Rh(II)-catalyzed three-component reaction of 3-diazooxindoles with *N*,*N*-disubstituted anilines and glyoxylates for the synthesis of 3-aryl-3-substituted oxindoles

Shi-Kun Jia, Long-Long Song, Yu-Bing Lei, A. Gopi Krishna Reddy, Dong Xing and Wen-Hao Hu*

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug

Development, School of Chemistry and Molecular Engineering, East China Normal

University, 3663 North Zhongshan Road, Shanghai 200062, China

E-mail: whu@chem.ecnu.edu.cn.

Table of Contents

General Information and Materials	S2
General Procedure for Optimization of Reaction Conditions	S3-S4
Characterization Data of Compounds	S5-S13
X-ray Diffraction Parameters and Data of syn-4d	S14
NMR Spectra of Compounds	S15-S38

General Information and Materials

All ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded on Brucker spectrometers in CDCl₃. Tetramethylsilane (TMS) served as an internal standard ($\delta = 0$) for ¹H NMR, and CDCl₃ was used as internal standard ($\delta =$ 77.0) for ¹³C NMR. Chemical shifts are reported in parts per million as follows: chemical shift, multiplicity (s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). High-resolution mass spectrometry (HRMS) was performed on IonSpec FT-ICR or Waters Micromass Q-TOF micro Synapt High Definition Mass Spectrometer. HPLC analysis was performed on Dalian Elite (UV230+ UV/Vis Detector and P230P High Pressure Pump). Melting points were uncorrected. Single crystal X-ray diffraction data (*syn*-**4d**) were recorded on Bruker-AXS SMART APEX II single crystal X-ray diffractometer. Yields for all compounds were combined yields for all isomers unless otherwise indicated.

All reactions and manipulations were carried out under an argon atmosphere in a flame-dried or oven-dried flask containing magnetic stir bar. Dichloromethane (DCM), 1,2-dichloroethane (DCE), CHCl₃ and toluene was distilled over calcium hydride. Solvents for the column chromatography were distilled before use. 4 Å molecular sieves was dried in a Muffle furnace at 250 °C over 5 hrs.

General Procedure for Optimization of Reaction Conditions

General procedure for optimization of reaction conditions (Table 1)

A mixture of Rh₂(OAc)₄ (0.001 mmol), **1a** (0.13 mmol) (as indicated in Table 1), **3a** (0.2 mmol) (50 wt. % solution in toluene)and 4 Å MS (100 mg) in 1mL of solvent under an argon atmosphere was stirred under T. Diazo compound **2a** (0.1 mmol) in 1 mL of solvent was then added over 1 h via a syringe pump. After completion of the addition, the reaction mixture was stirred for another 0.5 h, then filtrated and evaporated *in vacuo* to give the crude product. The crude products was purified by flash chromatography on silica gel (EtOAc/light petroleum ether = $1:10 \sim 1:5$) to give the pure product.

General procedure for the preparation of products (Scheme 2)

A mixture of $Rh_2(OAc)_4$ (0.003 mmol), **1** (0.33 mmol), **3** (0.6 mmol)and 4 Å MS (100 mg) in 1 mL of DCM under an argon atmosphere was stirred at rt. Diazo compound **2** (0.3 mmol) in 1 mL or 2 mL of DCM was then added over 1 h via a syringe pump. After completion of the addition, the reaction mixture was stirred for another 0.5 h, then filtrated and evaporated *in vacuo* to give the crude product. The crude products was purified by flash chromatography on silica gel (EtOAc/light petroleum ether = 1:10 ~ 1:5) to give the pure product.

Procedure for the control experiment

A mixture of $Rh_2(OAc)_4(0.001 \text{ mmol})$, **5a** (0.1 mmol), **3a** (0.2 mmol) and 4 Å MS (100 mg) in 1 mL of DCM under an argon atmosphere was stirred at rt for 2 h, the **4a** was not found.

Procedure for the gram-scale experiment

A mixture of Rh₂(OAc)₄ (0.03 mmol), **1a** (4 mmol), **3a** (6 mmol) (50 wt. % solution in toluene) and 4 Å MS (100 mg) in 3 mL of DCM under an argon atmosphere was stirred at rt. Diazo compound **2a** (3 mmol) in 2 mL of DCM was then added over 1 h via a syringe pump. After completion of the addition, the reaction mixture was stirred for another 0.5 h, then filtrated and evaporated in vacuo to give the crude product. The crude products was purified by flash chromatography on silica gel (EtOAc/light petroleum ether = $1:10 \sim 1:5$) to give the pure product **4a** (1.52 g, 85%).

