Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Fluorinated liquid crystals: Evaluation of selectively fluorinated facially polarised cyclohexyl motifs for liquid crystal applications

Nawaf Al-Maharik^a, Peer Kirsch^{*b}, Alexandra M. Z. Slawin,^a David B. Cordes and David O'Hagan^{*a} ^aEaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, UK. E. mail do1@st-andrews.ac.uk

^bMerck KGaA, Liquid Crystals R&D Chemistry, Frankfurter Str. 250, D-64293 Darmstadt, Germany. E-mail: <u>peer.kirsch@merckgroup.com</u>

Page 2Experimental Protocols

Page 15Representations of NMR spectra

Experimental Protocols

General experimental procedures: Reagents were purchased from commercial suppliers and used without purification, unless otherwise stated. Reactions were carried out in oven-dried glassware or teflon under argon atmosphere. Anhydrous CH₂Cl₂ and THF were obtained from a MBraun MB SPS-800 solvent purification system, where the solvent was dried by passage through activated filter columns and dispensed under an atmosphere of argon gas. All NMR spectra were recorded using Bruker Avance 400 usig CDCl₃. ¹³C NMR spectra were recorded using the DEPTQ pulse sequence and broadband proton decoupling at 75 MHz. ¹⁹F NMR spectra were recorded at 376 MHz. Chemical shifts are given in parts per million relative to residual solvent peaks. Melting points were determined using a Griffin MPA350 melting point apparatus and are uncorrected. High and low resolution mass spectra were carried out at the University of St Andrews and were obtained using a Waters Micromass LCT (ES) or GCT (EI/CI). Thin layer chromatography was carried out on aluminium backed Merck TLC silica gel 60 F254 plates. These plates were visualised using UV light at a wavelength of 254 nm followed by staining with potassium permanganate or phosphomolybdic acid dip. Chromatography was carried out on 230–400 mesh silica gel.

4'-(*trans***-4-Propylcyclohexyl)biphenyl 11**: 2-Propanol (30 mL) was added to a mixture of phenylboronic ester **10** (2.3 g, 19.6 mmol), 1-bromo-4-(trans-4-propylcyclohexyl)benzene **9** (5.0 g, 17.8 mmol) and [Pd(IPr)(cin)Cl] (115 mg, 0.178 mmol) under Ar. The mixture was evacuated and fluhed with Ar (3 times). After 15 h stirring at room temperature, the resulting mixture was diluted with dichloromethane (100 mL) and filtered through celite. The filtrate was washed with water (50 mL) and

brine (50 mL), dried over MgSO₄, filtered, and concentrated in *vacuo*. The crude residue was purified by SiO₂ column chromatography (petroleum ether) to give 4-(*trans*-4-propylcyclohexyl)biphenyl **11** (3.92 g, 80%) as a white solid; M.p. = 90-91 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.43 (t, *J* = 8.2 Hz, 2H), 7.32 (t, *J* = 8.2 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 2H), 2.52 (tt, *J* = 3.2, 12.6 Hz, 1H), 1.87-1.96 (m, 4H), 1.18-1.55 (m, 7H), 1.00-1.12 (m, 2H), 0.91 (q, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 141.2,138.7, 128.7, 127.2, 127.0, 126.9, 44.3, 39.7, 37.0, 34.3, 33.6, 20.0, 14.4; **MS** (CI, +ve) *m/z* 278 (M+, 100%); **HRMS** (CI, MH +ve) C₂₁H₂₉ requires *m/z* 279.2113, found 279.2121.

4'-(trans-4-Propylcyclohexyl)-1,4-dihydro-1,1'-biphenyl 12: Lithium (0.69 g, 96.0 mmol) was added portionwise to a solution of biphenyl 11 (12 g, 43.1 mmol) in ammonia (400 mL) and THF (200 mL) at -78 °C. The reaction was allowed to warm to -40 °C and stirred for 3 h. The reaction mixture was quenched with solid NH₄Cl, the mixture was allowed to warm up, and water (200 mL) and ether (200 mL) were carefully added and the layers were separated. The aqueous layer was extracted with ether (200 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The filtrate was washed with water and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure to afford diene 12 (12 g, 92%) as a white solid, M.p. = 72-73 °C ; ¹H NMR (400 MHz, CDCl₃) δ7.22-7.23 (m, 4H), 5.77-5.90 (m, 4H), 3.95-4.04 (m, 1H), 2.77-2.84 (m, 2H), 2.51 (tt, J = 3.2, 12.2 Hz, 1H), 1.89-1.97 (m, 4H), 1.23-1.56 (m, 7H), 1.03-1.17 (m, 2H),0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 142.5, 128.7, 127.8, 127.0, 123.5, 44.2, 41.6, 39.7, 37.0, 34.4, 33.6, 25.8, 20.0, 14.4; MS (CI, +ve) m/z 280 (M+, 46%), 155 (100%); **HRMS** (CI, M + H, +ve) $C_{21}H_{28}$ requires m/z281.2269, found 281.2267.

4'-(trans-4-propylcyclohexyl)phenyl-cis-2,5-diepoxycyclohexane 13. meta-Chloroperbenzoic acid (5.42 g, 31.4 mmol) was added to an ice-cold solution of diene 12 (4 g, 14.3 mmol) in dichloromethane (50 mL) under argon, and the resulting mixture was stirred at 0 °C for 5 h. The white precipitate was removed by filtration (cold dichloromethane wash), and the filtrate was washed with a solution of sodium hydroxide in brine (10%, 100 mL). The organic layer was dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude product was subjected to flash chromatography (petroleum ether/ethyl acetate 8:2) to afford cis diepoxide 13 (3.97 g, 89%) as a white solid; M.p. = 168-169 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.23 (m, 4H), 3.93 (d, J = 1.4 Hz, 1H), 3.17-3.26 (m, 2H), 3.00-3.13 (m, 2H), 2.88-2.94 (dm, 1H), 2.38-2.52 (m, 2H), 1.73-1.92 (m, 4H), 1.02-1.45 (m, 9H), 0.90 (t, J =7.3 Hz, 3H); ¹³C {1H} NMR (75 MHz, CDCl₃) δ147.6, 135.4, 128.4, 127.6, 53.6, 49.3, 44.2, 39.7, 39.2, 37.0, 34.3, 33.5, 23.7, 20.0, 14.4; MS (CI, +ve) m/z 312 (MH+, 100%); **HRMS** (CI, +ve) $C_{21}H_{28}O_2$ + requires *m/z* 312.2089, found 312.2085.

Fluorohydrin 14 and 15: A mixture of the diepoxide **13** (3.7 g, 11.9 mmol) and triethylamine trihydrofluoride (9.7 mL, 59.9 mmol) in a Teflon round-bottom flask was stirred at 145 °C for 24 h under Argon. The mixture was cooled down to room temperature, diluted with dichloromethane (100 mL), washed with ice-cold aq. NaHCO₃ (100 mL), and the aqueous phase was back-extracted with dichloromethane (100 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated to afford a light yellow solid (3.89 g) as a mixture of 2 difluorodiols, 4,6-difluoro-2-(4-(trans-4-propylcyclohexyl)phenyl)cyclohexane-1,3-diol **14** and 2,5-difluoro-6-(4-(trans-4-propylcyclohexyl)phenyl)cyclohexane-1,4-diol **15** in 2:3 ratio. Part of the crude product was subjected to triflation without purification.

Triflation of difluorodiols 14 and 15: Triflic anhydride (3.44 mL, 20.5 mmol) and dry pyridine (2.36 mL, 20.5 mmol) were consequently and slowly added to a solution of difluorodiols 14 and 15 (2.4 g, 6.82 mmol) in dry CH₂Cl₂ (60 mL) at 0 °C under Ar. A thick yellow precipitate was formed, and the mixture was stirred at 0 °C for 5 h. The mixture was poured into water (100 mL), extracted with CH₂Cl₂ (50 mL x 3), the combined organic layers were washed with saturated aqueous CuSO₄ solution, dried (MgSO₄), filtered and the concentrated in vacuo. The light yellow residue was purified by SiO₂ column chromatography (petroleum ether/CH₂Cl₂ 8:2 to 7:3) to give asymmetric 2,5-difluoro-6-(4-(trans)-4-propylcyclohexyl)phenyl)cyclohexane-1,4divide divide distribution of the solid; M.p. = 153 °C; ¹H NMR (400) MHz, CDCl₃) δ 7.23-7.29 (m, 4H), 5.36 (dd, J = 8.9, 11.3 Hz, 1H), 5.28-5.30 (m, 1H), 5.05 (dm, J = 47.5 Hz, 1H), 4.93 (dm, J = 47.8 Hz, 1H), 3.27 (dd, J = 11.8, 37.9 Hz, 1H), 2.74-2.80 (dm, 1H), 2.43-2.53 (m, 2H), 1.85-1.90 (m, 4H), 1.18-1.48 (m, 7H), 1.00-1.10 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 149.1, 129.3, 129.2, 127.6, 118.4 (d, J = 319.4 Hz), 117.9 (d, J = 320.2 Hz), 89.9 (d, J = 181.6 Hz, 87.1 (d, J = 186.0 Hz), 85.3 (dd, J = 2.4, 19.8 Hz), 79.9 (dd, J = 34.4, 13.3 Hz), 45.7 (dd, J = 17.6, 5.5 Hz), 44.3, 39.7, 37.0, 34.2 (d, J = 2.1 Hz), 33.5, 31.1, 30.9, 20.0, 14.4; ¹⁹F-NMR (376MHz, CDCl₃) δ -75.0 (s), -75.2 (d, J = 7.9 Hz), -187.9 (dm, J = 48.4 Hz), -194.0 (tbs, J = 47.5 Hz); ¹⁹F-NMR (decoupled) δ -75.0 (s), -75.2 (d, J = 7.9 Hz), -187.9 (q, J = 8.3 Hz), -194.0 (s); MS (ESI) m/z 639 (M+Na, 100%); HRMS (ESI) C₂₃H₂₈O₆F₈NaS₂ requires *m*/*z* 639.1092, found 639.1089. Followed the symmetric 4,6-difluoro-2-(4-(trans-4by propylcyclohexyl)phenyl)cyclohexane-1,3-diyl ditriflate 17(1.73 g, 41%) as a white solid; M.p. = 156-167 °C (decompose); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.3 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 5.05 (dt, J = 1.6, 10.7 Hz, 2H), 4.79 (dm, J = 48.5,

2H), 3.08 (t, J = 11.4 Hz, 1H), 2.90-2.98 (m, 1H), 2.46-2.49 (m, 1H), 1.83-1.88 (dm, 4H), 1.18-1.47 (m, 8H), 0.99-1.09 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 149.8, 128.5, 128.0, 127.6, 117.9 (d, J = 319.8 Hz), 86.9 (dd, J = 188.5, 15.1 Hz), 86.3 (d, J = 18.8 Hz), 47.3 (t, J = 6.0 Hz), 45.9, 44.3, 39.7, 37.0, 34.2, 33.4, 31.8 (t, J = 21.6 Hz), 20.0, 14.4; ¹⁹F-NMR (376MHz, CDCl₃) δ -75.2 (d, J = 7.9 Hz), -185.9 (dm, J = 48.9 Hz); ¹⁹F-NMR (decoupled) -75.2 (d, J = 7.9 Hz), -185.9 (m); MS (ESI) m/z 639 (M+Na, 100%); HRMS (ESI) C₂₃H₂₈O₆F₈NaS₂ requires m/z 639.1092, found 639.1091.

1-(trans-4-Propylcyclohexyl)-4-(2,3,5,6-tetrafluorocyclohexyl)benzene 3. А mixture of the ditriflate 16 (2.0 g, 3.25 mmol) and triethylamine trihydrofluoride (10.9 mL, 66.9 mmol) in a Teflon round-bottom flask was stirred at 100 °C for 56 h under Argon. The mixture was cooled down to room temperature, diluted with dichloromethane (50 mL), washed with ice-cold aq. NaHCO₃ (50 mL), and the aqueous phase was back-extracted with dichloromethane (100 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated. Purification by flash chromatography on silica gel (petroleum ether/CH₂Cl₂ 8:2 to 7:3) to give the tetrafluoro compound **3** (1.03 g, 89%) as a white solid, M.p. = 219 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 4.91-5.11 (m, 2H), 4.52-4.73 (m, J = 48.5, 2H), 2.70-2.83 (m, 1H), 2.57 (tt, J = 1.7, 37.4 Hz, 1H), 2.43-2.52 (m, 2H), 1.84-1.93 (m, 4H), 1.19-1.54 (m, 8H), 1.00-1.10 (m, 2H), 0.90 (t, J =7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ147.8, 132.9, 129.1, 127.3, 86.05-90.17 (m), 44.2, 43.5-43.9 (m), 39.7, 37.0, 34.3, 33.5, 27.2 (t, J = 22.4 Hz), 20.0, 14.4; ¹⁹F-NMR δ -190.7 (dm, J = 48.4 Hz, 2F), -210.1-(-210.5) (m, 2F); ¹⁹F-NMR (376MHz, CDCl₃) (decoupled) δ -190.7 (dd, J = 5.5, 8.0 Hz), -210.3 (dd, J = 8.0, 4.8 Hz); MS

(CI, +ve) *m/z* 356 (M+, 56%), 258 (100%); HRMS (CI, +ve) C₂₁H₂₈F₄ requires *m/z* 356.2127, found 356.2122.

