Rhodium(III)-catalyzed *ortho*-alkenylation using a cyclic *N*-phosphoryl ketimine as the directing group

Yu-Qin Zhu, Liu Qin, Qiang Song, Fu Su, Yan-Jun Xu* and Lin Dong*

Key laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041 (China) E-mail: dongl@scu.edu.cn

Supporting Information

Table of Contents

- 1. General Methods
- 2. General Procedure for the Synthesis of *ortho*-olefinated Cyclic *N*-Phosphoryl Ketimine Derivatives
- 3. Synthetic Transformations of 3aa
- 4. Characterization Data
- 5. Mechanism Study
- 6. NMR Spectra and Structure Determination of the *ortho*-olefinated Cyclic *N*-Phosphoryl Ketimine Derivatives

1. General Methods

NMR data were obtained for ¹H at 400 MHz or 600 MHz, and for ¹³C at 100 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. ESI HRMS was recorded on a Waters SYNAPT G2 and Water XEVO G2 Q-ToF. UV detection was monitored at 220 nm. TLC was performed on glass-backed silica plates. Column chromatography was performed on silica gel (200-300 mesh), eluting with ethyl acetate and petroleum ether. Cyclic *N*-phosphoryl ketimines were prepared according to the reported procedure.¹ Acrylates were commercially available.

2. General Procedure for the Synthesis of *ortho*-olefinated cyclic *N*-phosphoryl ketimines derivatives (3aa)

1a (28.7 mg, 0.1 mmol), methyl acrylate **2a** (45.3 μ L, 0.5 mmol), [Cp*RhCl₂]₂ (1.6 mmol, 2.5 mol %), AgOAc (1.7 mg, 0.1 equiv), Cu(OAc)₂·H₂O (22.0 mg, 1.1 equiv) was stirred in DCE (1.0 mL) under Ar atmosphere at 120 °C. After methyl acrylate was completely consumed (monitored by TLC), the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:2.5) to give the product **3aa** as a brown oil (34.9 mg, 94%).

3. Synthetic Transformations of 3aa.

General Procedure for Synthesis of phosphonamide 5

Ortho-olefinated cyclic *N*-phosphoryl ketimine (**3aa**) (18.6 mg, 0.05 mmol) was dissolved in MeOH (1.5 mL) and then was cooled to 0 °C. NaBH₄ (3.9 mg, 2.0 equiv) was added slowly to the solution. After the formation of organophosphorus intermediate **4** was complete by TLC, the reaction was allowed to warm to room temperature and stirred 3 h. The resulting solvent was extracted with DCM (3 x 3 mL), and the organics was concentrated under vacuum. The residue was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:1) to give the corresponding phosphonamide **5** as a colourless oil (9.3 mg, 46%).

General Procedure for Synthesis of phosphonamide 6

Ortho-olefinated cyclic *N*-phosphoryl ketimine (**3aa**) (18.6 mg, 0.05 mmol) was dissolved in MeOH (1.5 mL) and then was cooled to 0 °C. NaBH₄ (3.9 mg, 2.0 equiv) was added slowly to the solution. After the formation of organophosphorus intermediate **4** was complete, K_2CO_3 (8.3 mg, 1.2 equiv) was added slowly to the reaction mixture, the reaction was allowed to warm to room temperature and stirred 17 h. The resulting suspension was extracted with DCM (3 x 5 mL), and the organics was concentrated under vacuum. The residue was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:1) to give the corresponding phosphonamide **6** as a colourless solid (18.9 mg, 94%).

4. Characterization Data

(E)-methyl-3-(2-(2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-5-methylphenyl)a crylate (**3aa**). 12 h, 94% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.56 (m, 3H), 7.33-7.21 (m, 4H), 7.10 (t, *J* = 8.0 Hz, 1H), 6.37 (d, *J* = 15.6 Hz, 1H), 3.98 (d, *J* = 11.6 Hz, 3H), 3.70 (s, 3H), 2.46 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.8 (d, *J* = 5.9 Hz), 166.7, 154.3 (d, *J* = 5.7)

Hz), 141.1, 140.9, 136.1, 134.8 (d, J = 24.2 Hz), 133.0, 131.2, 130.6, 129.3, 127.7, 123.9, 120.5, 119.8 (d, J = 7.3 Hz), 119.3 (d, J = 25.9 Hz), 55.0 (d, J = 6.5 Hz), 51.8, 21.5 ppm. ESI HRMS: calcd. for C₁₉H₁₈NO₅P [M + H⁺] 372.1002, found 372.1002.