Procedure for intermolecular kinetic isotope effect experiment.

A mixture of Rh₂(OAc)₄ (0.003 mmol), **1a** (0.3 mmol), [D₅]-**1a** (0.3 mmol), **3a** (0.6 mmol)and 4 Å MS (100 mg) in 1 mL of DCM under an argon atmosphere was stirred at rt. Diazo compound **2** (0.33 mmol) in 1 mL of DCM was then added over 1 h via a syringe pump. After completion of the addition, the reaction mixture was stirred for another 0.5 h, then filtrated and evaporated *in vacuo* to give the crude product. The crude products was purified by flash chromatography on silica gel (EtOAc/light petroleum ether = $1:10 \sim 1:5$) to give the crude product, the crude mixture was then subjected to ¹H NMR analysis for the determination of the ratio between **4e** and **4e-d**₄.

Characterization Data of Compounds

(S)-ethyl 2-((R)-1-benzyl-3-(4-(dibenzylamino)phenyl)-2-oxoindolin-3-yl)-2hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.08 (m, 19H), 7.05 – 6.93 (m, 1H), 6.77 – 6.53 (m, 3H), 5.13 (d, *J* = 9.4 Hz, 1H), 5.05 (d, *J* = 15.8 Hz, 1H), 4.75 (d, *J* = 15.9 Hz, 1H), 4.62 (s, 4H), 4.09 – 3.83 (m, 2H), 3.53 (d, *J* = 9.4 Hz, 1H), 0.86 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.29, 172.19, 148.49, 143.79, 138.49, 135.57, 128.82, 128.74, 128.68, 128.54, 127.51, 127.27, 127.24, 126.99, 126.64, 126.15, 123.43, 122.18, 112.24, 109.68, 75.43, 61.31, 58.55, 54.33, 44.07, 13.58. HRMS (ESI) Calcd. for C₃₉H₃₆N₂NaO₄ (M+Na)⁺ 619.2573, found: 619.2542.

(S)-ethyl 2-((R)-3-(4-(dibenzylamino)phenyl)-1-methyl-2-oxoindolin-3-yl)-2hydroxyacetate

syn-4b

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 7H), 7.25 – 7.17 (m, 7H), 7.11 – 7.03 (m, 1H), 6.85 (d, *J* = 7.8 Hz, 1H), 6.64 (d, *J* = 8.9 Hz, 2H), 5.03 (d, *J* = 9.7 Hz, 1H), 4.62 (s, 4H), 4.05 – 3.73 (m, 2H), 3.60 (d, *J* = 9.7 Hz, 1H), 3.20 (s, 3H), 0.88 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.20, 172.06, 148.45, 144.61, 138.45, 128.94, 128.65, 128.47, 127.37, 126.96, 126.60, 126.04, 123.36, 122.20, 112.18, 108.52, 75.52, 61.19, 58.14, 54.31, 26.49, 13.60. HRMS (ESI) Calcd. for C₃₃H₃₂N₂NaO₄ (M+Na)⁺ 543.2260, found: 543.2234.

(R)-benzyl 3-(4-(dibenzylamino)phenyl)-3-((S)-2-ethoxy-1-hydroxy-2-oxoethyl)-2-oxoindoline-1-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.15 (m, 19H), 7.06 – 6.98 (m, 1H), 6.74 – 6.60 (m, 3H), 5.13 (d, *J* = 9.4 Hz, 1H), 5.05 (d, *J* = 15.9 Hz, 1H), 4.76 (d, *J* = 15.9 Hz, 1H), 4.63 (s, 4H), 4.04 – 3.84 (m, 2H), 3.51 (d, *J* = 9.4 Hz, 1H), 0.86 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.89, 171.89, 148.27, 142.29, 135.09, 133.69, 129.36, 128.81, 128.69, 128.19, 127.66, 127.16, 126.48, 122.09, 116.03, 112.12, 110.51, 75.25, 61.48, 58.69, 52.70, 44.14, 13.55. HRMS (ESI) Calcd. for C₄₀H₃₆N₂NaO₆ (M+Na)⁺ 663.2471, found: 663.2459.

