1H), 3.60 – 3.41 (m, 1H), 3.10-2.98 (m, 1H), 1.64 – 1.37 (m, 11H), 1.07 – 0.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 160.2 (d, *J* = 277 Hz), 149.04, 148.4, 139.1, 136.8, 128.8, 127.7, 127.4 (d, *J* = 27 Hz), 125.0, 123.6, 120.6 (d, *J* = 8 Hz), 119.4, 115.6 (d, *J* = 20 Hz), 112.7 (d, *J* = 20 Hz), 85.0, 81.6, 65.8, 48.7, 28.5(2C), 23.8. HRMS (m/z) [M+H]⁺ calculated for [C₂₂H₂₅FNO₃]⁺ 370.1813; found 370.1816.

tert-Butyl2-(9-hydroxy-2-(methoxycarbonyl)-9H-fluoren-9-yl)pyrrolidine-1-carboxylate

(2p). The title compound was prepared according to general procedure described above using 1-boc-proline (215.1 mg, 1.0 mmol) and methyl 9-oxo-9-fluorene-2-carboxylate (120 mg, 0.5 mmol) in MeCN, and purified by column chromatography (10% EtOAc /hexane) yields mixture of distereomers **2p** (66 mg, 32%) in ratio (1:1) confirmed from ¹³C spectra. Yellow solid; m.p. 148-149°C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.97 (m, 1H), 7.65 – 7.36 (m, 4H), 7.33 – 7.22 (m, 2H), 4.72 – 4.55 (m, 1H), 3.87 (d, *J* = 11.0 Hz, 3H), 3.44 (d, *J* = 6.2 Hz, 1H), 3.03 – 2.89 (m, 1H), 1.95 – 1.71 (m, 2H), 1.63 – 1.48 (m, 9H), 0.92 – 0.81 (m, 1H), 0.73 – 0.59 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 167.0, 158.8, 149.0, 147.5, 145.0, 139.2, 130.7, 129.6, 129.3, 128.9, 126.3, 125.3, 124.8, 123.8, 120.6, 119.5, 85.1, 81.6, 65.8, 52.1, 48.6, 28.8, 28.6, 23.8. HRMS (m/z) [M+H]⁺ calculated. For [C₂₄H₂₈NO₅]⁺ 410.1962; found 410.1951.

General procedure for reaction with cyclopropyl amine. To a solution of 9-fluorenone (1.0 mmol) in 2 ml MeCN was added cyclic amine (2.0 mmol). The stirred reaction mixture was irradiated under 27W CFL for 10- 48 h at room temperature. The reaction was monitored by TLC. After completion, the solvent was evaporated and the crude reaction mixture was subjected to silica gel column chromatography using hexane/ethyl acetate to give pure product.

4',5'-Dihydro-3'H-spiro[fluorene-9,2'-furan]-5'-amine (3a). The title compound was prepared according to the general procedure described above using 9-fluorenone (180 mg, 1.0 mmol) and cyclopropyl amine (142.75 μ l, 2.0 mmol) and purified by column chromatography as whitish yellow solid (114 mg, 48%). Yellow solid; m. p. 126-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 6.6, 1.3 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.41 – 7.26 (m, 4H), 5.92 (d, *J* = 4.6 Hz, 1H), 2.76 – 2.65 (m, 1H), 2.49 (tdd, *J* = 13.0, 8.6, 4.7 Hz, 1H), 2.39 – 2.25 (m, 2H);¹³C NMR (125 MHz, CDCl₃) δ 148.8, 148.7, 139.7, 139.1, 128.9, 128.8, 128.2, 128.0, 124.7, 123.1,