(E)-methyl-3-(2-(2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)phenyl)acrylate

(3ba). 12 h, 91% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 7.2 Hz, 1H), 7.63-7.51 (m, 4H), 7.44 (d, J = 6.0 Hz, 1H), 7.29 (d, J = 8.8 Hz, 1H), 7.21-7.19 (m, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.40 (d, J = 16.0 Hz, 1H), 4.00 (d, J = 11.6 Hz, 3H), 3.71 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 179.7 (d, J = 6.0 Hz), 165.6, 153.2 (d, J = 5.7 Hz), 140.1, 136.4 (d, J = 1.0 Hz)

24.1 Hz), 135.2, 131.9, 130.1, 129.5, 128.8, 128.1, 126.1, 123.0, 119.8, 118.8 (d, J = 7.4 Hz), 118.1 (d, J = 26.0 Hz), 54.0 (d, J = 6.5 Hz), 50.8 ppm. ESI HRMS: calcd. for C₁₈H₁₆NO₅P [M + H⁺] 358.0844, found 358.0844.

(E)-methyl-3-(5-methoxy-2-(2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)phenyl

)acrylate (**3ca**). 12 h, 81% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.68-7.58 (m, 2H), 7.41 (d, J = 8.8 Hz, 1H), 7.29-7.27 (m, 2H), 7.23 (d, J = 2.0 Hz, 1H), 7.13 (t, J = 8.0 Hz, 1H), 7.04 (dd, $J_I = 2.4$ Hz, $J_2 = 8.4$ Hz, 1H), 6.37(d, J = 16.0 Hz, 1H), 3.99 (d, J = 11.6 Hz, 3H), 3.92 (s, 3H), 3.72 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.3 (d, J = 5.7 Hz), 166.6, 161.2, 154.3 (d, J = 5.6 Hz), 141.6, 136.0, 135.2, 131.3 (d, J = 5.9

Hz), 130.0 (d, J = 24.5 Hz), 123.9, 120.8, 119.8 (d, J = 7.4 Hz), 119.5 (d, J = 25.7 Hz), 115.3, 112.3, 55.6, 55.0 (d, J = 6.5 Hz), 51.8 ppm. ESI HRMS: calcd. for C₁₉H₁₈NO₆P [M + H⁺] 388.0950, found 388.0949.

(E)-methyl-3-(5-fluoro-2-(2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)phenyl)ac

rylate (**3da**). 12 h, 88% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.49 (m, 2H), 7.40-7.36 (m, 2H), 7.23-7.04 (m, 4H), 6.31 (d, *J* = 15.6 Hz, 1H), 3.93 (d, *J* = 12.0 Hz, 3H), 3.65 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 178.5 (d, *J* = 5.6 Hz), 165.2, 163.8, 161.3, 153.3 (d, *J* = 5.7 Hz), 139.0 (d, *J* = 2.1 Hz), 135.3, 134.8 (d, *J* = 8.0 Hz), 132.5 (dd, *J_I* = 3.3 Hz, *J₂* = 24.6 Hz), 130.5 (d, *J* = 8.7 Hz), 129.9, 123.0, 120.9, 118.9 (d, *J* = 7.4 Hz),

118.1 (d, J = 25.8 Hz), 116.0 (d, J = 22.0 Hz), 112.9 (d, J = 22.7 Hz), 54.1 (d, J = 6.5 Hz), 50.9 ppm. ESI HRMS: calcd. for C₁₈H₁₅FNO₅P [M + H⁺] 376.0750, found 376.0751.