(S)-ethyl 2-((R)-1-benzyl-3-(4-(dibenzylamino)phenyl)-5-fluoro-2-oxoindolin-3-yl)-2-hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 10H), 7.25 – 7.18 (m, 7H), 6.98 – 6.91 (m, 1H), 6.90 – 6.83 (m, 1H), 6.68 (d, J = 8.3 Hz, 2H), 6.61 – 6.52 (m, 1H), 5.12 (d, J = 9.0 Hz, 1H), 5.05 (d, J = 15.9 Hz, 1H), 4.73 (d, J = 15.9 Hz, 1H), 4.64 (s, 4H), 4.04 – 3.89 (m, 2H), 3.49 (d, J = 9.1 Hz, 1H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.49, 171.88, 152.68, 142.43, 139.79, 139.09, 135.02, 128.92, 128.83, 128.61, 128.28, 128.20, 128.15, 127.70, 127.63, 127.11, 126.76, 126.60, 120.13, 119.64, 111.63, 110.59, 75.23, 61.65, 59.25, 55.59, 44.17, 13.66. ¹⁹F NMR (376 MHz, CDCl₃) δ -120.31. HRMS (ESI) Calcd. for C₃₉H₃₅N₂NaO₄F (M+Na)⁺ 637.2479, found: 637.2452.

(S)-ethyl 2-((R)-1-benzyl-5-chloro-3-(4-(dibenzylamino)phenyl)-2-oxoindolin-3-yl)-2-hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.09 (m, 19H), 6.68 (d, *J* = 8.8 Hz, 2H), 6.57 (d, *J* = 8.3 Hz, 1H), 5.11 (d, *J* = 9.2 Hz, 1H), 5.06 (d, *J* = 15.9 Hz, 1H), 4.72 (d, *J* = 15.9 Hz, 1H), 4.64 (s, 4H),

4.06 – 3.75 (m, 2H), 3.49 (d, J = 9.2 Hz, 1H), 0.90 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.82, 171.91, 148.62, 142.31, 138.34, 135.05, 129.18, 128.81, 128.73, 128.68, 128.37, 127.66, 127.63, 127.15, 127.00, 126.58, 126.48, 122.59, 112.29, 110.53, 75.19, 61.50, 58.76, 54.33, 44.15, 13.58. HRMS (ESI) Calcd. for C₃₉H₃₅N₂NaO₄Cl (M+Na)⁺ 653.2183, found: 653.2167.

(S)-ethyl 2-((R)-1-benzyl-5-bromo-3-(4-(dibenzylamino)phenyl)-2-oxoindolin-3-yl)-2-hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.20 (m, 19H), 6.68 (d, *J* = 8.8 Hz, 2H), 6.53 (d, *J* = 8.2 Hz, 1H), 5.11 (d, *J* = 9.3 Hz, 1H), 5.05 (d, *J* = 15.9 Hz, 1H), 4.72 (d, *J* = 15.9 Hz, 1H), 4.65 (s, 4H), 4.19 – 3.80 (m, 2H), 3.49 (d, *J* = 9.3 Hz, 1H), 0.91 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.87, 148.63, 142.78, 138.34, 135.01, 131.63, 129.60, 129.18, 128.81, 128.68, 128.36, 127.67, 127.15, 127.01, 126.58, 122.58, 114.93, 112.30, 111.04, 75.22, 61.51, 58.70, 54.33, 44.12, 13.60. HRMS (ESI) Calcd. for C₃₉H₃₅N₂NaO₄Br (M+Na)⁺ 697.1678, found: 697.1664.