2,3,6-trifluoro-4'-(trans-4-propylcyclohexyl)-1,2,3,6-tetrahydro-1,1'-biphenyl 18. Following the same procedure as was used to prepare **3**. The asymmetric ditriflate **17** (0.08 g, 0.13 mmol) was converted to the trifluoro **18** in (0.038g, 87%) yield as a white solid; M.p. = 157-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.31 (m, 4H), 6.11-6.16 (m, 2H), 5.20-5.45 (m, 2H), 5.01 (dm, *J* = 47.9 Hz, 1H), 3.17-3.23 (m, 4H), 2.50 (tt, *J* =3.2, 12.2 Hz, 1H), 1.86-1.95 (m, 4H), 1.21-1.52 (m, 8H), 1.02-1.13 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 147.5, 132.1, 130.7 (dt, *J* = 9.2, 228 Hz), 128.9, 127.1, 127.0-127.3 (m), 91.1 (ddd, *J* = 3.6, 22.4, 175.1 Hz), 89.3 (dd, *J* = 18.7, 182.8 Hz), 87.4 (dd, *J* = 7.8, 172.8 Hz), 48.1 (td, *J* = 7.0, 19.6 Hz),44.2, 39.7, 37.0, 34.3 (d, *J* = 2.3 Hz), 33.6, 20.0, 14.4; ¹⁹F-NMR (376MHz, CDCl₃) δ -176.2-(-176.4) (m, 1F), -185.4 (dm, *J* = 47.5 Hz, 1F), -195.1 (dm, *J* = 47.5 Hz, 1F); ¹⁹F-NMR (decoupled) -176.2 (d, *J* = 11.2 Hz, 1F), -185.4 (dd, *J* = 4.2, 14.3 Hz, 1F), -195.1 (d, *J* = 14.3 Hz, 1F); **MS** (CI, +ve) *m/z* 336 (M, 52%), 246 (100%); **HRMS** (CI, +ve) C₂₁H₂₇F₃ requires *m/z* 336.2065, found 336.2059.

Controlled elimination:

3,6-Difluoro-4'-(trans-4-propylcyclohexyl)-1,2,3,6-tetrahydro-[1,1'-biphenyl]-2-yl trifluoromethanesulfonate 19. DBU (0.393 mL, 2.63 mmol) was added dropwise to a solution of the asymmetric ditriflate **17** (1.5 g, 2.43 mmol) in dry THF (40 mL) under argon at 0 °C. After the solution was stirred for 1 h, the resulting mixture was warmed to rt and the solution was then concentrated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/CH₂Cl₂ 8:2) provided alkene **19** (1.11 g, 98%) as a white solid; M.p. = 138 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.31 (m, 4H), 6.17-6.24 (m, 1H), 6.14 (ddd, *J* = 1.9, 4.7, 10.0 Hz, 1H), 5.61(ddd, *J* = 4.7, 10.0, 13.2 Hz, 1H), 5.35 (dm, J = 48.5 Hz, 1H), 5.09 (dm, J = 48.8, 1H), 3.19 (dddd, J = 1.0, 3.1, 12.5, 30.5 Hz, 1H), 2.50 (tt, J = 3.1, 12.5 Hz, 1H), 1.85-1.94 (m, 4H), 1.19-1.52 (m, 8H), 0.97-1.13 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 148.5, 130.4, 130.1 (dd, J = 9.7, 22.7 Hz), 129.7, 127.6 (dd, J = 8.8, 17.0 Hz), 127.2, 118.0 (q, J = 321.0 Hz), 90.0 (dd, J = 3.3, 178.6 Hz), 86.7 (d, J = 174.9Hz), 84.6 (d, J = 18.6 Hz), 48.3 (dd, J = 5.7, 19.3 Hz), 44.3, 39.7, 37.0, 34.22, 34.20, 33.5, 20.1, 14.4; ¹⁹F-NMR (376MHz, CDCl₃) δ -75.2 (d, J = 9.1 Hz, 3F), -175.1-(-175.4) (m, 1F), -183.3 (dm, J = 49.2 Hz, 1F); ¹⁹F-NMR (decoupled) δ -75.2 (d, J = 9.1 Hz, 3F), -175. (d, J = 9.7 Hz, 1F), -183.3 (quintet, J = 9.2 Hz, 1F); MS (CI, +ve) *m/z* 489 (M+Na, 100%); HRMS (CI, +ve) C₂₂H₂₇O₃F₅SNa requires *m/z* 489.1493, found 489.1487.

3,6-Difluoro-2-(4-(trans-4-propylcyclohexyl)phenyl)cyclohexyl

trifluoromethanesulfonate 21. Compound 19 (1.0 g, 2.15 mmol) and Pd/C (10%, 100 mg) were suspended in ethyl acetate (20 mL), evacuated flushed 3 times with hydrogen. The mixture was stirred under hydrogen atmosphere for 3 h, and then filtered through a pad of Celite. The filtrate was concentrated and the residue was subjected to silica column chromatography (petroleum ether/EtOAc 8:2) to afford 21 (1.0 g, 100%) as a white solid; M.p. = 107-108 °C; ⁻¹H NMR (400 MHz, CDCl₃) δ 7.23-7.30 (m, 4H), 5.42 (td, *J* = 8.8, 11.1 Hz, 1H), 4.89 (dbs, *J* = 47.7 Hz, 1H), 4.74 (dm, *J* = 49.9 Hz, 1H), 2.91 (dd, *J* = 11.8, 34.8 Hz, 1H), 2.46 (tt, *J* = 3.2, 12.1 Hz, 1H), 2.15-2.30 (m, 3H), 1.84-1.88 (m, 4H), 1.65-1.79 (m, 1H), 1.18-1.47 (m, 7H), 1.00-1.08 (m, 2H), 0.86 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 131.7, 129.1, 127.2, 118.1 (q, *J* = 319.7 Hz), 91.5 (d, *J* = 177.8 Hz), 91.3 (d, *J* = 184.6 Hz), 87.9 (dd, *J* = 1.8, 18.8 Hz), 53.5, 51.0 (dd, *J* = 4.7, 17.8 Hz), 44.3, 39.6, 37.1, 34.2 (d, *J* = 3.6 Hz), 33.5, 27.8 (dd, *J* = 11.3, 21.7 Hz), 24.9 (d, *J* = 19.1 Hz), 20.1,

14.4; ¹⁹F-NMR δ -75.2 (d, J = 9.1 Hz, 3F), -179.4 (dm, J = 47.7 Hz, 1F), -194.1-(-194.6) (dm, J = 47.7 Hz, 1F); ¹⁹F-NMR (376MHz, CDCl₃) (decoupled) δ -75.5 (d, J = 7.9 Hz, 3F), -179.4 (q, J = 7.9 Hz, 1F), -194.3 (s, 1F); MS (CI, +ve) m/z 491 (M+Na, 100%); HRMS (CI, +ve) C₂₂H₂₉O₃F₅SNa requires m/z 491.1655, found 491.1640.

1-(trans-4-Propylcyclohexyl)-4-(2,3,6-trifluorocyclohexyl)benzene 4. A mixture of the triflate 21 (0.9 g, 1.95 mmol) and triethylamine trihydrofluoride (3.2 mL, 19.5 mmol) in a Teflon round-bottom flask was stirred at 100 °C for 56 h under Argon. The mixture was cooled down to room temperature, diluted with dichloromethane (50 mL), washed with ice-cold aq. NaHCO₃ (50 mL), and the aqueous phase was backextracted with dichloromethane (100 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated. Purification by flash chromatography on silica gel (petroleum ether/ CH_2Cl_2 8:2 to 7:3) to give the all-syn trifluoro compound 4 (0.547 g, 84%) as a white solid; M.p. = 186-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 5.09 (ddm, J = 8.6, 51.7 Hz, 1H), 4.87 (dm, J = 47.6 Hz, 1H), 4.62 (ddddd, J = 2.1, 4.7, 11.8, 25.4, 45.5 Hz, 1H), 2.66 (tbs, J = 38.6 Hz, 1H), 2.30-2.57 (m, 3H), 1.84-1.99 (m, 5H),), 1.18-1.70 (m, 7H), 1.00-1.10 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 147.3, 134.8, 129.1, 127.1, 90.7 (dd, J = 17.8, 187.7 Hz), 90.2 (dd, J = 19.2, 184.7 Hz), 89.1 (d, J = 181.6 Hz), 48.1 (td, J = 5.4, 17.3 Hz), 44.2, 39.7, 37.0, 34.3, 33.6, 28.6 (dd, J = 11.7, 22.4 Hz), 20.4 (dd, J = 3.7, 20.2 Hz), 20.0, 14.4; ¹⁹F-NMR $(376 \text{MHz}, \text{CDCl}_3) \delta$ -183.2 (dm, J = 45.5 Hz, 1F), -191.2-(-191.7) (m, 1F), -209.9-(-210.3) (m, 1F); ¹⁹F-NMR (decoupled) -183.2 (d, J = 14.8 Hz, 1F), -191.5 (d, J =26.3Hz, 1F), -210.1 (dd, J = 14.8, 26.3 Hz, 1F); MS (CI, +ve) m/z 361 (M+Na, 100%); HRMS (CI, +ve) $C_{21}H_{29}F_3$ Na requires *m*/*z* 361.2119, found 361.2112.

4,4,5,5-Tetramethyl-2-[4-(trans-4-propylcyclohexyl)phenyl]-1,3,2-dioxaborolane

22. Bromo-4-(trans-4-propylcyclohexyl)benzene **9** (2.6 g, 9.24 mmol), Pd₂(dba)₃ (0.211 g, 0.23 mmol), XPhos (0.220 g, 0.462 mmol), bis(pinocolate)diborane (3.52 g, 13.88 mmol) and potassium acetate (2.72 g 27.7 mmol) were placed in a flask equipped with a condenser and flushed with argon. 1,4-Dioxane (50 mL) was added and the reaction mixture was heated to 90°C. After 5h stirring at maintain temperature, the mixture was cooled down to room temperature, passed through a short pad of silica, washed with dichloromethane (50 mL) and solvent were removed under reduced pressure. The brown residue was subjected to flash column chromatography (petroleum ether/dichloromethane 9:1 to 8:2) to give the title compound **22** (2.86 g, 89%) as a white solid, M.p. = 123-124 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.74 (d, *J* = 8.1 Hz, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 2.48 (dd, *J* = 3.3, 12.2 Hz, 1H), 1.84-1.90 (m, 4H), 1.57 (d, *J* = 0.8 Hz, 1H), 1.47 (dq, *J* = 3.3, 12.6 Hz, 2H), 1.18-1.39 (m, 17H), 0.99-1.09 (m, 2H), 0.90 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 151.3, 134.9, 126 (C), 126.4, 44.9, 39.7, 37.0, 34.2, 33.5, 24.9, 20.0, 14.4; HRMS (ESI, +ve) *m/z* calcd for C21H24O5Na [M+Na+] 379.1521, found 379.1515.

