Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting information

A Selective Calix[6]arene-based Fluorescent Chemosensor for Phosphatidylcholine Type Lipids

Emilio Brunetti, Steven Moerkerke, Johan Wouters, Kristin Bartik* and Ivan Jabin*

List of contents

I.	Complexation studies between host 1 and DOPC	2
II.	Complexation studies between host 1 and POPC	5
III.	Complexation studies between host 1 and DPPC	7
IV.	Complexation studies between host 1 and SPH	9
V.	Complexation studies between host 1 and DPC	11
VI.	Complexation studies between host 1 and MPC	15
VII.	Complexation studies between host 1 and DOPE	18
VIII	. ³¹ P NMR measurements	19
IX.	Extraction experiments	21

I. Complexation studies between host 1 and DOPC

Figure S1. COSY spectrum (600 MHz, 298 K, CDCl₃) of compound **1** in the presence of *ca*. 3 equiv. of DOPC.

Figure S2. 2D ROESY spectrum (600 MHz, 298 K, CDCl₃, mixing time = 300 ms) of compound 1 in the presence of *ca*. 3 equiv. of DOPC.

Figure S3. HSQC spectrum (600 MHz, 298 K, CDCl₃) of compound **1** in the presence of *ca*. 3 equiv. of DOPC.

Figure S4. ¹H NMR spectra (600MHz, 298 K) of **1** in presence of *ca*. 3 equiv. of DOPC in: a) CDCl₃; b) in a mixture CDCl₃/CD₃OD *ca*. 98:2; c) in a mixture CDCl₃/CD₃OD *ca*. 96:4; s: solvent.

Figure S5. 2D ROESY spectrum (600 MHz, 298 K, $CDCl_3/CD_3OD$ *ca.* 96:4, mixing time = 300 ms) of compound **1** in the presence of *ca.* 3 equiv. of DOPC.

Figure S6. ¹H NMR spectra (600MHz, 298 K, DMSO-d₆) of: a) **1**; b) **1** in presence of *ca.* 1 equiv. of DOPC; s: solvent; *: DOPC signals.

II. Complexation studies between host 1 and POPC

Figure S7. ¹H NMR spectra (600MHz, 298 K, CDCl₃) of: a) **1**; b) **1** in the presence of *ca.* 2.5 equiv. of POPC; s: solvent.

Figure S8. ¹H NMR spectra (600MHz, 298 K, CDCl₃) of: a) POPC; b) POPC in the presence of *ca*. 0.13 equiv. of **1**; c) POPC in the presence of *ca*. 0.62 equiv. of **1**; s: solvent.

Figure S9. Top: fluorescence spectra of **1** upon the addition of POPC (0 to 185 equiv.) in chloroform. $[\mathbf{1}]_0 = 1.9 \times 10^{-6}$ M. $\lambda_{ex} = 345$ nm. Bottom: variation of fluorescence intensity at 420 nm upon the addition of POPC.

Figure S10. ¹H NMR spectra (600MHz, 298 K, CDCl₃) of: a) **1**; b) **1** in the presence of *ca*. 3 equiv. of DPPC; s: solvent.

Figure S11. NMR spectra (600MHz, 298 K, CDCl₃) of host **1** in the presence of *ca*. 3 equiv. of DPPC: a) 1D EXSY spectrum (mixing time = 25 ms) after selective excitation of the ⁺NMe₃ signal at 3.24 ppm; b) ¹H NMR spectrum; $\mathbf{\nabla}$: Pulse excitation.

Figure S12. Top: fluorescence spectra of **1** upon the addition of DPPC (0 to 54 equiv.) in chloroform. $[\mathbf{1}]_0 = 2.6 \times 10^{-6}$ M. $\lambda_{ex} = 345$ nm. Bottom: variation of fluorescence intensity at 420 nm upon the addition of DPPC.

IV. Complexation studies between host 1 and SPH

Figure S13. a) ¹H NMR spectra (600MHz, 298 K, CDCl₃) of: a) **1**; b) **1** in the presence of *ca*. 11 equiv. of SPH; s: solvent.

Figure S14. NMR spectra (600MHz, 298 K, CDCl₃) of host **1** in the presence of *ca*. 11 equiv. of SPH: a) 1D EXSY spectrum (mixing time = 25 ms) after selective excitation of the ⁺NMe₃ signal at 3.32 ppm; b) ¹H NMR spectrum; $\mathbf{\nabla}$: Pulse excitation.

Figure S15. Top: fluorescence spectra of **1** upon the addition of SPH (0 to 32 equiv.) in chloroform. $[\mathbf{1}]_0 = 2.6 \times 10^{-6}$ M. $\lambda_{ex} = 345$ nm. Bottom: variation of fluorescence intensity at 420 nm upon the addition of SPH.

V. Complexation studies between host 1 and DPC

Figure S16. ¹H NMR spectra (600MHz, 298 K, CDCl₃) of: a) **1**; b) **1** in the presence of *ca*. 6 equiv. of DPC; s: solvent.