(S)-ethyl 2-((R)-1-benzyl-3-(4-(dibenzylamino)phenyl)-5-methyl-2-oxoindolin-3-yl)-2-hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.19 (m, 17H), 7.04 – 6.89 (m, 2H), 6.67 (d, *J* = 8.5 Hz, 2H), 6.55 (d, *J* = 7.9 Hz, 1H), 5.11 (d, *J* = 9.6 Hz, 1H), 5.02 (d, *J* = 15.8 Hz, 1H), 4.76 (d, *J* = 15.8 Hz, 1H), 4.63 (s, 4H), 4.07 – 3.80 (m, 2H), 3.60 (d, *J* = 9.6 Hz, 1H), 2.29 (s, 3H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.26, 172.07, 148.45, 141.27, 138.48, 135.64, 131.64, 129.07, 128.67, 128.64, 128.48, 127.43, 127.21, 126.94, 126.82, 126.61, 123.67, 112.22, 109.37, 77.34, 77.02, 76.71, 75.46, 61.17, 58.40, 54.29, 44.05, 21.22, 13.55. HRMS (ESI) Calcd. for C₄₀H₃₈N₂NaO₄ (M+Na)⁺ 633.2729, found: 633.2708.

(S)-ethyl 2-((R)-1-benzyl-6-chloro-3-(4-(dibenzylamino)phenyl)-2-oxoindolin-3-yl)-2-hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.20 (m, 17H), 7.11 – 7.05 (m, 1H), 7.03 – 6.97 (m, 1H), 6.66 (d, *J* = 7.4 Hz, 3H), 5.11 (d, *J* = 9.1 Hz, 1H), 5.04 (d, *J* = 15.9 Hz, 1H), 4.73 – 4.60 (m, 5H), 4.10 – 3.85 (m, 2H), 3.33 (d, *J* = 9.1 Hz, 1H), 0.89 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.15, 172.08, 148.57, 145.14, 138.36, 134.95, 134.71, 128.85, 128.66, 128.42, 127.70, 127.12, 127.04, 126.99, 126.58, 125.50, 122.62, 122.03, 112.23, 110.14, 75.16, 61.48, 58.48, 54.32, 44.13, 13.57. HRMS (ESI) Calcd. for C₃₉H₃₅N₂NaO₄Cl (M+Na)⁺ 653.2183, found: 653.2169.

(S)-ethyl 2-((R)-1-benzyl-6-bromo-3-(4-(dibenzylamino)phenyl)-2-oxoindolin-3-yl)-2-hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 13H), 7.23 – 7.14 (m, 5H), 7.06 – 6.99 (m, 1H), 6.88 – 6.78 (m, 1H), 6.66 (d, *J* = 8.2 Hz, 2H), 5.11 (d, *J* = 8.8 Hz, 1H), 5.03 (d, *J* = 15.9 Hz, 1H), 4.77 – 4.58 (m, 5H), 4.08 – 3.83 (m, 2H), 3.33 (d, *J* = 8.9 Hz, 1H), 0.90 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.03, 172.06, 148.57, 145.27, 138.35, 134.93, 128.85, 128.65, 128.40, 127.70, 127.39, 127.10, 126.99, 126.58, 126.08, 124.98, 122.56, 122.50, 112.88, 112.23, 75.09, 61.48, 58.55, 54.32, 44.11, 13.57. HRMS (ESI) Calcd. for C₃₉H₃₅N₂NaO₄Br (M+Na)⁺ 697.1678, found: 697.1649.

(S)-ethyl 2-((R)-3-(4-(dibenzylamino)phenyl)-5-fluoro-1-methyl-2-oxoindolin-3-yl)-2-hydroxyacetate

syn-**4j**

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 6H), 7.24 – 7.17 (m, 6H), 7.05 – 6.96 (m, 2H), 6.79 – 6.73 (m, 1H), 6.68 – 6.59 (m, 2H), 5.03 (d, *J* = 6.0 Hz, 1H), 4.62 (s, 4H), 4.02 – 3.85 (m, 2H), 3.60 (d, *J* = 7.6 Hz, 1H), 3.17 (s, 3H), 0.90 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

176.94, 171.90, 158.77 (d, J = 240.9 Hz), 148.56, 140.63, 138.36, 129.10, 129.02, 128.70, 128.33, 127.01, 126.63, 126.58, 122.69, 115.20 (d, J = 23.4 Hz), 114.26 (d, J = 25.2 Hz), 112.23, 108.91 (d, J = 8.1 Hz), 75.26, 61.38, 58.61, 54.34, 26.66, 13.63. ¹⁹F NMR (376 MHz, CDCl₃) δ -120.26. HRMS (ESI) Calcd. for C₃₃H₃₂N₂O₄F (M+H)⁺ 539.2346, found: 539.2350.