4'-(trans-4-Propylcyclohexyl)-1,2,3,4-tetrahydro-1,1'-biphenyl

23:

Bis(dibenzylidenacetone)palladium (9 mg, 0.01 eq, 15 μ mol) and KF (0.23 g, 2.6 eq., 3.96 mmol) were subsequently added to a solution of cyclohex-2-enyl acetate (0.213g, 1.524 mmol) and the aryl boronate **22** (0.5 g, 1.524 mmol) in degased anhydrous MeOH (10 mL) at room temperature under argon. The reaction was stirred for 20 h at reflux temperature, diluted with brine (50 mL) and extracted with ether (50 mL x 3). The combined organic phase was washed with water (50 mL x 3), dried (MgSO₄), filtered and concentrated under reduced pressure. Chromatography of the residue on silica gel (petroleum ether) afforded the desired cyclohexene **23** (0.62

g, 58%) as a white solid, M.p. = 72-73 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.43 (m, 4H), 5.96-6.02 (m, 1H), 5.81-5.87 (m, 1H), 3.45-3.53 (m, 1H), 2.56 (tt, *J* = 3.3, 12.2 Hz, 1H), 1.09-2.23 (m, 19H), 1.03 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 144.4, 130.9, 128.6, 128.0, 127.1, 44.2, 41.4, 39.7, 37.0, 34.4, 33.6, 32.6, 25.0, 21.2, 20.0, 14.4; MS (CI, +ve) *m/z* 280 (M+, 46%), 155 (100%); HRMS (CI, M + H, +ve) C₂₁H₂₈ requires *m/z* 281.2269, found 281.2267.

2-[4-(trans-4-Propylcyclohexyl)phenyl]-cyclohexene epoxide 24. Epoxidation of **23** (2.9 g, 10.28 mmol) with *m*CPBA (3.46 g, 15.4 mmol) in dichloromethane (50 mL) according to the procedure described for **13** gave the epoxide **24** (petroleum ether/dicholromethane 75:25) (2.53g, 83%) as a white solid; M.p. = 168-169 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.18 (brs, 4H), 3.30-3.82 (m, 1H), 3.19 (d, *J* = 3.8 Hz, 1H), 3.11 (dd, *J* = 6.0, 9.7 Hz, 1H), 2.45 (tt, *J* = 3.4, 12.1 Hz, 1H), 2.14 (dt, *J* = 4.7, 15.0Hz, 1H), 1.80-191 (m, 6H), 1.19-1.49 (m, 10H), 1.00-1.09 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.0, 141.6, 127.7, 127.0, 56.4, 52.9, 44.2, 40.8, 39.7, 37.0, 34.4, 33.6, 29.7, 24.6, 20.1, 16.9, 14.4; MS (ESI, +ve) *m/z* 321 (MNa+, 100%); HRMS (ESI, +ve) C₂₁H₃₀ONa + requires 321.2194 *m/z* found 321.2189,

Preparation of 27 and 28.

Following the general procedure to prepare 14 and 15 but with epoxide 24 (1 g, 3.36 mmol) and triethylamine trihydrofluoride (1.64 mL, 10.07 mmol) to give a 1:0.8 mixture of fluorohydrine 25 and 26 (1.07 g, 98%) as a white solid.

The product was dissolved in anhydrous pyridine (5 mL) at -0 °C under argon, and triflic anhydride (0.85 mL, 5.03 mmol) was then slowly added. A thick yellow precipitate was formed, and the mixture was stirred at room temperature for 5 h. The mixture was poured into water (100 mL), extracted with CH_2Cl_2 (50 mL x 3), the

combined organic layers were washed with saturated aqueous CuSO₄ solution (3 mL), dried (MgSO₄), filtered and the concentrated in *vacuo*. The light yellow residue was purified by SiO₂ column chromatography (petroleum ether/CH₂Cl₂ 9:1 to 8:2) to give 6-fluoro-4'-(trans-4-propylcyclohexyl)-1,2,3,6-tetrahydro-1,1'-biphenyl **28** (0.456 g, 56%) as a white solid; M.p. = 153 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.23 (d, *J* = 8.5 Hz, 2H), 7.17 (d, *J* = 8.5 Hz, 2H), 6.12-6.20 (m, 1H), 5.97-6.03 (m, 1H), 4.91 (dm, *J* = 49.9 Hz, 1H), 2.84 (tt, *J* = 2.8, 13.0, 32.4 Hz, 1H), 2.45 (dd, *J* = 3.2, 12.2 Hz, 1H), 2.08-2.39 (m, 3H), 1.78-1.92 (m, 4H), 0.97-1.11 (m, 2H), 1.17-1.51 (m, 7H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.2, 139.3, 135.1 (d, *J* = 9.9 Hz), 128.0, 126.8, 124.6 (d, *J* = 16.2 Hz), 86.7 (d, *J* = 170.2 Hz), 44.6 (d, *J* = 19.9 Hz), 39.8, 37.0, 34.4 (d, *J* = 2.4 Hz), 33.6, 26.6 (d, *J* = 3.4 Hz), 22.2, 20.1, 14.5; ¹⁹F-NMR δ -175.4-(-174.8) (m); ¹⁹F-NMR (decoupled) -175.0 (s); **MS** (ESI) *m/z* 323 (M+Na, 100%); **HRMS** (ESI) C₂₁H₂₉FNa requires *m/z* 323.2151, found 323.2138.

Followed by the 2-fluoro-6-[4-((trans-4-propylcyclohexyl)phenyl]cyclohexyl trifluoromethanesulfonate **27** (0.653 g, 43%) as a white solid; M.p. = 156-167 (decompose) °C; ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.2 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 4.90 (dt, *J* = 9.0, 10.4 Hz, 1H), 4.64 (dddd, *J* = 5.3, 8.6, 11.6, 50.3 Hz, 1H), 2.81 (dt, *J* = 11.9, 3.8 Hz, 1H), 2.45 (tt, *J* = 11.3, 3.1 Hz, 1H), 2.34-2.40 (m, 1H), 1.84-2.01(m, 6H), 1.63-1.78 (m, 2H), 1.19-1.51 (m, 8H), 0.99-1.08 (m, 2H), 0.90 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 147.7, 135.6, 127.6, 127.3, 118.0 (d, *J* = 319.6Hz), 92.8 (d, *J* = 183.8 Hz), 92.4 (d, *J* = 16.8 Hz), 47.7 (t, *J* = 1.7 Hz), 44.3, 39.7, 37.0, 34.3, 33.5, 32.6, 33.0 (d, *J* = 17.7 Hz), 22.2 (d, *J* = 11.6 Hz), 20.0, 14.4; ¹⁹F-NMR δ -75.2 (d, *J* = 7.9 Hz, 3F), -185.9 (dm, *J* = 48.9 Hz, 1F); ¹⁹F-NMR (decoupled) δ -75.2 (d, *J* = 7.9 Hz, 3F), -185.9 (m, 1F); MS (ESI) m/z 473 (M+Na, 100); HRMS (ESI) C₂₂H₃₀O₃F₄SNa requires m/z 473.1744, found 473.1740.

1-(2,3-Difluorocyclohexyl)-4-(trans-4-propylcyclohexyl)benzene 5. Following the general procedure to prepare **3** with fluorotriflate **27** (0.64 g, 1.42 mmol) and triethylamine trihydrofluoride (0.55 mL, 5.69 mmol). The white residue was purified by SiO₂ column chromatography (petroleum ether/CH₂Cl₂ 9:1) to afford the difluorocyclohexane **5** (0.43 g, 94%) as a white solid; M.p. = 128 °C; ¹H NMR (300 MHz, CDCl₃) *δ* 7.21 (d, *J* = 8.2 Hz, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 4.96 (dd, *J* = 9.8, 53.1 Hz, 1H), 4.48-4.66 (m, 1H), 2.62 (ddd, *J* = 3.7, 13.0, 35.6 Hz, 1H), 2.45 (tt, *J* = 3.1, 12.1 Hz, 1H), 1.85-2.02 (m, 8H), 1.67-1.71 (m, 1H), 1.19-1.48 (m, 8H), 1.00-1.08 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) *δ* 146.6, 138.6, 127.8, 126.9, 91.7 (dd, *J* = 16.5, 182.1 Hz), 91.65(dd, *J* = 19.4, 182.4 Hz), 45.6 (dd, *J* = 5.6, 19.3 Hz), 44.2, 39.7, 37.0, 34.3, 33.6, 25.7 (dd, *J* = 3.1, 18.7 Hz), 25.3 (d, *J* = 3.3 Hz), 22.6 (d, *J* = 12.2 Hz), 20.1, 14.4; ¹⁹F-NMR *δ* -185.9 (m, 1F), -213.7 (m, 1F); ¹⁹F-NMR (decoupled) *δ* -185.9 (d, *J* = 15.5 Hz, 1F), -213.7 (d, *J* = 15.5 Hz, 1F); MS (ESI) *m/z* 343 (M+Na, 100%); HRMS (ESI) C₂₁H₃₀F₂Na requires *m/z* 343.2213, found 343.2211.

1-(2-Fluorocyclohexyl)-4-(trans-4-propylcyclohexyl]benzene 6. Compound 28 (0.45 g, 2.15 mmol) and Pd/C (10%, 50 mg) were suspended in ethyl acetate (20 mL), evacuated flushed 3 times with hydrogen. The mixture was stirred under hydrogen atmosphere for 3 h, and then filtered through a pad of Celite. The filtrate was concentrated and the residue was subjected to silica column chromatography (petroleum ether) to afford **5** (0.43 g, 99%) as a white solid; M.p. = 94 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.21 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 4.85 (dd, *J* = 1.7, 48.9 Hz, 1H), 2.63 (ddd, J = 2.8, 13.0,37.0, Hz, 1H), 2.44 (tt, *J* = 3.2, 12.1 Hz, 1H), 2.10-2.18 (m, 1H), 2.01(dq, *J* = 3.6, 13.0 Hz, 1H), 1.84-1.91 (m, 5H), 1.51-1.74 (m, 5H), 1.18-1.48 (m, 8H), 1.00-1.08 (m, 2H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C

NMR (75 MHz, CDCl₃) δ 146.0, 140.9, 127.8, 126.7, 92.2 (d, J = 173.6 Hz), 47.2 (d, J = 19.7 Hz), 44.2, 39.8, 37.0, 34.4 (d, J = 2.5 Hz), 33.6, 31.7 (d, J = 22.0 Hz), 26.5 (d, J = 2.6 Hz), 25.9, 20.1, 19.8, 14.5; ¹⁹F-NMR δ –175.4 (m); ¹⁹F-NMR (decoupled) –197.1 (s); MS (ESI) *m*/*z* 325 (M+Na, 100%); HRMS (ESI) C₂₁H₃₂FNa requires *m*/*z* 325.2307, found 325.2305.

X_Ray Data

X-Ray structure data has been deposited in the Cambridge Crystallographic Data Centre (CCDC) with the following numbers are 1503420-1503427 for compounds **3-6**, **13**, **16**, **17**, **19** respectively.

X-Ray Data Collection for 3

A colorless platelet crystal of C₂₁H₂₈F₄ having approximate dimensions of 0.200 x 0.200 x 0.020 mm was mounted in a loop. All measurements were made on a Rigaku XtaLAB P200 diffractometer using multi-layer mirror monochromated Cu-K α radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

a = 11.943(2) Å b = 5.5757(11) Å β = 91.791(7)^o c = 27.176(6) Å V = 1808.7(6) Å³

For Z = 4 and F.W. = 356.45, the calculated density is 1.309 g/cm^3 . Based on the reflection conditions of:

h0l:
$$l = 2n$$

packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

The data were collected at a temperature of $-148 \pm 1^{\circ}$ C to a maximum 2 θ value of 136.5°. Readout was performed in the 0.172 mm pixel mode.

Data Reduction

Of the 23264 reflections were collected, where 3315 were unique ($R_{int} = 0.0500$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). ¹

The linear absorption coefficient, μ , for Cu-K α radiation is 8.627 cm⁻¹. An empirical absorption correction was applied which resulted in transmission

factors ranging from 0.871 to 0.983. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement³ on F² was based on 3315 observed reflections and 227 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0516$

wR2 = $[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1727$

The goodness of fit⁴ was 1.06. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.44 and -0.37 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 ⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure⁹ crystallographic software package except for refinement, which was performed using SHELXL2013¹⁰.

References

(1) <u>CrystalClear</u>: Data Collection and Processing Software, Rigaku Corporation (1998-2014). Tokyo 196-8666, Japan.

(2) <u>SIR2011</u>: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.

(3) Least Squares function minimized: (SHELXL2013)

 $\Sigma w (F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(4) Goodness of fit is defined as:

 $[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where: N_0 = number of observations N_V = number of variables

(5) International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2014). Tokyo 196-8666, Japan.