(E)-methyl-3-(2-(2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-4-methylphenyl)a

thoxy-2-oxtdo-2H-benzo[e][1,3,2]oxazaphosphinin-4-yi)-4-methylphenyl)a crylate (**3ea**). 12 h, 67% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.67-7.52 (m, 3H), 7.38-7.26 (m, 3H), 7.20-7.09 (m, 2H), 6.35 (d, *J* = 15.6 Hz, 1H), 4.00 (d, *J* = 11.6 Hz, 3H), 3.69 (s, 3H), 2.43 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 181.0 (d, *J* = 6.0 Hz), 166.7, 154.2 (d, *J* = 5.7 Hz), 141.0, 140.6, 137.5 (d, *J* = 24.0 Hz), 136.2, 131.4, 131.2, 130.0, 129.5, 127.0,

124.0, 119.7 (d, J = 7.3 Hz), 119.2 (d, J = 26.1 Hz), 55.0 (d, J = 6.6 Hz), 51.7, 21.3 ppm. ESI HRMS: calcd. for C₁₉H₁₈NO₅P [M + H⁺] 372.1001, found 372.0997.

(E)-methyl-3-(2-(2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)thiophen-3-yl)

acrylate (**3fa**). 12 h, 72% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.64-7.54 (m, 4H), 7.41 (d, J = 5.2 Hz, 1H), 7.28 (d, J = 8.8 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 6.32 (d, J = 15.6 Hz, 1H), 3.98 (d, J = 11.6 Hz, 3H), 3.70 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.3 (d, J = 5.7 Hz), 166.6, 161.2, 154.3 (d, J = 5.6 Hz), 141.6, 136.0, 135.2, 131.3 (d, J = 5.9 Hz),

130.0 (d, J = 24.5 Hz), 123.9, 120.8, 119.8 (d, J = 7.4 Hz), 119.5 (d, J = 25.7 Hz), 115.3, 112.3, 55.6, 55.0 (d, J = 6.5 Hz), 51.8 ppm. ESI HRMS: C₁₆H₁₄NO₅PS [M + H⁺] 364.0409, found 364.0402.

(E)-methyl-3-(2-(2,8-dimethoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-5-methylphen

yl)acrylate (**3ga**). 12 h, 70% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J* = 15.6 Hz 1H), 7.55 (s, 1H), 7.35-7.30 (m, 2H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.02 (t, *J* = 8.0 Hz, 1H), 6.77 (dd, *J*₁ = 1.2 Hz, *J*₂ = 8Hz, 1H), 6.36 (d, *J* = 16.0 Hz, 1H), 3.99 (d, *J* = 12.0 Hz, 3H), 3.96 (s, 3H), 3.71 (s, 3H), 2.46 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.9 (d, *J* = 6.0 Hz), 166.7, 149.3 (d, *J* = 6.1 Hz), 144.0 (d, *J* = 5.4 Hz), 141.4, 140.7 135.2, 135.0,

132.9, 130.5,129.3, 127.6, 123.3, 122.3, 120.4, 120.1, 119.8, 118.0, 56.6, 55.1 (d, J = 5.6 Hz), 51.7, 21.4 ppm. ESI HRMS: calcd. for C₂₀H₂₀NO₆P [M + H⁺] 402.1106, found 402.1102.

(E)-methyl-3-(2-(2-methoxy-7-methyl-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-5-methy

lphenyl)acrylate (**3ha**). 12 h, 86% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 16.0 Hz, 1H), 7.56 (s, 1H), 7.32 (s, 2H), 7.09-7.07 (m, 2H), 6.90 (d, J = 8.4 Hz, 1H), 6.37 (d, J = 15.6 Hz, 1H), 3.97 (d, J = 12.0 Hz, 3H), 3.71 (s, 3H), 2.46 (s, 3H), 2.42 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.7 (d, J = 5.8 Hz), 166.7, 154.3 (d, J = 5.7 Hz), 148.2,

141.5, 140.7, 135.0 (d, J = 24.4 Hz), 132.9, 131.0, 130.5, 129.2, 127.6, 124.9, 120.3, 119.9 (d, J = 7.3 Hz), 117.1 (d, J = 26.0 Hz), 54.9 (d, J = 6.6 Hz), 51.7, 21.9, 21.4 ppm. ESI HRMS: calcd. for $C_{20}H_{20}NO_5P$ [M + H⁺] 386.1157, found 386.1154.