(S)-ethyl 2-((R)-5-bromo-3-(4-(dibenzylamino)phenyl)-1-methyl-2-oxoindolin-3-yl)-2-hydroxyacetate

syn-**4k**

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.39 (m, 1H), 7.36 – 7.16 (m, 13H), 6.72 (d, *J* = 8.3 Hz, 1H), 6.65 (d, *J* = 9.0 Hz, 2H), 5.01 (d, *J* = 9.5 Hz, 1H), 4.63 (s, 4H), 4.04 – 3.84 (m, 2H), 3.58 (d, *J* = 9.5 Hz, 1H), 3.17 (s, 3H), 0.92 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.66, 171.80, 148.60, 143.67, 138.32, 131.77, 129.64, 129.13, 128.69, 128.33, 127.01, 126.56, 122.49, 114.90, 112.25, 109.89, 75.30, 61.42, 58.34, 54.33, 26.61, 13.64. HRMS (ESI) Calcd. for C₃₃H₃₁N₂NaO₄Br (M+Na)⁺ 621.1365, found: 621.1342.

(S)-ethyl 2-((R)-3-(4-(dibenzylamino)phenyl)-1,5-dimethyl-2-oxoindolin-3-yl)-2hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.16 (m, 12H), 7.10 (d, *J* = 7.8 Hz, 1H), 7.02 (s, 1H), 6.73 (d, *J* = 7.9 Hz, 1H), 6.65 (d, *J* = 8.9 Hz, 2H), 5.02 (d, *J* = 9.9 Hz, 1H), 4.62 (s, 4H), 4.02 – 3.81 (m, 2H), 3.73 (d, *J* = 9.9 Hz, 1H), 3.18 (s, 3H), 2.33 (s, 3H), 0.88 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.21, 171.95, 148.42, 142.12, 138.46, 131.71, 129.18, 128.65, 128.43, 127.54, 126.94, 126.76, 126.58, 123.60, 112.15, 108.23, 75.59, 61.07, 57.97, 54.29, 26.51, 21.27, 13.60. HRMS (ESI) Calcd. for C₃₄H₃₅N₂O₄ (M+H)⁺ 535.2597, found: 535.2586.

(S)-ethyl 2-((R)-1-benzyl-6-chloro-3-(4-(dibenzylamino)phenyl)-2-oxoindolin-3-yl)-2-hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.07 (m, 13H), 7.07 – 7.01 (m, 1H), 6.84 (s, 1H), 6.63 (d, J = 8.7 Hz, 2H), 5.01 (d, J = 9.2 Hz, 1H), 4.61 (s, 4H), 4.08 – 3.80 (m, 2H), 3.42 (d, J = 9.2 Hz, 1H), 3.14 (s, 3H), 0.90 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.08, 172.04, 148.55, 146.02, 138.39, 134.89, 128.70, 128.43, 127.05, 127.02, 126.59, 125.55, 122.57, 121.99, 112.19, 109.25, 75.25, 61.42, 58.24, 54.35, 26.64, 13.66. HRMS (ESI) Calcd. for C₃₃H₃₂N₂O₄Cl (M+H)⁺ 555.2051, found: 555.2042.

(S)-ethyl 2-((R)-1-benzyl-5-chloro-3-(4-(dibenzylamino)-3-fluorophenyl)-2oxoindolin-3-yl)-2-hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.10 (m, 18H), 7.01 (d, J = 8.1 Hz, 1H), 6.77 (t, J = 8.9 Hz, 1H), 6.60 (d, J = 8.3 Hz, 1H), 5.15 – 4.95 (m, 2H), 4.73 (d, J = 15.9 Hz, 1H), 4.35 (s, 4H), 4.08 – 3.84 (m, 2H), 3.35 (d, J = 6.3 Hz, 1H), 0.85 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.07, 171.70, 154.75 (d, J = 244.6 Hz), 142.48, 138.27, 134.88, 129.16, 128.86, 128.41, 128.15, 127.91, 127.80, 127.75, 127.62, 127.10, 126.44, 123.24 (d, J = 2.8 Hz), 120.07 (d, J = 3.6 Hz), 116.03 (d, J = 23.9 Hz), 110.76, 75.06, 61.79, 58.83, 55.61, 55.57, 44.23, 13.66. ¹⁹F NMR (376 MHz, CDCl₃) δ -121.30. HRMS (ESI) Calcd. for C₃₉H₃₄N₂NaO₄ClF (M+Na)⁺ 671.2089, found: 671.2086.