(10) <u>SHELXL2013</u>: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

A. Crystal Data

Empirical Formula	C ₂₁ H ₂₈ F ₄
Formula Weight	356.45
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.200 X 0.200 X 0.020 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 11.943(2) Å b = 5.5757(11) Å c = 27.176(6) Å β = 91.791(7) ⁰ V = 1808.7(6) Å ³
Space Group	P2/c (#13)
Z value	4
D _{calc}	1.309 g/cm ³
F000	760.00
μ(CuKα)	8.627 cm ⁻¹

B. Intensity Measurements

Diffractometer	XtaLAB P200	
Radiation	CuKα (λ = 1.54187 Å) multi-laver mirror	
monochromated		
Voltage, Current	40kV, 30mA	
Temperature	-148.0°C	
Detector Aperture	83.8 x 70.0 mm	
Pixel Size	0.172 mm	
20 _{max}	136.5 ⁰	
No. of Reflections Measured	Total: 23264 Unique: 3315 (R _{int} = 0.0500)	
Corrections	Lorentz-polarization Absorption (trans. factors: 0.871 - 0.983)	

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR2011)			
Refinement	Full-matrix least-squares on F^2			
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$			
Least Squares Weights	w = $1/[\sigma^2(Fo^2) + (0.1323 \cdot P)^2 + 0.3158 \cdot P]$			
2Fc ²)/3	where P = (Max(Fo ² ,0) +			
$2\theta_{max}$ cutoff	136.5 ⁰			
Anomalous Dispersion	All non-hydrogen atoms			
No. Observations (All reflections)	3315			
No. Variables	227			
Reflection/Parameter Ratio	14.60			
Residuals: R1 (I>2.00σ(I))	0.0516			
Residuals: R (All reflections)	0.0537			
Residuals: wR2 (All reflections)	0.1727			
Goodness of Fit Indicator	1.059			
Max Shift/Error in Final Cycle	0.001			
Maximum peak in Final Diff. Map	0.44 e⁻/Å ³			
Minimum peak in Final Diff. Map	-0.37 e ⁻ /Å ³			
atom	Х	У	Z	Beq
------	--------------	-------------	-------------	---------
F1	0.43852(8)	0.13875(14)	0.33544(4)	2.83(2)
F2	0.65333(8)	0.13964(17)	0.36736(3)	2.83(2)
F3	0.43928(9)	0.6803(2)	0.46102(3)	3.86(3)
F4	0.31097(7)	0.45189(18)	0.39089(3)	2.57(2)
C1	0.50295(13)	0.3428(3)	0.32672(5)	1.90(3)
C2	0.59347(12)	0.3559(3)	0.36672(5)	1.88(3)
C3	0.54730(13)	0.3993(3)	0.41714(5)	2.03(3)
C4	0.48291(13)	0.6339(3)	0.41502(5)	2.20(3)
C5	0.38734(12)	0.6272(3)	0.37701(5)	1.80(3)
C6	0.43050(11)	0.5689(2)	0.32605(5)	1.46(3)
C7	0.33780(11)	0.5732(2)	0.28620(5)	1.52(3)
C8	0.25458(12)	0.3983(3)	0.28187(5)	1.83(3)
С9	0.16939(12)	0.4166(3)	0.24558(5)	1.80(3)
C10	0.16275(11)	0.6100(3)	0.21329(5)	1.64(3)
C11	0.24641(11)	0.7844(3)	0.21775(5)	1.78(3)
C12	0.33186(11)	0.7665(3)	0.25359(5)	1.65(3)
C13	0.07032(11)	0.6261(3)	0.17361(5)	1.72(3)
C14	0.11568(12)	0.5729(3)	0.12267(5)	1.90(3)
C15	0.02322(13)	0.5864(3)	0.08243(5)	2.06(3)
C16	-0.03631(12)	0.8296(3)	0.08148(5)	1.73(3)
C17	-0.08203(12)	0.8803(3)	0.13229(5)	1.96(3)
C18	0.01013(12)	0.8692(3)	0.17294(5)	2.00(3)
C19	-0.12715(12)	0.8371(3)	0.04013(5)	1.91(3)
C20	-0.17840(15)	1.0820(3)	0.03095(6)	2.69(3)
C21	-0.26365(14)	1.0872(3)	-0.01213(6)	2.86(3)

Table 1. Atomic coordinates and $\mathrm{B}_{iso}/\mathrm{B}_{eq}$

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

atom	Х	У	Z	B _{iso}
H1	0.53877	0.32571	0.29413	2.280
H2	0.64585	0.48956	0.35891	2.254
H3A	0.60921	0.40908	0.44215	2.441
H3B	0.49705	0.26619	0.42615	2.441
H4	0.53537	0.76634	0.40653	2.636
H5	0.34920	0.78685	0.37596	2.156
H6	0.48207	0.70344	0.31788	1.758
H8	0.25578	0.26554	0.30378	2.197
H9	0.11452	0.29350	0.24292	2.162
H11	0.24497	0.91755	0.19593	2.138
H12	0.38732	0.88848	0.25590	1.985
H13	0.01349	0.50015	0.18080	2.067
H14A	0.14943	0.41077	0.12274	2.276
H14B	0.17518	0.69010	0.11535	2.276
H15A	0.05635	0.55735	0.05002	2.478
H15B	-0.03239	0.45829	0.08800	2.478
H16	0.02054	0.95558	0.07440	2.081
H17A	-0.14087	0.76137	0.13943	2.355
H17B	-0.11686	1.04146	0.13224	2.355
H18A	0.06533	0.99836	0.16758	2.400
H18B	-0.02355	0.89693	0.20528	2.400
H19A	-0.09405	0.78030	0.00928	2.289
H19B	-0.18757	0.72382	0.04841	2.289
H20A	-0.11777	1.19770	0.02439	3.225
H20B	-0.21562	1.13514	0.06112	3.225
H21A	-0.32696	0.98266	-0.00482	3.434
H21B	-0.22811	1.03071	-0.04201	3.434
H21C	-0.29058	1.25170	-0.01719	3.434

Table 2. Atomic coordinates and $B_{\mbox{\scriptsize ISO}}$ involving hydrogen atoms

Table 3. Anisotropic displacement parameters

atom	U11 U23	U22	U33	U ₁₂	U ₁₃	
F1	0.0471(6)	0.0185(5)	0.0407(6)	-0.0012(4)	-0.0185(4)	-
F2	0.0412(6)	0.0372(6)	0.0288(5)	0.0209(4)	-0.0034(4)	-
F3	0.0592(7)	0.0688(8)	0.0182(5)	0.0299(6)	-0.0052(4)	-
F4	0.0283(5) 0.0085(4)	0.0448(6)	0.0249(5)	-0.0031(4)	0.0050(3)	
C1	0.0314(8)	0.0231(7)	0.0177(7)	0.0047(6)	-0.0008(6)	-
C2	0.0245(7)	0.0240(7)	0.0228(8)	0.0069(5)	-0.0011(6)	
C3 0.0010(5)	0.0301(8)	0.0293(8)	0.0175(7)	0.0058(6)	-0.0046(5)	-
C4 0.0081(6)	0.0338(8)	0.0316(8)	0.0176(8)	0.0080(6)	-0.0051(6)	-
C5	0.0238(7)	0.0250(7)	0.0194(8)	0.0018(5)	-0.0003(5)	-
C6	0.0210(7)	0.0188(7)	0.0157(7)	-0.0009(5)	-0.0005(5)	
C7	0.0228(7)	0.0211(7)	0.0140(7)	0.0008(5)	0.0001(5)	-
C8	0.0279(7)	0.0220(7)	0.0195(7)	-0.0015(5)	-0.0020(5)	
С9	0.0041(3) 0.0248(7) 0.0001(5)	0.0217(7)	0.0217(7)	-0.0039(5)	-0.0019(5)	
C10 0.0020(5)	0.0232(7)	0.0243(7)	0.0150(7)	-0.0004(5)	0.0003(5)	-
C11	0.0270(7)	0.0236(7)	0.0170(7)	-0.0012(5)	-0.0008(5)	
C12 0.0002(5)	0.0233(7)	0.0210(7)	0.0185(7)	-0.0024(5)	-0.0006(5)	-
C13	0.0227(7) 0.0013(5)	0.0255(7)	0.0171(7)	-0.0031(5)	-0.0023(5)	
C14 0 0033(5)	0.0266(7)	0.0268(7)	0.0184(7)	0.0035(5)	-0.0033(5)	-
C15	0.0314(8)	0.0300(8)	0.0167(7)	0.0047(6)	-0.0054(6)	-
C16	0.0244(7)	0.0268(7)	0.0145(7)	-0.0006(5)	-0.0026(5)	-
C17	0.0238(7)	0.0335(8)	0.0171(7)	0.0048(6)	-0.0028(5)	-
C18 0.0045(5)	0.0291(8)	0.0317(8)	0.0150(7)	0.0041(6)	-0.0027(6)	-

C19 0 0024(5)	0.0275(7)	0.0290(8)	0.0158(7)	-0.0008(5)	-0.0037(5)	-
C20	0.0396(9)	0.0330(9)	0.0286(8)	0.0040(7)	-0.0134(7)	-
C21	0.0349(9) 0.0090(7)	0.0410(9)	0.0320(9)	-0.0029(7)	-0.0122(7)	

The general temperature factor expression: $\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl))$

Table 4. Bond lengths (Å)

atom	atom	distance	atom	atom
F1	C1 1 4017(17)	1.3979(17)	F2	C2
F3	1.4017(17) C4 1.3968(17)	1.3935(17)	F4	C5
C1	C2	1.511(2)	C1	С6
C2	1.529(2) C3	1.512(2)	C3	C4
C4	C5	1.516(2)	C5	С6
C6	1.520(2) C7	1.5245(19)	C7	C8
C7	1.3946(19) C12	1.3958(19)	C8	С9
С9	1.398(2) C10	1.391(2)	C10	C11
C10	1.3968(19) C13	1.5215(19)	C11	C12
C13	1.3921(19) C14	1.531(2)	C13	C18
C14	1.534(2) C15	1.531(2)	C15	C16
C16	1.531(2) C17	1.527(2)	C16	C19
C17	1.538(2) C18 1.514(2)	1.536(2)	C19	C20
C20	C21	1.528(2)		

atom	atom	distance	atom	atom
C1	H1	1.000	C2	H2
С3	1.000 H3A	0.990	C3	H3B
C4	0.990 H4	1.000	C5	H5
С6	1.000 H6	1.000	C8	H8
۲۹	0.950 н9	0 950	C11	Н11
C10	0.950	0.050	C12	1111
UI2	H12 1.000	0.950	U13	H13
C14	H14A 0.990	0.990	C14	H14B
C15	H15A 0 990	0.990	C15	H15B
C16	H16	1.000	C17	H17A
C17	H17B	0.990	C18	H18A
C18	H18B	0.990	C19	H19A
C19	H19B	0.990	C20	H20A
C20	0.990 H20B	0.990	C21	H21A
C21	0.980 H21B 0.980	0.980	C21	H21C

Table 5. Bond lengths involving hydrogens (Å)

Table 6. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom
F1	angle	C2	107 62(11)	F1	C1	6
11	111.03(1	2)	107.02(11)	11	01	00
C2	C1	C6	111.14(11)	F2	C2	C1
	108.69(1	.1)				
F2	C2	C3	109.06(11)	C1	C2	С3
60	112.75(1	.2)		50		aa
C2	C3	C4	107.58(11)	F3	C4	C3
F.2	109.21(1	.2) 	100 74(12)	C2	C A	CE
гэ		しつ 2)	100.74(12)	63	U 4	65
F4	C5	.2) C4	108 51(11)	F4	65	C6
1 1	109.73(1	1)	100.01(11)	1 1	05	00
C4	C5	C6	110.78(12)	C1	C6	C5
	111.81(1	.1)	Č, Š			
C1	C6	Č7	114.81(11)	C5	C6	C7
	112.49(1	.1)				
C6	C7	C8	123.28(12)	C6	C7	C12
	118.99(1	.2)				
C8	C7	C12	117.67(12)	C7	C8	C9
00	120.63(1	.3)	4.04.00(4.0)	00	04.0	044
68	(9 117 20(1	C10	121.82(13)	69	C10	C11
CO	117.29(1 C10	.2)	121 24(12)	C11	C10	C12
69	121 44(1	2)	121.24(12)	CII	010	615
C10	C11	. <u></u> 	121 17(13)	C7	C12	C11
010	121.40(1	.3)	12111/(10)	07	012	UII
C10	C13	C14	111.10(11)	C10	C13	C18
	112.94(1	.1)				
C14	C13	C18	109.82(11)	C13	C14	C15
	111.63(1	.2)				
C14	C15	C16	112.30(12)	C15	C16	C17
	109.14(1	.1)				
C15	C16	C19	110.67(11)	C17	C16	C19
C1(113.06(1	.2)	111 00(12)	C12	C10	C17
C10	UI/ 11165(1	υΙԾ 1)	111.99(12)	U13	C1Ω	CI/
C16	111.05(1 C10	.1J C20	114 66(12)	C19	C20	C21
010	113.56(1	3)	111.00(12)	017	020	021
C16	111.65(1 C19 113.56(1	.1) C20 .3)	111.99(12)	C13	C18 C20	C17

atom	atom	atom	angle	atom	atom	atom
F1	angle C1	H1	109.0	C2	C1	H1
C6	109.0 C1	H1	109.0	F2	C2	H2
C1	108.8 C2	H2	108.8	С3	C2	H2
C2	108.7 C3	НЗА	110.2	C2	C3	H3B
C4	C3	НЗА	110.2	C4	C3	H3B
H3A	C3	H3B	108.5	F3	C4	H4
C3	108.9 C4	H4	109.0	C5	C4	H4
F4	109.0 C5 100.2	Н5	109.3	C4	C5	H5
C6	109.3 C5	Н5	109.3	C1	C6	H6
C5	105.6 C6 105.6	Н6	105.6	C7	C6	H6
C7	105.0 C8 110.7	H8	119.7	С9	C8	H8
C8	C9	Н9	119.1	C10	С9	H9
C10	C11 110.4	H11	119.4	C12	C11	H11
C7	C12	H12	119.3	C11	C12	H12
C10	C13	H13	107.6	C14	C13	H13
C18	C13	H13	107.6	C13	C14	H14A
C13	C14	H14B	109.3	C15	C14	H14A
C15	C14	H14B	109.3	H14A	C14	H14B
C14	C15	H15A	109.1	C14	C15	H15B
C16	C15	H15A	109.1	C16	C15	H15B
H15A	C15	H15B	107.9	C15	C16	H16
C17	C16 107.9	H16	107.9	C19	C16	H16