(E)-methyl-3-(2-(7-chloro-2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-5-methy

lphenyl)acrylate (**3ia**). 12 h, 79% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.57 (m, 2H), 7.32-7.28 (m, 3H), 7.17 (d, J = 8.4 Hz, 1H), 7.08 (dd, $J_1 = 1.6$ Hz, $J_2 = 8.4$ Hz, 1H), 6.38 (d, J = 15.6 Hz, 1H), 4.00 (d, J = 11.6Hz, 3H), 3.72 (s, 3H), 2.47 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 179.9 (d, J = 6.0 Hz), 166.6, 154.7 (d, J = 5.4 Hz), 141.9 (d, J = 1.5 Hz),

141.2(d, J = 1.5 Hz), 134.3 (d, J = 24.1 Hz), 133.0, 132.1, 130.7, 129.2, 127.8, 124.5, 120.7, 120.1 (d, J = 7.6 Hz), 117.8 (d, J = 26.5 Hz), 55.1 (d, J = 6.6 Hz), 51.8, 21.5 ppm. ESI HRMS: calcd. for $C_{19}H_{17}CINO_5P$ [M + H⁺] 406.0611, found 406.0609.

(E)-methyl-3-(2-(2-methoxy-6-methyl-2-oxido-2H-benzo[e][1,3,2]oxaza phosphinin-4-yl)-5-methylphenyl)acrylate (**3ja**). 12 h, 75% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.65-7.57 (m, 2H), 7.41-7.27 (m, 3H), 7.17 (d, *J* = 8.4 Hz, 1H), 6.98 (s, 1H), 6.38 (d, *J* = 16.0 Hz, 1H), 3.97 (d, *J* =

11.6 Hz, 3H), 3.71 (s, 3H), 2.48 (s, 3H), 2.24 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.9 (d, J = 5.9 Hz), 166.7, 152.3 (d, J = 5.6 Hz), 141.5, 140.7, 136.9, 134.9 (d, J = 24.1 Hz), 133.7, 133.0, 131.0, 130.5, 129.2, 127.7, 120.3, 119.4 (d, *J* = 7.4 Hz), 119.0 (d, *J* = 25.7 Hz), 54.9 (d, *J* = 6.6 Hz), 51.8, 21.5, 20.7 ppm. ESI HRMS: calcd. for $C_{20}H_{20}NO_5P [M + H^+]$ 386.1157, found 386.1153.

(E)-methyl-3-(2-(6-bromo-2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-5-methy

lphenyl)acrylate (**3ka**). 12 h, 85% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.70-7.63 (m, 2H), 7.58 (s, 1H), 7.36-7.27 (m, 3H), 7.18 (d, J = 8.4 Hz, 1H), 6.39 (d, J = 16.0 Hz, 1H), 4.00 (d, J = 11.6 Hz, 3H), 3.73 (s, 3H), 2.49 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 179.3 (d, J = 6.2 Hz), 166.6, 153.3 (d, J = 5.5 Hz), 141.4, 141.2, 138.7, 133.9 (d, J = 23.8 Hz), 133.4, 133.2, 130.7, 129.3, 128.0, 121.6 (d, *J* = 7.3 Hz), 120.8, 120.5 (d,

J = 26.3 Hz), 116.3, 55.2 (d, J = 6.5 Hz), 51.8, 21.5 ppm. ESI HRMS: calcd. for C₁₉H₁₇BrNO₅P $[M + H^+]$ 450.0106, found 450.0103.