(S)-ethyl 2-((R)-1-benzyl-5-chloro-3-(4-(dibenzylamino)-3-methoxyphenyl)-2oxoindolin-3-yl)-2-hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.10 (m, 18H), 6.78 – 6.65 (m, 2H), 6.61 (d, J = 8.9 Hz, 1H),

5.14 (d, J = 8.9 Hz, 1H), 5.05 (d, J = 15.9 Hz, 1H), 4.76 (d, J = 15.9 Hz, 1H), 4.25 (s, 4H), 3.98 – 3.81 (m, 5H), 3.37 (d, J = 8.9 Hz, 1H), 0.82 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.49, 171.89, 152.67, 142.42, 139.78, 139.08, 135.02, 128.93, 128.83, 128.60, 128.28, 128.15, 127.70, 127.62, 127.11, 126.77, 126.60, 120.11, 119.63, 111.61, 110.60, 75.22, 61.65, 59.25, 55.75, 55.59, 44.16, 13.67. HRMS (ESI) Calcd. for C₄₀H₃₇N₂NaO₅Cl (M+Na)⁺683.2289, found: 683.2283. (S)-ethyl 2-((R)-1-benzyl-3-(4-(benzyl(ethyl)amino)phenyl)-5-chloro-2-

oxoindolin-3-yl)-2-hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.12 (m, 14H), 6.69 – 6.53 (m, 3H), 5.12 (d, *J* = 9.3 Hz, 1H), 5.05 (d, *J* = 15.9 Hz, 1H), 4.75 (d, *J* = 15.9 Hz, 1H), 4.50 (s, 2H), 4.12 – 3.84 (m, 2H), 3.63 – 3.41 (m, 3H), 1.19 (t, *J* = 7.0 Hz, 3H), 0.90 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.91, 171.90, 147.99, 142.28, 138.95, 135.10, 129.37, 128.82, 128.69, 128.58, 128.34, 127.66, 127.17, 126.85, 126.46, 121.84, 111.96, 110.52, 75.25, 61.49, 58.68, 53.84, 45.34, 44.14, 13.57, 12.13. HRMS (ESI) Calcd. for C₃₄H₃₃N₂NaO₄Cl (M+Na)⁺ 591.2027, found: 591.2010.

(S)-ethyl 2-((R)-1-benzyl-5-chloro-3-(4-(diallylamino)phenyl)-2-oxoindolin-3-yl)-2-hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.12 (m, 9H), 6.75 – 6.52 (m, 3H), 5.91 – 5.72 (m, 2H), 5.24 – 5.00 (m, 6H), 4.75 (d, *J* = 15.8 Hz, 1H), 4.08 – 3.83 (m, 6H), 3.54 (d, *J* = 9.2 Hz, 1H), 0.91 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.89, 171.90, 148.27, 142.29, 135.09, 133.68, 129.35, 128.81, 128.70, 128.19, 127.66, 127.16, 126.48, 122.08, 116.03, 112.11, 110.52, 75.25, 61.48, 58.69, 52.70, 44.14, 13.56. HRMS (ESI) Calcd. for C₃₁H₃₁N₂NaO₄Cl (M+Na)⁺ 553.1870, found: 553.1862.

(S)-methyl 2-((R)-1-benzyl-3-(4-(dibenzylamino)phenyl)-2-oxoindolin-3-yl)-2hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.10 (m, 19H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.73 – 6.63 (m, 3H), 5.14 (d, *J* = 9.6 Hz, 1H), 5.04 (d, *J* = 15.8 Hz, 1H), 4.78 (d, *J* = 15.8 Hz, 1H), 4.62 (s, 4H), 3.70 (d, *J* = 9.6 Hz, 1H), 3.44 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 177.29, 172.44, 148.59, 143.61, 138.45, 135.54, 128.82, 128.75, 128.67, 128.36, 127.54, 127.28, 126.98, 126.67, 125.90, 123.44, 122.32, 112.39, 109.67, 75.57, 58.22, 54.28, 52.13, 44.08. HRMS (ESI) Calcd. for C₃₈H₃₄N₂NaO₄ (M+Na)⁺ 605.2416, found: 605.2421.