Table 7. Bond angles involving hydrogens (⁰)

C17	H17A	109.2	C16	C17	H17B
109.2					
C17	H17A	109.2	C18	C17	H17B
109.2					
C17	H17B	107.9	C13	C18	H18A
109.3					
C18	H18B	109.3	C17	C18	H18A
109.3					
C18	H18B	109.3	H18A	C18	H18B
107.9					
C19	H19A	108.6	C16	C19	H19B
108.6					
C19	H19A	108.6	C20	C19	H19B
108.6					
C19	H19B	107.6	C19	C20	H20A
108.9					
C20	H20B	108.8	C21	C20	H20A
108.9					
C20	H20B	108.9	H20A	C20	H20B
107.7					
C21	H21A	109.5	C20	C21	H21B
109.5					
C21	H21C	109.5	H21A	C21	H21B
109.5					
C21	H21C	109.5	H21B	C21	H21C
109.5					-
	C17 109.2 C17 109.2 C17 109.3 C18 109.3 C18 107.9 C19 108.6 C19 108.6 C19 108.6 C19 108.9 C20 108.9 C20 108.9 C20 108.9 C20 107.7 C21 109.5 C21 109.5 C21 109.5 C21 109.5	C17 H17A 109.2	C17 H17A 109.2 109.2	C17 H17A 109.2 C16 109.2 C17 H17A 109.2 C18 109.2 C17 H17A 109.2 C18 109.2 C17 H17B 107.9 C13 C17 H17B 107.9 C13 C18 H18B 109.3 C17 C18 H18B 109.3 C17 C19 H19A 108.6 C16 108.6 C10 C19 H19A 108.6 C20 108.6 C19 108.6 C19 C19 108.7 C20 H20B 108.8 C21 108.9 C20 H20B 108.9 H20A C21 H21A 109.5 C20 H21A 109.5 C21 H21C 109.5 H21A 109.5 C21 H21C 109.5 H21B 109.5 C21 H21C 109.5 H21B	C17 H17A 109.2 C16 C17 109.2 H17A 109.2 C18 C17 109.2 109.2 C17 H17A 109.2 C18 C17 109.2 109.2 C17 H17B 107.9 C13 C18 109.3 C17 H17B 107.9 C13 C18 109.3 C17 C18 C18 C19 C18 H18B 109.3 C17 C18 109.3 C17 C18 C18 C17 C18 H18B 109.3 C17 C18 107.9 C19 H19A 108.6 C16 C19 C19 H19A 108.6 C20 C19 C19 C20 C21

Table 8. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	
F1	C1	C2	F2	55.13(14)	F1	C1	C2	C3	-
65.91(1	.3)								
F1	C1	C6	C5	68.55(13)	F1	C1	C6	C7	-
61.16(1	.4)								
C2	C1	С6	C5	-51.21(14)	C2	C1	С6	C7	
	179.08	(10)							
6	C1	(2°)	F2	176 90(10)	6	C1	C2	C3	
0	55 85(1	14)	1 2	170.90(10)	60	C1	62	0.5	
F0	33.03(J	(4) (2)	C 4	170.04(0)	C1	C D	C 2	C 4	
FZ	C2	L3	L4	-1/9.84(9)	C1	LZ	L3	L4	-
59.00(1	.4)								
C2	СЗ	C4	F3	-179.83(11)	C2	C3	C4	C5	
	59.67(1	14)							
F3	C4	C5	F4	-57 69(14)	F3	C4	C5	66	_
178 200	(10)	00		0/10/(11)	10	01	00	00	
170.20		CE	Γ4	(2,00(1,4))	C 2	C 4	CE	C(
L3	C4	65	F4	63.09(14)	63	Ե4	65	6	-
57.42(1	.4)								
F4	C5	C6	C1	-67.71(13)	F4	C5	C6	C7	
	63.21(1	13)							
C4	C5	C6	C1	52.08(14)	C4	C5	C6	C7	-
177 000	(10)		01					0.	
C1	_10j 	C 7	CO	5702(16)	C1	66	C7	C12	
		L/	LO	57.62(10)	CI	CO	L/	C12	-
125.27([12]								
C5	C6	C7	C8	-71.56(15)	C5	C6	C7	C12	
	105.35	(13)							
С6	C7	C8	С9	177.72(11)	С6	C7	C12	C11	-
177.44((11)								
<u>C8</u>	(7	C12	C11	-036(19)	C12	C7	68	69	
00	0.77(10)	012	011	0.00(17)	012	07	00	0)	
07	0.77(15	<i>i</i>]	C1 0	1 2 (2)	<u> </u>	<u>co</u>	C10	011	
ር/	68	69	C10	-1.3(2)	62	69	C10	CII	
	1.4(2)								
C8	С9	C10	C13	179.31(11)	С9	C10	C11	C12	-
0.94(19	ŋ								
C9	C10	C13	C14	-105.93(14)	C9	C10	C13	C18	
	130 16	(13)	011	100000(11)		010	010	010	
C11	C_{10}	C12	C14	7102(16)	C11	C10	C12	C10	
		C13	U14	/1.93(10)	CII	C10	C12	C10	-
51.99(1	.6)								
C13	C10	C11	C12	-178.88(11)	C10	C11	C12	C7	
	0.5(2)								
C10	C13	C14	C15	179.49(10)	C10	C13	C18	C17	
	179 60	(10)						-	
C14	<u>_</u> ,).00	C18	C17	54.00(14)	C18	C12	C1A	C15	_
C14 C14	4)	010	GT/	54.79(14)	010	010	014	010	-
54.84(1	.4J								

C13	C14	C15	C16	56.62(15)	C14	C15	C16	C17	-
55.84	(14)								
C14	C15	C16	C19	179.13(10)	C15	C16	C17	C18	
	55.79	(14)							
C15	C16	C19	C20	-170.89(10)	C17	C16	C19	C20	
	66.33	(15)							
C19	C16	C17	C18	179.42(10)	C16	C17	C18	C13	-
56.81	(15)								
C16	C19	C20	C21	176.81(11)					

atom	atom distance	distance	atom	atom
F1	F2 7898(14)	2.6823(14)	F1	F4
F1	C3	2.9236(18)	F1	C4
F1	C5	3.0182(17)	F1	C7
F1	C8	2.9732(17)	F3	F4
F4	C1	2.9862(18)	F4	C2
F4	3.4984(18) C3	2.9043(18)	F4	C7
F4	2.9515(17) C8	3.0324(17)	C1	C4
C1	2.913(2) C8	3.186(2)	C2	С5
C3	2.910(2) C6	2.958(2)	C5	C8
C5	3.251(2) C12	3.486(2)	C7	C10
C8	2.8424(19) C11	2.769(2)	C9	C12
С9	2.756(2) C14	3.492(2)	C11	C14
C11	3.202(2) C18	3.075(2)	C13	C16
C14	2.996(2) C17	2.936(2)	C15	C18
C17	2.930(2) C20	3.158(2)		

Table 9. Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom
	distance			
F1	H2	3.204	F1	H3B
	2.639			
F1	H6	3.229	F1	H8
	2.426			
F2	H1	2.596	F2	H3A
	2.595			
F2	H3B	2.592	F3	H3A
	2.595			
F3	H3B	2.597	F3	H5
	2.588			
F4	H3B	2.607	F4	H4
	3.220			
F4	H6	3.214	F4	H8
	2.650			
C1	H3A	3.367	C1	H3B
	2.739			
C1	H4	3.222	C1	H5
	3.383			
C1	H8	3.029	C2	H4
	2.634			
C2	H6	2.679	C3	H1
	3.366			
C3	H5	3.370	С3	H6
.	3.260		- ·	
C4	H2	2.635	C4	H6
	2.668			
Հ5	H1	3.380	65	HZ
	3.234	0.040		
Հ5	H3A	3.368	65	H3R
	2.728	2 200		114.0
Հ5	H8	3.209	65	HIZ
C(3.599	2 722	66	
6	HZ	2.732	6	H3B
C(3.278	2 710	66	110
6	H4 2 720	2.719	6	Нδ
<u>C(</u>	2./39	2 (4 9	C7	111
60	П12 2 771	2.048	L7	ПΙ
C7		2 71 4	C7	110
L/	ПЭ 2 27(2.714	L/	П9
C7	3.270	2 201	CO	111
ե/	111 111	3.201	LO	пт
CO	3.424 UE	2 ⊑11	CO	116
ίð	ПЭ 2 2 2 7	3.311	ίð	по
	5.54/			

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens

C8	H12 3 243	3.248	С9	H11
С9	H13 3 3 3 9	2.565	С9	H14A
C10	H8 3 279	3.286	C10	H12
C10	H14A 2.707	2.700	C10	H14B
C10	H18A 2.744	2.738	C10	H18B
C11	H9 3.329	3.241	C11	H13
C11	H14A 2.932	3.487	C11	H14B
C11	H18A 3.292	2.788	C11	H18B
C12	H5 2.490	3.327	C12	H6
C12	H8 2.684	3.250	C13	H9
C13	H11 3.379	2.698	C13	H15A
C13	H15B 3.301	2.759	C13	H16
C13	H17A 3.386	2.765	C13	H17B
C14	H11 2.733	3.138	C14	H16
C14	H17A 2.743	3.284	C14	H18A

Table 10. Intramolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
C14	H18B 2 722	3.362	C15	H13
C15	H17A 3 348	2.717	C15	H17B
C15	H18A 2.628	3.288	C15	H19A
C15	H19B 3.303	2.763	C16	H13
C16	H14A 2.772	3.387	C16	H14B
C16	H18A 3.384	2.767	C16	H18B
C16	H20A 2.779	2.734	C16	H20B
C17	H13 3.296	2.727	C17	H14B
C17	H15A 2 717	3.347	C17	H15B
C17	H19A 2 714	3.388	C17	H19B
C17	H20A 2 848	3.440	C17	H20B
C18	H11 3 362	2.867	C18	H14A
C18	H14B 3 281	2.743	C18	H15B
C18	H16 2.696	2.727	C19	H15A
C19	H15B 2 741	2.709	C19	H17A
C19	H17B 2 768	2.750	C19	H21A
C19	H21B 3 375	2.727	C19	H21C
C20	H16 3 465	2.713	C20	H17A
C20	H17B 2 701	2.836	C21	H19A
C21	H19B 2 330	2.747	H1	H2
H1	H6 3.414	2.310	H1	H8

H2	H3A 2 872	2.360	H2	H3B
H2	H4 2 521	2.430	H2	H6
H3A	H4 2.878	2.373	H3B	H4
H4	H5 2.497	2.352	H4	H6
Н5	H6 3.357	2.320	Н5	H12
H6	H12 2.331	2.250	H8	H9
Н9	H13 3.369	2.346	Н9	H14A
H11	H12 2 643	2.324	H11	H14B
H11	H18A 3 227	2.301	H11	H18B
H13	H14A 2 869	2.352	H13	H14B
H13	H15B 2 580	2.575	H13	H17A
H13	H18A 2 356	2.871	H13	H18B
H14A	H15A 2 355	2.382	H14A	H15B
H14B	H15A 2 873	2.357	H14B	H15B
H14B	H16	2.591	H14B	H18A
H15A	H16 2.423	2.360	H15A	H19A