119.9, 119.7, 99.7, 91.3, 35.4, 35.0; GC-MS (EI) m/z (%) 238 (17), 220 (33.7), 189 (41), 181 (100), 165 (46.5). HRMS (m/z) [M+H]⁺ calculated. For $[C_{16}H_{16}NO]^+$ 238.1226; found 238.1223. **2-fluoro-4', 5'-dihydro-3'H-spiro[fluorene-9,2'-furan]-5'-amine (3b).** The title compound was prepared according to the general procedure described above using 2-fluoro-9-fluorenone (198 mg, 1.0 mmol) and cyclopropyl amine (142.75 µl, 2.0 mmol) and purified by column chromatography (133 mg, 52%). White solid; m. p. 126-127 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.40 (m, 3H), 7.39 – 7.22 (m, 3H), 7.05 (ddt, *J* = 7.0, 6.3, 3.5 Hz, 1H), 5.89 (s, 1H), 2.73 – 2.61 (m, 1H), 2.51 – 2.38 (m, 1H), 2.36 – 2.25 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 163.2 (d, *J*=246.3), 151.3, 148.7 (d, *J* = 12.6 Hz), 136.9 (d, *J* = 381.8 Hz), 128.4 (d, *J*= 156.8 Hz), 124.7, 123.1, 120.8 (d, *J* = 23.9 Hz), 119.5 (d, *J* = 21.4 Hz), 115.7(d, *J* = 23.3 Hz), 112.4 (d, *J* = 23.9 Hz), 110.8 (d, *J* = 23.9 Hz), 99.8, 90.9, 35.5(d, *J* = 7.6 Hz), 34.8; HRMS (m/z) [M+H]⁺ calculated for C₁₆H₁₅FNO: 256.1132, found 256.1123.

Methyl 5'-amino-4', 5'-dihydro-3'H-spiro[fluorene-9,2'-furan]-2-carboxylate (3c). The title compound was prepared according to the general procedure described above using methyl 9-oxo-9-fluorene-2-carboxylate (295 mg, 1.0 mmol) and cyclopropyl amine (142.75 μ l, 2.0 mmol) and purified by column chromatography (89 mg, 30%).Yellowish white solid; m. p. 125-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 – 8.01 (m, 2H), 7.77 – 7.29 (m, 5H), 6.02 – 5.89 (m, 1H), 4.00 – 3.86 (m, 3H), 2.80 – 2.65 (m, 1H), 2.62 – 2.46 (m, 1H), 2.43 – 2.25 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 149.4, 143.9, 138.5, 130.9, 129.3, 129.1, 125.9, 124.7, 123.3, 120.6, 119.5, 99.9, 90.9, 52.1, 35.2, 34.9. HRMS (m/z) [M+H]⁺ calculated. For [C₁₈H₁₈NO₃]⁺ 296.1281; found 296.1282.

Optimization studies

Table S1: Optimization of reaction conditions for ring expansion reactions.

S.No	Light source	Solvent	Yield (%)
1	27W CFL	MeCN	48
2	27W CFL	DMF	44
3	27W CFL	DMSO	37
4	Blue LED	MeCN	46
5	-	MeCN	Traces

NMR Spectra's

Figure S5. ¹H NMR spectrum of 2c

Figure S6. ¹³C NMR spectrum of 2c

Figure S8. ¹³C NMR spectrum of 2d

Figure S10. ¹³C NMR spectrum of 2e

Figure S12. ¹³C NMR spectrum of 2f

Figure S14. ¹³C NMR spectrum of 2g

Figure S18. ¹³C NMR spectrum of 2i

Figure S21. ¹H NMR spectrum of 2k

Figure S22. ¹³C NMR spectrum of 2k

Figure S23. ¹H NMR spectrum of 2l

Figure S24. ¹³C NMR spectrum of 2l

Figure S25. ¹H NMR spectrum of 2m

Figure S26. ¹³C NMR spectrum of 2m

Figure S27. ¹H NMR spectrum of 2n

Figure S28. ¹³C NMR spectrum of 2n

Figure S29. ¹H NMR spectrum of 20

Figure S30. ¹³C NMR spectrum of 20

Fig. S34. ¹³C NMR spectrum of 3a

MS Data Review Active Chromatogram and Spectrum Plots - 4/26/2016 4:44 PM

Fig S35 GC-MS spectra of 3a

ⁱWei, B.; Li, H.; Zhang, W.-X.; Xi, Z. Organometallics 2015, 34, 1339-1344.

"Sprinzak, Y. r. J. Am. Chem. Soc. 1958, 80, 5449-5455.

^{III} Fox, H. H.; Gibas, J. T.; Lee, H. L.; Boris, A. J. Med. Chem. **1964**, *7*, 790-792.

^{iv} Mladenova, G.; Chen, L.; Rodriquez, C. F.; Siu, K. W. M.; Johnston, L. J.; Hopkinson, A. C.;

Lee-Ruff, E. J. Org. Chem. 2001, 66, 1109-1114.