(E)-methyl-3-(2-(2-ethoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-5-methylphenyl)acr

vlate (**3la**). 12 h, 94% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.56 (m, 3H), 7.33-7.20 (m, 4H), 7.09 (t, J = 7.6 Hz, 1H), 6.37 (d, J = 16.0 Hz, 1H), 4.40-4.36 (m, 2H), 3.71 (s, 3H), 2.47 (s, 3H), 1.44 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 179.3 (d, J = 5.9 Hz), 165.6, 153.2 (d, *J* = 5.7 Hz), 140.4, 139.7, 134.9, 133.8 (d, *J* = 24.3 Hz), 132.0, 130.1, 129.5, 128.2, 126.7, 122.8, 119.5, 118.7 (d, J = 7.3 Hz),

118.2 (d, J = 26.0 Hz), 64.1 (d, J = 6.5 Hz), 50.7, 20.4, 15.4 (d, J = 6.3 Hz) ppm. ESI HRMS: calcd. for $C_{20}H_{20}NO_5P [M + H^+]$ 386.1157, found 386.1161.

(E)-methyl-3-(5-methyl-2-(2-oxido-2-(2,2,2-trifluoroethoxy)-2H-benzo[e][1,3,2]oxazaphosphinin-

4-yl)phenyl)acrylate (3ma). 12 h, 53% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.66-7.57 (m, 3H), 7.33-7.27 (m, 4H), 7.16 (t, *J* = 7.6 Hz, 1H), 6.37 (d, J = 15.6 Hz, 1H), 4.75-4.56 (m, 2H), 3.71 (s, 3H), 2.48 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 182.3 (d, J = 5.9 Hz), 166.6, 154.0 (d, J = 5.7 Hz), 141.2 (d, J = 5.2 Hz), 136.5, 134.3 (d, J = 24.9 Hz), 133.3, 131.5, 130.5, 129.4, 127.9, 124.3, 122.5 (dd, $J_1 = 8.9$ Hz, $J_2 =$

276.1 Hz), 120.8, 119.8 (d, J = 7.7 Hz), 119.0 (d, J = 26.7 Hz), 63.9 (dq, $J_1 = 5.1$ Hz, $J_2 = 37.9$ Hz), 51.7, 21.5 ppm. ESI HRMS: calcd. for $C_{20}H_{17}F_3NO_5P [M + H^+]$ 440.0875, found 440.0872.

(E)-methyl-3-(2-(2-(benzyloxy)-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-5-methylphen

yl)acrylate (3na). 12 h, 43% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.64-7.56 (m, 3H), 7.45-7.31 (m, 7H), 7.21-7.19 (m, 2H), 7.09 (t, J = 7.6 Hz, 1H), 6.37 (d, J = 16.0 Hz, 1H), 5.41-5.27 (m, 2H), 3.65 (s, 3H), 2.47 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.8 (d, *J* = 6.0 Hz), 166.6, 154.2 (d, J = 5.6 Hz), 141.4, 140.8, 136.0, 135.7 (d, J = 6.7 Hz), 134.8 (d, *J* = 24.3 Hz), 133.1, 131.2, 130.5, 129.3, 128.6, 128.1, 127.7, 123.8, 120.6,

119.8 (d, J = 7.4 Hz), 119.3 (d, J = 26.3 Hz), 70.0 (d, J = 6.2 Hz), 51.7, 21.4 ppm. ESI HRMS:

calcd. for $C_{25}H_{22}NO_5P [M + H^+] 448.1314$, found 448.1310.

(E)-ethyl-3-(2-(2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-5-methylphenyl)

acrylate (**3ab**). 12 h, 87% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.57 (m, 3H), 7.36-7.22 (m, 4H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.37 (d, *J* = 15.6 Hz, 1H), 4.16 (q, *J*₁ = 7.2 Hz, *J*₂ = 14.0 Hz, 2H), 3.98 (d, *J* = 11.6 Hz, 3H), 2.46 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.9 (d, *J* = 5.9 Hz), 166.2, 154.2 (d, *J* = 5.6 Hz), 141.1, 140.9, 136.1, 134.7 (d, *J* = 24.2 Hz), 133.1, 131.3, 130.5, 129.3, 127.6, 123.9, 120.9,

119.7 (d, J = 7.4 Hz), 119.3 (d, J = 25.9 Hz), 60.6, 55.0 (d, J = 6.6 Hz), 21.4, 14.2 ppm. ESI HRMS: calcd. for C₂₀H₂₀NO₅P [M + H⁺] 386.1157, found 386.1152.