Table 10. Intramolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H15A	H19B 2 870	3.056	H15B	H16
H15B	H17A	2.569	H15B	H19A
H15B	H19B	2.581	H16	H17A
H16	2.000 H17B 2.583	2.357	H16	H18A
H16	H19A	2.410	H16	H19B
H16	H20A	2.502	H16	H20B
H17A	H18A	2.877	H17A	H18B
H17A	H19A	3.600	H17A	H19B
H17A	H20B	3.090	H17B	H18A
H17B	2.303 H18B	2.386	H17B	H19B
H17B	2.987 H20A	3.057	H17B	H20B
H19A	2.293 H20A	2.382	H19A	H20B
H19A	2.852 H21A	3.015	H19A	H21B
H19A	H21C	3.582	H19B	H20A
H19B	2.852 H20B	2.345	H19B	H21A
H19B	2.607 H21B	3.021	H20A	H21A
H20A	2.861 H21B	2.390	H20A	H21C
H20B	2.341 H21A	2.356	H20B	H21B
H20B	2.862 H21C	2.374		

atom	atom	distance	atom	atom
F1	distance C4 ¹	3.5789(18)	F1	$C5^1$
F1	3.1351(17) C6 ¹	3.1889(16)	F1	C12 ¹
F2	3.2712(17) C11 ²	3.2985(17)	F3	F3 ³
F3	3.2315(15) C3 ³	3.3396(17)	F3	C21 ⁴
F4	3.414(2) C20 ⁵	3.388(2)	C3	F3 ³
C4	3.3396(17) F1 ⁶	3.5789(18)	C5	F1 ⁶
С6	3.1351(17) F1 ⁶	3.1889(16)	C11	F2 ⁷
C12	3.2985(17) F1 ⁶	3 2712(17)	C20	F48
012	3.388(2)	3.2712(17)	CZU	1 T
C21	F3⁺	3.414(2)		

Table 11. Intermolecular contacts less than 3.60 Å $\,$

Symmetry Operators:

(1) X,Y-1,Z	(2) -X+1,Y-1,-Z+1/2
(3) -X+1,-Y+1,-Z+1	(4) -X,Y,-Z+1/2
(5) -X,Y-1,-Z+1/2	(6) X,Y+1,Z
(7) -X+1,Y+1,-Z+1/2	(8) -X,Y+1,-Z+1/2

atom	atom distance	distance	atom	atom
F1	H4 ¹	3.040	F1	H5 ¹
F1	2.505 H6 ¹	2.531	F1	$H12^1$
F1	2.629 H12 ²	3.572	F2	$H4^{1}$
F2	2.747 H6 ¹	3.426	F2	H11 ²
F2	2.469 H14A ³	2.805	F2	H14B ²
F2	3.262 H21A ⁴	3.540	F2	H21B ⁴
F3	2.959 H3A⁵	2.757	F3	H3B ⁶
F3	3.477 H3B ⁵	3.150	F3	H19B ⁷
F3	3.019 H21A ⁷	2.482	F3	H21A ⁸
F3	3.468 H21C ⁹	3.371	F3	H21C ⁸
F4	3.284 H15B ⁷	3.394	F4	H17A ⁷
F4	2.771 H17B ⁹	3.304	F4	H19B ⁷
F4	2.710 H20B ⁹	2.492	C1	H1 ³
C1	3.308 H6 ¹	3.581	C1	H12 ¹
C2	3.444 H4 ¹	3.536	C2	H11 ²
C2	3.578 H14A ³	3.090	C2	H14B ³
(3	3.355 H4 ¹	3 543	(3	H21A ⁴
C3	3.330 H21C ⁸	3 241	С <i>4</i>	H3B6
CJ	3.542	2 207	CF	U17A7
C4	3.056	3.207	C5	
C5	3.566	3.224	L6	H1 ³
L7	H1 ³ 3.319	3.007	L7	H17A'
C8	H1 ³ 3.555	3.292	C8	H11 ¹

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens

C8	H12 ¹	3.341	C8	H13 ⁷
C8	3.436 H17A ⁷ 3.515	3.271	С8	H17B ⁹
С9	H9 ⁷ 3 2 3 3	3.483	С9	H11 ¹
С9	H13 ⁷ 3.363	3.044	С9	H18A ¹
С9	H18B ⁷ 3.131	3.484	C10	H2 ³
C10	H18B ⁷ 2.977	3.233	C11	H2 ³
C11	H6 ³ 3.558	3.443	C11	H8 ⁶
C11	H9 ⁶ 3.493	3.328	C11	H18B ⁷
C12	H1 ³ 3.443	3.199	C12	H2 ³
C12	H6 ³ 3.241	3.017	C12	H8 ⁶
C12	H12 ³ 3.504	3.440	C13	H18A ¹
C14	H2 ³ 3.487	2.913	C14	H18A ¹
C14	H21B ¹⁰ 3.524	3.417	C15	H16 ¹
C15	H19A ¹¹ 3 139	3.352	C15	H20A ¹
C15	H20A ¹⁰ 3.453	3.370	C15	H21B ¹⁰

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
C16	H15B ⁶ 3 467	3.510	C16	H20A ¹⁰
C16	H21B ¹⁰ 3 234	3.456	C17	H5 ⁷
C17	H8 ¹² 3 497	3.487	C17	H15B ⁶
C18	H9 ⁶ 3 524	3.259	C18	H13 ⁶
C18	H18B ⁷ 3 562	3.312	C19	H5 ⁷
C19	H15A ¹¹ 3 591	3.418	C19	H16 ¹⁰
C19	H20A ¹ 3 462	3.593	C19	H20A ¹⁰
C20	H15A ¹⁰	3.348	C20	H15B ⁶
C20	H16 ¹⁰	3.483	C20	H19A ¹⁰
C21	H3A ¹³	3.375	C21	H3A ¹⁴
C21	H4 ¹⁴	3.314	C21	H14B ¹⁰
C21	H15A ¹⁰	3.358	C21	H16 ¹⁰
H1	C1 ³	3.308	H1	C6 ³
H1	C7 ³	3.007	H1	C8 ³
H1	C12 ³	3.199	H1	H1 ³
H1	H6 ¹	3.597	H1	H11 ²
H1	H12 ¹	3.190	H1	H12 ²
H1	H12 ³	3.542	H2	C10 ³
H2	C11 ³	2.977	H2	C12 ³
H2	C14 ³	2.913	H2	H11 ³
H2	5.120 H14A ³ 2.493	2.519	H2	H14B ³

H3A	F3 ⁵	2.757	НЗА	C21 ⁴
НЗА	5.575 C21 ⁸ 2.426	3.409	НЗА	H14A ³
H3A	H14B ³	3.432	НЗА	H21A ⁴
НЗА	H21B ⁴ 2 479	3.150	НЗА	H21C ⁸
H3B	F3 ¹ 3 150	3.477	НЗВ	F3 ⁵
H3B	C4 ¹ 2 877	3.542	НЗВ	$H4^{1}$
H3B	H5 ¹ 3 467	3.460	H3B	H20B ⁹
H3B	H21A ⁹	3.386	H3B	H21A ⁴
H3B	H21C ⁹	3.548	H4	F1 ⁶
H4	F2 ⁶	2.747	H4	C2 ⁶
H4	C3 ⁶	3.543	H4	C21 ⁸
H4	H3B ⁶	2.877	H4	H14B ³
H4	H21A ⁸	3.197	H4	H21B ⁸
H4	H21C ⁸	2.891	Н5	F1 ⁶
Н5	2.505 C17 ⁷ 2.562	3.234	Н5	C19 ⁷
Н5	H3B ⁶ 3.476	3.460	Н5	H8 ⁶

atom	atom distance	distance	atom	atom
Н5	H17A ⁷ 3 119	2.514	Н5	H17B ⁷
Н5	H19B ⁷	2.885	Н5	H20B ⁷
H6	F1 ⁶ 3 426	2.531	Н6	F2 ⁶
H6	C1 ⁶	3.581	Н6	C11 ³
H6	C12 ³ 3 597	3.017	Н6	H1 ⁶
H6	H11 ³ 2 777	3.503	Н6	H12 ³
Н8	C11 ¹ 3 241	3.558	H8	C12 ¹
Н8	C17 ⁹	3.487	H8	$H5^1$
H8	H11 ¹	3.514	H8	H12 ¹
Н8	L.951 H13 ⁷	3.509	Н8	H17A ⁹
H8	3.507 H17A ⁷	3.470	Н8	H17B ⁹
H8	2.742 H18B ⁹	3.455	Н9	C9 ⁷
Н9	3.483 C11 ¹	3.328	Н9	C18 ¹
Н9	3.259 H9 ⁷	2.774	Н9	H11 ¹
Н9	2.928 H13 ⁷	2.857	Н9	H18A ¹
Н9	2.078 H18B ¹	2.924	Н9	H18B ⁹
H11	2.854 F2 ¹⁵	2.469	H11	C2 ¹⁵
H11	3.578 C8 ⁶	3.555	H11	C9 ⁶
H11	3.233 H1 ¹⁵	3.447	H11	H2 ³
H11	3.120 H6 ³	3.503	H11	H8 ⁶
H11	3.514 H9 ⁶ 3.561	2.928	H11	H14A ⁶

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

H12	F1 ⁶	2.629	H12	F1 ¹⁵
H12	3.572 C1 ⁶	3.444	H12	C8 ⁶
	3.341			
H12	C12 ³	3.440	H12	H1 ⁶
U17	3.190 ц13	2512	Ц1 2	U1 15
1112	2.940	5.542	1112	111
H12	H6 ³	2.777	H12	H8 ⁶
	2.951			
H12	H12 ³	2.720	H13	C8 ⁷
	3.436			
H13	C9 ⁷	3.044	H13	$C18^{1}$
	3.524			
H13	H8/	3.509	H13	H97
U12	2.857 11701	2 252	U12	U10 л 1
1115	2 890	3.232	1115	IIIOA
H13	H18B ¹	3.460	H14A	F2 ³
	2.805	01100		
H14A	C2 ³	3.090	H14A	H2 ³
	2.519			
H14A	H3A ³	3.426	H14A	$H11^{1}$
	3.561			
H14A	$H16^{1}$	3.226	H14A	H18A ¹
	2.803			
H14A	H21B ¹¹	3.447	H14B	$F2^{15}$
	3.262	2 255	111.4 D	CD1 10
H14B	L^{3}	3.355	H14B	C2110
U11D	3.2/3 1123	2 402		U2A3
П14D	п4° 2 / 2 2	2.473	П14D	пзАз
	3.432			

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
H14B	H4 ³ 2 622	3.551	H14B	H21B ¹⁰
H14B	$H21C^{10}$	3.058	H15A	C19 ¹¹
H15A	C20 ¹⁰	3.348	H15A	C21 ¹⁰
H15A	H15A ¹¹ 3 449	3.063	H15A	H16 ¹
H15A	H19A ¹¹ 3 511	2.528	H15A	H19B ¹¹
H15A	H20A ¹ 2.566	2.956	H15A	H20A ¹⁰
H15A	H21B ¹⁰ 3.148	3.092	H15A	H21C ¹⁰
H15B	F4 ⁷ 3 510	3.394	H15B	C16 ¹
H15B	C17 ¹ 3 111	3.497	H15B	C20 ¹
H15B	H16 ¹ 2 818	2.900	H15B	H17B ¹
H15B	H18A ¹	3.530	H15B	H19A ¹¹
H15B	H20A ¹	2.455	H15B	H20B ¹
H16	C15 ⁶ 3 591	3.524	H16	C19 ¹⁰
H16	$C20^{10}$	3.483	H16	C21 ¹⁰
H16	H14A ⁶	3.226	H16	H15A ⁶
H16	H15B ⁶	2.900	H16	H19A ¹⁰
H16	H20A ¹⁰	3.079	H16	H21B ¹⁰
H17A	F4 ⁷	2.771	H17A	C57
H17A	C7 ⁷	3.319	H17A	C8 ⁷
H17A	H5 ⁷	2.514	H17A	H8 ⁷
H17A	H8 ¹² 3.304	3.507	H17B	F4 ¹²