Figure S17. 2D ROESY spectrum (600 MHz, 298 K, CDCl₃, mixing time = 300 ms) of host **1** in the presence of *ca*. 6 equiv. of DPC.

Figure S18. HSQC spectrum (600 MHz, 298 K, CDCl₃) of compound **1** in the presence of *ca*. 6 equiv. of DPC.

Figure S19 NMR spectra (600MHz, 298 K, CDCl₃) of host **1** in the presence of *ca.* 6 equiv. of DPC: a) 1D EXSY spectrum (mixing time = 25 ms) after selective excitation of the ⁺NMe₃ signal at 3.26 ppm; b) ¹H NMR spectrum; $\mathbf{\nabla}$: Pulse excitation.

equiv. of DPC; s: solvent; *: DPC signals.

Figure S21. Top: fluorescence spectra of **1** upon the addition of DPC (0 to 100 equiv.) in chloroform. $[\mathbf{1}]_0 = 2.2 \times 10^{-6}$ M. $\lambda_{ex} = 345$ nm. Bottom: variation of fluorescence intensity at 420 nm upon the addition of DPC.

Figure S22. ¹H NMR spectra (600MHz, 298 K, CDCl₃) of: a) **1**; b) **1** in the presence of *ca*. 4.5 equiv. of MPC; s: solvent.

Figure S23. 2D ROESY spectrum (600 MHz, 298 K, CDCl₃, mixing time = 300 ms) of compound 1 in the presence of *ca*. 4.5 equiv. of MPC.

Figure S24. HSQC spectrum (600 MHz, 298 K, CDCl₃) of compound **1** in the presence of *ca*. 4.5 equiv. of MPC.

Figure S25. Top: fluorescence spectra of **1** upon the addition of MPC (0 to 71 equiv.) in chloroform. $[\mathbf{1}]_0 = 2.9 \times 10^{-6}$ M. $\lambda_{ex} = 345$ nm. Bottom: variation of fluorescence intensity at 420 nm upon the addition of MPC.

Figure S26. ¹H NMR spectra (600MHz, 298 K, CDCl₃) of: a) **1**; b) **1** in the presence of *ca*. 3 equiv. of DOPE; s: solvent; *: DOPE signals.

Figure S27. Fluorescence spectra of 1 upon the addition of DOPE (0 to 140 equiv.) in chloroform. $[1]_0 = 2.5 \times 10^{-6}$ M. $\lambda_{ex} = 345$ nm.

VIII. ³¹P NMR measurements

Figure S28. ³¹P NMR spectra (400MHz, 298 K, CDCl₃) of: a) a solution of DOPE (*ca.* 2.9 mM); b) to f) a solution of DOPE (*ca.* 2.9 mM) after addition of host **1** up to 0.6 equiv.

Figure S29. ³¹P NMR spectra (400MHz, 298 K, CDCl₃) of: a) a solution of POPC (*ca.* 4.3 mM); b) to d) a solution of POPC (*ca.* 4.3 mM) diluted up to a concentration of 0.7 mM.

Figure S30. ³¹P NMR spectra (400MHz, 298 K, CDCl₃) of: a) a solution of MPC (*ca.* 16 mM); b) to d) a solution of MPC (*ca.* 16 mM) diluted up to a concentration of 0.3 mM.

IX. Extraction experiments

1. Two liquid-liquid extraction experiments were conducted preparing two different $20\mu L$ water solutions of 2 known DOPC concentration. After adding these solutions to a solution of **1** in chloroform, the resulting fluorescence intensity was monitored.

Figure S31. Red cross: fluorescence intensity of a solution of **1** \supset **DOPC** upon addition of a solution of DOPC in water (*ca*. 5.5 µM) to a solution of **1** (*ca*. 2 µM in 2 mL) in CHCl₃. Green triangle: fluorescence intensity of a solution of **1** \supset **DOPC** upon addition of a solution of DOPC in water (*ca*. 60 µM) to a solution of **1** (*ca*. 2 µM in 2 mL) in CHCl₃. $\lambda_{ex} = 345$ nm. Errors estimated of ± 10% for the equivalents of DOPC and ± 5 % for the fluorescence intensity.

2. <u>NMR experiments</u>

Figure S32. ¹H NMR spectrum (600MHz, 298 K, CDCl₃) of: a) 1.1 mM solution of **1** in CDCl₃ (600 μ L); b) after addition of 100 μ L of a 12 mM solution of DOPC in D₂O after mixing; s: solvent.

Figure S33. ¹H NMR spectra (600MHz, 298 K, CDCl₃) of: a) **1**; b) **1** after addition of a solution of DOPC liposomes prepared D₂O; c) **1** after addition of a solution of DOPC liposomes prepared D₂O and after heating and stirring for 16h at 50°C; s: solvent; w: water.

3. <u>Fluorescence titration</u>

Figure S34. Variation of fluorescence intensity at 397 nm upon the addition of DOPC in chloroform to a 1.9×10^{-6} M solution of **1** in 2 mL chloroform in the presence of 20 µL of water. Solid line corresponds to 1:1 binding which yields a log $K = 4.5 \pm 0.2$; $\lambda_{ex} = 345$ nm.