(E)-tert-butyl-3-(2-(2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-5-methylphenyl

)acrylate (**3ac**). 12 h, 71% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.56 (m, 2H), 7.48 (d, J = 16.0 Hz, 1H), 7.36-7.22 (m, 4H), 7.11 (t, J = 7.6 Hz, 1H), 6.29 (d, J = 15.9 Hz, 1H), 3.98 (d, J = 11.6 Hz, 3H), 2.46 (s, 3H), 1.42 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 181.0 (d, J = 5.9 Hz), 165.4, 154.2 (d, J = 5.7 Hz), 140.8, 140.1, 136.0, 134.7 (d, J =24.2 Hz), 133.2, 131.3, 130.3, 129.2, 127.5, 123.9, 122.8, 119.7 (d, J =

7.4 Hz), 119.4 (d, J = 26.0 Hz), 80.6, 55.0 (d, J = 6.6 Hz), 28.0, 21.4 ppm. ESI HRMS: calcd. for C₂₂H₂₄NO₅P [M + H⁺] 414.1470, found 414.1463.

acrylate (**3ad**). 12 h, 53 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 12.0 Hz, 1H), 7.66 (s, 1H), 7.60 (t, J = 8.0 Hz, 1H), 7.37-7.07 (m, 10H), 6.58 (d, J = 15.6 Hz, 1H), 3.95(d, J = 11.6 Hz, 3H), 2.50 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.6 (d, J = 5.9 Hz), 164.7, 154.3 (d, J = 5.7 Hz), 150.6, 143.1, 141.0, 136.1, 134.9 (d, J = 24.2 Hz), 132.9, 131.2, 130.9, 129.5, 129.4, 127.8, 125.8, 123.9, 121.5, 119.9, 119.8 (d, J = 5.7 Hz), 150.6, 143.1, 141.0, 136.1, 134.9 (d, J = 24.2 Hz), 132.9, 131.2, 130.9, 129.5, 129.4, 127.8, 125.8, 123.9, 121.5, 119.9, 119.8 (d, J = 5.7 Hz), 150.6, 143.1, 141.0, 136.1, 134.9 (d, J = 24.2 Hz), 132.9, 131.2, 130.9, 129.5, 129.4, 127.8, 125.8, 123.9, 121.5, 119.9, 119.8 (d, J = 5.7 Hz), 150.6, 143.1, 141.0, 136.1, 134.9 (d, J = 24.2 Hz), 132.9, 131.2, 130.9, 129.5, 129.4, 127.8, 125.8, 123.9, 121.5, 119.9, 119.8 (d, J = 5.7 Hz), 150.6, 143.1, 141.0, 136.1, 134.9 (d, J = 24.2 Hz), 132.9, 131.2, 130.9, 129.5, 129.4, 127.8, 125.8, 123.9, 121.5, 119.9, 119.8 (d, J = 5.7 Hz), 150.6, 143.1, 141.0, 136.1, 134.9 (d, J = 5.7 Hz), 150.6, 143.1, 141.0, 136.1, 134.9 (d, J = 24.2 Hz), 132.9, 131.2, 130.9, 129.5, 129.4, 127.8, 125.8, 123.9, 121.5, 119.9, 119.8 (d, J = 5.7 Hz), 150.6, 143.1, 141.0, 136.1, 134.9 (d, J = 5.7 Hz), 150.8, 123.9, 121.5, 119.9, 119.8 (d, J = 5.7 Hz), 150.8, 123.9, 121.5, 119.9, 119.8 (d, J = 5.7 Hz), 150.8, 123.9, 121.5, 119.9, 119.8 (d, J = 5.7 Hz), 130.9, 120.5, 120.8, 1

= 7.5 Hz), 119.3 (d, J = 25.9 Hz), 55.0 (d, J = 6.7 Hz), 21.5 ppm. ESI HRMS: calcd. for $C_{24}H_{20}NO_5P [M + H^+] 434.1457$, found 434.1458.