H17B	C8 ¹²	3.515	H17B	H5 ⁷
	3.119			
H17B	H8 ¹²	2.742	H17B	H13 ⁶
	3.252			
H17B	H15B ⁶	2.818	H18A	C9 ⁶
	3.363			
H18A	$C13^{6}$	3.504	H18A	C14 ⁶
	3.487			
H18A	H9 ⁶	2.678	H18A	H13 ⁶
	2.890			
H18A	H14A ⁶	2.803	H18A	H15B6
	3.530			7
H18A	H18B ⁷	3.552	H18B	C97
	3.484			24.47
H18B	C10 ⁷	3.233	H18B	C11/
	3.493	0.040		11012
H18B	C18 ⁷	3.312	H18B	H812
	3.455	0.004		11012
H18B	H9°	2.924	H18B	H9 ¹²
114.00	2.854	2460	11400	114047
HI8R	H13°	3.460	HI8B	H18A'
11100	3.55Z	2 470	11104	C1 F11
H10D		2.4/8	HI9A	C1211
U10A	3.35Z C2010	2 5 4 0	U10A	U1CA11
П19А	2 5 2 8	5.549	ПІУА	П15А
Н10 Л	2.320 H15R ¹¹	3 360	Н10Л	H16 10
III 7A	2 870	3.300	ШЭА	1110
H194	2.070 H19Δ ¹⁰	3 373	Η19Δ	H20A1
	3 288	5.575	11176	11204
H19A	H20A ¹⁰	2 720	H19R	F37
111 //1	3 019	2.720	11170	15
	0.017			

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H19B	F4 ⁷	2.710	H19B	C5 ⁷
H19B	5.224 H5 ⁷	2.885	H19B	H15A ¹¹
H19B	H20A ¹	3.124	H19B	H20B ¹
H19B	H21C ¹	3.389	H20A	C15 ⁶
H20A	C15 ¹⁰ 3 467	3.370	H20A	C16 ¹⁰
H20A	C19 ⁶	3.593	H20A	C19 ¹⁰
H20A	H15A ⁶	2.956	H20A	H15A ¹⁰
H20A	H15B ⁶	2.455	H20A	H16 ¹⁰
H20A	H19A ⁶	3.288	H20A	H19A ¹⁰
H20A	H19B ⁶	3.124	H20B	F4 ¹²
H20B	H3B ¹²	3.467	H20B	H5 ⁷
H20B	3.068 H15B ⁶	2.910	H20B	H19B ⁶
H21A	5.518 F2 ¹³	3.540	H21A	F3 ⁷
H21A	2.482 F3 ¹⁴	3.468	H21A	C3 ¹³
H21A	3.330 H3A ¹³	2.713	H21A	H3B ¹²
H21A	3.386 H3B ¹³	3.101	H21A	H4 ¹⁴
H21B	3.197 F2 ¹³	2.959	H21B	C14 ¹⁰
H21B	3.417 C15 ¹⁰	3.453	H21B	C16 ¹⁰
H21B	3.456 H3A ¹³	3.150	H21B	H4 ¹⁴
H21B	3.312 H14A ¹¹	3.447	H21B	H14B ¹⁰
H21B	2.622 H15A ¹⁰ 2.657	3.092	H21B	H16 ¹⁰

H21C	F3 ¹² 3 284	3.371	H21C	F3 ¹⁴
H21C	$C3^{14}$	3.241	H21C	C4 ¹⁴
H21C	H3A ¹⁴	2.479	H21C	H3B ¹²
H21C	3.548 H4 ¹⁴	2.891	H21C	H14B ¹⁰
H21C	3.058 H15A ¹⁰ 3.389	3.148	H21C	H19B ⁶

Symmetry Operators:

(1) X,Y-1,Z	(2) -X+1,Y-1,-Z+1/2
(3) -X+1,Y,-Z+1/2	(4) X+1,-Y+1,Z+1
(5) -X+1,-Y+1,-Z+1	(6) X,Y+1,Z
(7) -X,Y,-Z+1/2	(8) X+1,-Y+2,Z+1
(9) -X,Y-1,-Z+1/2	(10) -X,-Y+2,-Z
(11) -X,-Y+1,-Z	(12) -X,Y+1,-Z+1/2
(13) X-1,-Y+1,Z	(14) X-1,-Y+2,Z
(15) -X+1,Y+1,-Z+1/2	

X-Ray Data Collection for 4

Data Collection

A colorless platelet crystal of C₂₁H₂₉F₃ having approximate dimensions of 0.240 x 0.050 x 0.010 mm was mounted in a loop. All measurements were made on a Rigaku XtaLAB P200 diffractometer using multi-layer mirror monochromated Cu-K α radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

a = 27.34(2) Å b = 5.534(4) Å β = 102.294(19)^o c = 12.092(11) Å V = 1787(3) Å³

For Z = 4 and F.W. = 338.46, the calculated density is 1.258 g/cm^3 . The reflection conditions of:

h0l: l = 2n 0k0: k = 2n

uniquely determine the space group to be:

The data were collected at a temperature of $-148 \pm 1^{\circ}$ C to a maximum 2 θ value of 136.8°. Readout was performed in the 0.172 mm pixel mode.

Data Reduction

Of the 17873 reflections were collected, where 3249 were unique ($R_{int} = 0.1377$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). ¹

The linear absorption coefficient, μ , for Cu-K α radiation is 7.615 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.766 to 0.992. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by charge flipping method² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of fullmatrix least-squares refinement³ on F² was based on 3249 observed reflections and 218 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0909$

wR2 = $[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.2943$

The goodness of fit⁴ was 1.11. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.80 and -0.35 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 ⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure⁹ crystallographic software package except for refinement, which was performed using SHELXL2013¹⁰.

References

(1) <u>CrystalClear</u>: Data Collection and Processing Software, Rigaku Corporation (1998-2014). Tokyo 196-8666, Japan.

(2) Superflip: Palatinus L., Chapuis G. (2007), J. Appl. Cryst. 40, 786-790.

(3) Least Squares function minimized: (SHELXL2013)

 $\Sigma w (F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(4) Goodness of fit is defined as:

 $[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where:

 N_0 = number of observations

 N_V = number of variables

(5) International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2014). Tokyo 196-8666, Japan.

(10) <u>SHELXL2013</u>: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₂₁ H ₂₉ F ₃
Formula Weight	338.46
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.240 X 0.050 X 0.010 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 27.34(2) Å b = 5.534(4) Å c = 12.092(11) Å β = 102.294(19) ⁰ V = 1787(3) Å ³
Space Group	P2 ₁ /c (#14)
Z value	4
D _{calc}	1.258g/cm^3
F000	728.00
μ(CuKα)	7.615 cm ⁻¹

B. Intensity Measurements

Diffractometer	XtaLAB P200
Radiation	CuKα (λ = 1.54187 Å) multi-laver mirror
monochromated	
Voltage, Current	40kV, 30mA
Temperature	-148.0°C
Detector Aperture	83.8 x 70.0 mm
Pixel Size	0.172 mm
20 _{max}	136.8 ⁰
No. of Reflections Measured	Total: 17873 Unique: 3249 (R _{int} = 0.1377)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.766 - 0.992)

C. Structure Solution and Refinement

Structure Solution	Charge Flipping (Superflip)	
Refinement	Full-matrix least-squares on F^2	
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$	
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.1122 · P) ² + 6.1854 · P]	
2Fc ²)/3	where P = (Max(Fo ² ,0) +	
$2\theta_{max}$ cutoff	136.8 ⁰	
Anomalous Dispersion	All non-hydrogen atoms	
No. Observations (All reflections)	3249	
No. Variables	218	
Reflection/Parameter Ratio	14.90	
Residuals: R1 (I>2.00σ(I))	0.0909	
Residuals: R (All reflections)	0.1506	
Residuals: wR2 (All reflections)	0.2943	
Goodness of Fit Indicator	1.108	
Max Shift/Error in Final Cycle	0.000	
Maximum peak in Final Diff. Map	0.80 e⁻/Å ³	
Minimum peak in Final Diff. Map	-0.35 e⁻/Å ³	

atom	Х	У	Z	Beq
F1	0.87716(12)	0.6903(5)	0.3765(3)	3.05(7)
F2	0.90698(13)	0.6741(6)	0.1782(3)	3.62(7)
F3	0.93388(11)	0.3765(6)	0.5380(2)	2.90(6)
C1	0.86773(18)	0.4811(9)	0.3110(4)	2.11(9)
C2	0.90755(19)	0.4654(9)	0.2410(4)	2.24(9)
C3	0.95910(19)	0.4258(10)	0.3135(4)	2.33(9)
C4	0.9590(2)	0.1957(11)	0.3820(5)	2.69(10)
C5	0.91975(19)	0.2001(9)	0.4532(4)	2.20(9)
C6	0.86764(18)	0.2581(9)	0.3831(4)	1.81(8)
C7	0.82725(17)	0.2554(9)	0.4533(4)	1.69(8)
C8	0.82357(18)	0.4340(9)	0.5314(4)	1.97(9)
С9	0.78707(18)	0.4148(9)	0.5970(4)	1.92(8)
C10	0.75442(18)	0.2217(9)	0.5874(4)	1.89(8)
C11	0.75820(18)	0.0441(9)	0.5074(4)	1.98(9)
C12	0.79409(18)	0.0618(9)	0.4418(4)	1.94(9)
C13	0.71549(18)	0.2054(9)	0.6594(4)	2.02(9)
C14	0.71610(19)	-0.0381(10)	0.7211(4)	2.41(10)
C15	0.67680(18)	-0.0490(10)	0.7934(4)	2.26(9)
C16	0.62394(18)	0.0009(10)	0.7259(4)	2.13(9)
C17	0.62337(19)	0.2404(10)	0.6629(5)	2.61(10)
C18	0.66250(18)	0.2533(10)	0.5897(4)	2.30(9)
C19	0.58474(19)	-0.0002(10)	0.7986(4)	2.46(10)
C20	0.5775(2)	-0.2406(11)	0.8527(5)	3.26(11)
C21	0.5393(2)	-0.2285(13)	0.9268(5)	3.58(12)

Table 1. Atomic coordinates and $\mathrm{B}_{iso}/\mathrm{B}_{eq}$

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

atom	Х	У	Z	B _{iso}
H1	0.83423	0.49664	0.25867	2.531
H2	0.89937	0.32592	0.18769	2.682
H3A	0.96856	0.56501	0.36509	2.800
H3B	0.98390	0.41194	0.26498	2.800
H4A	0.95266	0.05590	0.32980	3.229
H4B	0.99238	0.17362	0.43208	3.229
H5	0.91886	0.03866	0.48987	2.636
H6	0.85913	0.12115	0.32846	2.172
H8	0.84562	0.56863	0.54062	2.364
H9	0.78474	0.53911	0.64979	2.304
H11	0.73601	-0.09008	0.49775	2.378
H12	0.79603	-0.06104	0.38803	2.328
H13	0.72323	0.33441	0.71848	2.422
H14A	0.70987	-0.17006	0.66453	2.893
H14B	0.74965	-0.06394	0.76995	2.893
H15A	0.68530	0.07120	0.85518	2.715
H15B	0.67765	-0.21105	0.82840	2.715
H16	0.61506	-0.12998	0.66807	2.561
H17A	0.62943	0.37378	0.71873	3.135
H17B	0.58974	0.26465	0.61412	3.135
H18A	0.66142	0.41525	0.55447	2.757
H18B	0.65437	0.13224	0.52819	2.757
H19A	0.59433	0.12176	0.85927	2.955
H19B	0.55228	0.05058	0.75100	2.955
H20A	0.60996	-0.29461	0.89910	3.914
H20B	0.56653	-0.36217	0.79249	3.914
H21A	0.50752	-0.16656	0.88248	4.296
H21B	0.55148	-0.12048	0.99103	4.296
H21C	0.53409	-0.39053	0.95497	4.296