(S)-isopropyl 2-((R)-1-benzyl-3-(4-(dibenzylamino)phenyl)-2-oxoindolin-3-yl)-2hydroxyacetate

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.13 (m, 19H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.70 – 6.59 (m, 3H), 5.10 (d, *J* = 9.5 Hz, 1H), 5.04 (d, *J* = 15.9 Hz, 1H), 4.89 – 4.71 (m, 2H), 4.63 (s, 4H), 3.44 (d, *J* = 9.5 Hz, 1H), 1.07 (d, *J* = 6.2 Hz, 3H), 0.75 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl3) δ 177.33, 171.78, 148.43, 143.85, 138.49, 135.57, 128.80, 128.73, 128.67, 127.48, 127.19, 127.15, 126.97, 126.61, 126.30, 123.40, 122.11, 112.15, 109.66, 75.31, 69.29, 58.70, 54.34, 44.05, 21.55, 21.08. HRMS (ESI) Calcd. for C₄₀H₃₈N₂NaO₄ (M+Na)⁺ 633.2729, found: 633.2739.

1-benzyl-3-(4-(dibenzylamino)phenyl)indolin-2-one

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 8H), 7.27 – 7.20 (m, 7H), 7.18 – 7.12 (m, 2H), 7.03 – 6.94 (m, 3H), 6.75 – 6.63 (m, 3H), 5.07 – 4.80 (m, 2H), 4.62 (s, 4H), 4.58 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 176.84, 148.67, 143.54, 138.55, 136.05, 129.51, 129.20, 128.76, 128.67, 128.03, 127.56, 127.35, 126.93, 126.68, 125.15, 124.47, 122.59, 112.82, 109.07, 54.29, 51.22, 43.91.

[D₅]-**1a**

syn-**4e**-d⁴

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.12 (m, 17H), 6.57 (d, *J* = 8.3 Hz, 1H), 5.22 – 4.97 (m, 2H), 4.86 – 4.49 (m, 5H), 4.15 – 3.79 (m, 2H), 3.48 (d, *J* = 9.1 Hz, 1H), 0.90 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.82, 171.90, 148.51, 142.31, 138.35, 135.05, 129.17, 128.80, 128.67, 127.65, 127.14, 127.00, 126.57, 126.46, 122.39, 110.51, 75.21, 61.49, 58.71, 54.34, 44.14, 13.57. HRMS (ESI) Calcd. for C₃₉H₃₁D₄N₂NaO₄Cl (M+Na)⁺ 657.2434, found: 657.2433.

X-ray Diffraction Parameters and Data of syn-4d (CCDC 1480071)

¥		A A	En2N OH F CO2Et Bn Syn-4d	
Bond precisi	.on: C-C =	= 0.0089 A	Wavelength=0.71073	
Cell:	a=12.3506(5)	b=15.0930(6)	c=17.7124(7)	
	alpha=90	beta=100.508(2)	gamma=90	
Temperature:	296 K			
	Calcula	ated	Reported	
Volume 3246.4(2)		(2)	3246.4(2)	
Space group	ace group P 21/n		P2(1)/n	
Hall group -P 2yn			2	
Moiety formula C39 H35 F N2 O4		5 F N2 04	?	
Sum formula C39 H35 F N2 O4		5 F N2 04	C39 H35 F N2 O4	
Mr 614.69			614.69	
Dx,g cm-3 1.258			1.258	
Z 4			4	
Mu (mm-1) 0.085			0.085	
F000 1296.0			1296.0	
F000'	1296.61	1		
h,k,lmax	14,17,2	21	14,17,21	
Iref 5722			5716	
Tmin, Tmax	0.979,0.991		0.977,0.991	
Tmin'	0.976			
Correction m AbsCorr = MU	nethod= # Report(ULTI-SCAN	ed T Limits: Tmin=	=0.977 Tmax=0.991	
Data complet	eness= 0.999	Theta(max):	= 25.010	
R(reflection	ns)= 0.0818(278	1) wR2(ref	flections)= 0.2925(5716)	
s = 1.036	Npa	r= 404		

NMR Spectra of Compounds

¹ 0.88
¹ 0.86
¹ 0.86
¹ 0.85