(E)-benzyl-3-(2-(2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-5-methylphenyl)-

acrylate (**3ae**). 12 h, 81 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.66-7.58 (m, 3H), 7.38-7.22 (m, 9H), 7.13 (t, J = 7.6 Hz, 1H), 6.43 (d, J = 15.6 Hz, 1H), 5.15 (s, 2H), 3.91 (d, J = 12.0 Hz, 3H), 2.47 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.8 (d, J = 5.9 Hz), 166.9, 154.2 (d, J = 5.7 Hz), 141.7, 140.9, 136.0, 135.9, 134.9 (d, J = 24.2Hz), 133.0, 131.2, 130.7, 129.3, 128.6, 128.2, 128.1, 127.6, 123.9,

120.5, 119.7 (d, J = 7.4 Hz), 119.4 (d, J = 26.0 Hz), 66.3, 54.9 (d, J = 6.6 Hz), 21.4 ppm. ESI HRMS: calcd. for C₂₅H₂₂NO₅P [M + H⁺] 448.1314, found 448.1308.

(E)-methyl-3-(2-(2-methoxy-2-oxido-2H-benzo[e][1,3,2]oxazaphosphinin-4-yl)-5-methylphenyl)b ut-2-enoate (**3af**). 12 h, 50 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.47 (m, 1H), 7.32 (d, *J* =

7.6 Hz, 1H), 7.22-7.12 (m, 4H), 7.03 (t, J = 7.6 Hz, 1H), 5.68 (s, 1H), 3.85 (d, J = 11.6 Hz, 3H), 3.55 (s, 3H), 2.38 (s, 3H), 2.26 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.7 (d, J = 4.5 Hz), 165.2, 155.0, 153.1 (d, J = 5.3 Hz), 142.1, 134.7, 129.6, 128.6, 127.9, 127.8, 122.6, 119.3, 118.7 (d, J = 7.2 Hz), 53.9 (d, J = 6.7 Hz), 50.0, 20.4, 19.6 ppm. ESI HRMS: calcd. for C₂₀H₂₀NO₅P [M + Na⁺] 408.0977, found 408.0972.

(E)-2-methoxy-4-(4-methyl-2-styrylphenyl)-2H-benzo[e][1,3,2]oxazaphosphinine-2-oxide (3ag).

24 h, 90 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (s, 1H),7.55 (t, *J* = 8.0 Hz, 1H), 7.31-7.20 (m, 9H), 7.09-7.02 (m, 3H), 3.98 (d, *J* = 11.2 Hz, 3H), 2.48 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.2 (d, *J* = 5.8 Hz), 154.1 (d, *J* = 5.6 Hz), 140.6, 136.9, 135.9, 135.8, 133.3 (d, *J* = 24.0 Hz), 131.6, 131.4, 129.0, 128.7, 128.2, 128.0, 126.6 (d, *J* = 7.4 Hz), 125.5, 123.8, 119.6 (d, *J* = 7.4 Hz), 119.5 (d, *J* = 26.2 Hz), 54.9 (d, *J* = 6.4 Hz), 21.6 ppm.

ESI HRMS: calcd. for $C_{23}H_{20}NO_3P [M + H^+]$ 390.1259, found 390.1257.

(E)-2-methoxy-4-(4-methyl-2-(4-methylstyryl)phenyl)-2H-benzo[e][1,3,2]oxazaphosphinine-2-oxi

de (**3ah**). 24 h, 89 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (s, 1H), 7.55 (t, *J* = 8.0 Hz, 1H), 7.31-7.17 (m, 6H), 7.09-6.99 (m, 5H), 3.98 (d, *J* = 11.6 Hz, 3H), 2.47 (s, 3H), 2.30 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 182.1 (d, *J* = 6.6 Hz), 154.1 (d, *J* = 5.2 Hz), 140.5, 138.0, 136.1, 135.7, 134.2, 133.2, 131.6, 131.3, 129.4, 129.0, 128.0, 126.5 (d, *J* = 10.4 Hz), 124.5, 123.8, 119.6 (d, *J* = 7.4 Hz), 119.5 (d, *J* = 26.1 Hz), 54.9 (d, *J*

= 6.4 Hz), 21.6, 21.2 ppm. ESI HRMS: calcd. for $C_{24}H_{22}NO_3P$ [M + H⁺] 404.1416, found 404.1414.

(E)-methyl-3-(2-(((dimethoxyphosphoryl)amino)(2-hydroxyphenyl)methyl)-5-methylphenyl)acryl

ate (**5**). 3 h, 46 % yield; ¹H NMR (600 MHz, CDCl₃): δ 8.54 (s, 1H), 8.06 (d, J = 15.6 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.30 (s, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.08 (t, J = 7.8 Hz, 1H), 6.97-6.91 (m, 2H), 6.76 (t, J = 7.8 Hz, 1H), 6.22 (d, J = 15.6 Hz, 1H), 5.84 (t, J = 10.2 Hz, 1H), 4.25 (t, J = 12.0 Hz, 1H), 3.75 (s, 3H), 3.61 (d, J = 10.8 Hz, 3H), 3.56 (d, J = 10.8 Hz, 3H), 2.34 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 154.3, 142.4, 138.5 (d, J = 5.0 Hz), 137.2, 132.5, 130.7, 128.9, 128.4 (d, J = 4.7

Hz), 128.3, 119.9 (d, J = 18.5 Hz), 117.0, 53.4 (d, J = 5.2 Hz), 52.6, 51.7, 21.0 ppm. ESI HRMS: calcd. for C₂₀H₂₄NO₆P [M + Na⁺] 428.1239, found 428.1238.

methyl-2-(2-(dimethoxyphosphoryl)-3-(2-hydroxyphenyl)-6-methylisoindolin-1-yl)acetate (6). 17

h, 94 % yield; ¹H NMR (400 MHz, CDCl₃): δ 9.47 (s, 1H), 7.18-7.12 (m, 3H), 7.02-6.94 (m, 2H), 6.75 (t, *J* = 7.6 Hz, 1H), 6.54 (d, *J* = 7.6 Hz, 1H), 6.32 (d, *J* = 6.8 Hz, 1H), 5.21-5.18 (m, 1H), 3.73-3.67 (m, 6H), 3.45 (d, *J* = 11.6 Hz, 3H), 2.84-2.64 (m, 2H), 2.39 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 155.7, 141.6 (d, *J* = 8.1 Hz), 138.1, 137.4 (d, *J* = 8.7 Hz),

130.9, 129.5, 129.5, 128.7, 123.9, 123.0, 120.5, 119.3, 62.6 (d, J = 6.8 Hz), 60.1 (d, J = 4.2 Hz),

53.1 (d, J = 5.8 Hz), 53.0 (d, J = 5.3 Hz), 51.7, 43.2, 21.4 ppm. ESI HRMS: calcd. for $C_{20}H_{22}NO_6P [M + H^+] 406.1419$, found 406.1422.

Reference

1 S.-S. Li, L. Wu, L. Qin, Y.-Q. Zhu, F. Su, Y.-J. Xu, L. Dong, Org. Lett., DOI: 10.1021/acs.orglett. 6b01895.

5. Mechanism Study.

Deuterium-labeling experiments were carried out to study the mechanism of this coupling reaction. **1a** (0.1 mmol) was stirred in the absence of alkene for 3 h under standard condition, then D_2O (100 μ L) was added and stirred for 3 h. The deuterium rate was obtained from ¹H NMR.

To investigate the mechanism of this reaction, deuterium experiments and a kinetic isotope effect (KIE) study were conducted. DKIE of 2 was observed, thus indicating that C-H bond cleavage might be involved in the rate-determining step.

.

3fa

.

.