Table 2. Atomic coordinates and $B_{\mbox{\scriptsize ISO}}$ involving hydrogen atoms
Table 3. Anisotropic displacement parameters

atom	U ₁₁ U23	U22	U33	U12	U13	
F1	0.061(2)	0.0197(16)	0.0431(18)	-0.0003(14)	0.0287(15)	-
0.0029(13	5)					
F2	0.059(2) 0.0204(15)	0.046(2)	0.0352(17)	0.0053(16)	0.0158(15)	
F3	0.0351(16)	0.051(2)	0.0229(14)	-0.0072(14)	0.0037(12)	-
0.0033(14	.)					
C1	0.030(3)	0.023(3)	0.027(3)	0.001(2)	0.006(2)	
	0.007(2)					
C2	0.041(3)	0.023(3)	0.023(3)	-0.002(2)	0.012(2)	
C2	0.005(2)	0.027(2)	0.024(2)	0.000(2)	0.015(2)	
CS 0.000(2)	0.031(3)	0.027(3)	0.034(3)	0.000(2)	0.015(2)	-
0.000(2)	0.026(2)	0.026(2)	0.024(2)	0.007(2)	0.016(2)	
L4	0.030(3) 0.007(2)	0.030(3)	0.034(3)	0.007(2)	0.010(2)	
C5	0.035(3)	0.021(3)	0.029(3)	0.001(2)	0.008(2)	
	0.002(2)					
C6	0.030(3)	0.023(3)	0.017(2)	-0.003(2)	0.0077(19)	-
0.0061(19)					
C7	0.027(2)	0.021(3)	0.014(2)	0.002(2)	0.0014(18)	
	0.0067(18)					
C8	0.028(3)	0.022(3)	0.024(2)	-0.000(2)	0.005(2)	
<u> </u>	0.002(2)	0.020(2)	0.010(2)	0.001(2)	0.004F(10)	
L9 0.000(2)	0.035(3)	0.020(2)	0.018(2)	0.001(2)	0.0045(19)	-
0.000(2)	0.000(2)	0.004(0)	0.010(2)	0.002(2)	0.0007(10)	
C10	0.028(3)	0.024(3)	0.019(2)	0.003(2)	0.0037(19)	
C11	0.003(2)	0 024(3)	0.020(2)	-0.004(2)	0.007(2)	_
0.001(2)	0.033(3)	0.021(3)	0.020(2)	0.001(2)	0.007(2)	
C12	0.035(3)	0.023(3)	0.016(2)	-0.000(2)	0.0057(19)	_
0.004(2)	0.000(0)	0.020(0)	0.010(2)	0.000(2)	0.0007(17)	
C13	0.028(3)	0.027(3)	0.021(2)	-0.001(2)	0.0049(19)	-
0.004(2)	01020(0)	01027(0)	01021(2)	01001(2)	010017(17)	
C14	0.029(3)	0.036(3)	0.027(3)	0.004(2)	0.007(2)	
	0.012(2)					
C15	0.032(3)	0.033(3)	0.022(2)	0.001(2)	0.007(2)	
	0.007(2)					
C16	0.027(3)	0.033(3)	0.022(2)	0.002(2)	0.0062(19)	
	0.002(2)					
C17	0.031(3)	0.037(3)	0.031(3)	0.008(2)	0.008(2)	
	0.009(2)					
C18	0.034(3)	0.029(3)	0.025(3)	0.006(2)	0.006(2)	
010	0.008(2)	0.005(0)	0.005(0)	0.004(2)	0.040(2)	
C19	0.032(3)	0.037(3)	0.027(3)	0.001(2)	0.012(2)	
	0.002(2)					

C20	0.046(3)	0.040(3)	0.044(3)	-0.001(3)	0.024(3)
	0.006(3)				
C21	0.044(3)	0.057(4)	0.039(3)	-0.010(3)	0.017(3)
	0.003(3)				

The general temperature factor expression: $\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl))$

Table 4. Bond lengths (Å)

atom	atom	distance	atom	atom
F1	distance C1 1 381(6)	1.396(6)	F2	C2
F3	C5 1 517(8)	1.409(6)	C1	C2
C1	C6 1 509(7)	1.512(7)	C2	С3
C3	C4 1 512(8)	1.520(8)	C4	C5
C5	C6 1 529(7)	1.529(7)	C6	C7
C7	C8	1.385(7)	C7	C12
C8	1.391(7) C9	1.404(8)	С9	C10
C10	1.301(7) C11	1.398(7)	C10	C13
C11	1.515(0) C12	1.390(8)	C13	C14
C13	1.536(8) C18	1.536(6)	C14	C15
C15	1.524(0) C16	1.526(7)	C16	C17
C16	1.527(8) C19	1.524(8)	C17	C18
C19	1.529(8) C20 1.516(10)	1.514(9)	C20	C21

atom	atom	distance	atom	atom
	distance			
C1	H1	1.000	C2	H2
	1.000			
C3	H3A	0.990	C3	H3B
	0.990			
C4	H4A	0.990	C4	H4B
	0.990			
C5	H5	1.000	С6	H6
	1.000			
C8	H8	0.950	С9	H9
	0.950			
C11	H11	0.950	C12	H12
	0.950			
C13	H13	1.000	C14	H14A
	0.990			
C14	H14B	0.990	C15	H15A
	0.990			
C15	H15B	0.990	C16	H16
010	1.000	01770	010	
C17	H17A	0 990	C17	H17B
017	0.990	0.770	017	11170
C18	H18A	0 990	C18	H18R
010	0.990	0.770	010	miob
C19	H19A	0 990	C19	H10R
017	0 990	0.770	617	
C20	U.990 H20A	0 000	C20	H20B
620	0.000	0.990	620	11200
C21	0.550	0.000	C21	11210
621	ΠΔ1A 0.000	0.900	621	П21В
004	0.980	0.000		
U21	HZIC	0.980		

Table 5. Bond lengths involving hydrogens (Å)

Table 6. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom
F1	C1	C2	107.3(4)	F1	C1	С6
C2	C1	C6	111.4(4)	F2	C2	C1
F2	109.5(4) C2	C3	109.9(4)	C1	C2	C3
C2	112.1(4) C3 112.4(E)	C4	109.1(4)	C3	C4	C5
F3	112.4(5) C5	C4	107.9(4)	F3	C5	C6
C4	C5	C6	112.2(4)	C1	C6	C5
C1	C6	C7	114.7(4)	C5	C6	С7
C6	C7	C8	122.5(4)	C6	C7	C12
C8	C7	C12	118.5(5)	C7	C8	С9
C8	119.0(3) C9	C10	122.4(5)	С9	C10	C11
С9	C10	C13	121.2(4)	C11	C10	C13
C10	C11 121.4(4) C11 121.4(5)	C12	120.7(5)	C7	C12	C11
C10	C13	C14	113.2(4)	C10	C13	C18
C14	C13 112 1(4)	C18	109.2(4)	C13	C14	C15
C14	C15	C16	112.9(4)	C15	C16	C17
C15	C16	C19	113.1(4)	C17	C16	C19
C16	C17	C18	113.3(5)	C13	C18	C17
C16	C19 112.8(5)	C20	115.2(5)	C19	C20	C21

atom	atom	atom	angle	atom	atom	atom
F1	C1	H1	108.8	C2	C1	H1
C6	C1	H1	108.8	F2	C2	H2
C1	C2	H2	108.4	C3	C2	H2
C2	C3	НЗА	109.8	C2	C3	H3B
C4	C3 109.9	НЗА	109.9	C4	C3	H3B
H3A	C3 109.1	H3B	108.3	C3	C4	H4A
C3	C4 109.1	H4B	109.1	C5	C4	H4A
C5	C4 107.8	H4B	109.1	H4A	C4	H4B
F3	C5 109.0	H5	109.0	C4	C5	H5
C6	C5 105.4	H5	109.0	C1	C6	H6
C5	C6 105.4	H6	105.4	C7	C6	H6
C7	C8 120.2	H8	120.2	С9	C8	H8
C8	C9 118.8	H9	118.8	C10	С9	H9
C10	C11 119.7	H11	119.7	C12	C11	H11
C7	C12 119.3	H12	119.3	C11	C12	H12
C10	C13 107.5	H13	107.5	C14	C13	H13
C18	C13 109.2	H13	107.5	C13	C14	H14A
C13	C14 109.2	H14B	109.2	C15	C14	H14A
C15	C14 1079	H14B	109.2	H14A	C14	H14B
C14	C15	H15A	109.0	C14	C15	H15B
C16	C15	H15A	109.0	C16	C15	H15B
H15A	C15 107.7	H15B	107.8	C15	C16	H16

Table 7. Bond angles involving hydrogens (⁰)

C17	C16 107.7	H16	107.7	C19	C16	H16
C16	C17 108.9	H17A	108.9	C16	C17	H17B
C18	C17 1089	H17A	108.9	C18	C17	H17B
H17A	C17 109.3	H17B	107.7	C13	C18	H18A
C13	C18 109.3	H18B	109.3	C17	C18	H18A
C17	C18 108.0	H18B	109.3	H18A	C18	H18B
C16	C19 108 5	H19A	108.5	C16	C19	H19B
C20	C19	H19A	108.5	C20	C19	H19B
H19A	C19	H19B	107.5	C19	C20	H20A
C19	C20	H20B	109.0	C21	C20	H20A
C21	C20	H20B	109.0	H20A	C20	H20B
C20	C21	H21A	109.5	C20	C21	H21B
C20	C21	H21C	109.5	H21A	C21	H21B
H21A	C21 109.5	H21C	109.5	H21B	C21	H21C

Table 8. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2 angle	atom3	atom4	angle	atom1	atom2	atom3	atom4	
F1	C1	C2	F2	-56.2(4)	F1	C1	C2	С3	
F1	C1	C6	C5	-68.3(5)	F1	C1	C6	C7	
C2	C1	C6	C5	51.7(5)	C2	C1	C6	C7	-
177.9(3)	C1	C2	F2	-178.9(3)	C6	C1	C2	С3	-
56.6(5) F2	C_{2}	С3	C4	180.0(4)	C1	C2	C3	C4	
C2	C3	C4	C5	-56.3(5)	С3	C4	C5	F3	-
C3	C4	C5	C6	53.3(5)	F3	C5	C6	C1	
F3	C5	C6	C7	-61.8(5)	C4	C5	C6	C1	-
50.5(5) C4	C5	C6	C7	178.2(4)	C1	С6	C7	C8	-
56.2(5) C1	C6	C7	C12	124.5(4)	C5	С6	C7	C8	
C5	71.8(3) C6	C7	C12	-105.6(4)	C6	C7	C8	С9	-
C6	C7	C12	C11	176.9(3)	C8	C7	C12	C11	-
0.8(8) C12	C7	C8	С9	0.4(6)	C7	C8	С9	C10	
C8	0.3(0) C9	C10	C11	-1.2(6)	C8	С9	C10	C13	
C9	C10	c11	C12	0.9(6)	С9	C10	C13	C14	-
120.0(4 C9	C10	C13	C18	107.4(4)	C11	C10	C13	C14	
C11	52.2(5) C10	C13	C18	-71.5(5)	C13	C10	C11	C12	
C10	179.9(4 C11	C12	C7	-0.1(6)	C10	C13	C14	C15	
C10	C13	C18	C17	-179.2(4)	C14	C13	C18	C17	
C18	C13	C14	C15	-55.2(5)	C13	C14	C15	C16	
C14 177.8(4	C15	C16	C17	-53.6(5)	C14	C15	C16	C19	-

C15	C16	C17	C18	53.7(5)	C15	C16	C19	C20	-
64.3(5	5)								
C17	C16	C19	C20	172.4(3)	C19	C16	C17	C18	
	179.2	(3)							
C16	C17	C18	C13	-56.0(5)	C16	C19	C20	C21	
	178.2	(4)							

atom	atom distance	distance	atom	atom
F1	F2	2.694(5)	F1	F3
F1	2.010(4) C3 3.527(7)	2.910(7)	F1	C4
F1	C5 3.009(6)	3.019(6)	F1	C7
F1	C8 3.005(6)	2.972(6)	F3	C1
F3	C2 2 952(7)	3.543(6)	F3	С3
F3	C7 3.017(6)	2.954(6)	F3	C8
C1	C4 3 163(8)	2.923(7)	C1	C8
C2	C5 2 953(8)	2.913(7)	С3	С6
C5	C8	3.247(8)	C5	C12
C7	C10 2 777(7)	2.829(7)	C8	C11
С9	C12 3 504(8)	2.743(7)	С9	C18
C11	C14 3 207(8)	3.078(8)	C11	C18
C13	C16	3.008(8)	C14	C17
C15	C18 3.137(9)	2.934(8)	C15	C20

Table 9. Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom
F1	distance	2 200	F1	112 4
ГІ	п2 2.625	5.200	ГІ	пзА
F1	2.023 H6	3 2 2 2	F1	Н8
	2.421			110
F2	H1	2.587	F2	H3A
	2.586			
F2	H3B	2.586	F3	H3A
	2.684			
F3	H4A	3.209	F3	H4B
F2	2.516 UG	2 7 7 2	F2	UQ
ГJ	2 643	5.225	13	110
C1	H3A	2.734	C1	H3B
-	3.361	-	-	-
C1	H4A	3.279	C1	H5
	3.367			
C1	H8	3.004	C2	H4A
60	2.691	0.000	60	
ί2	H4B 2664	3.323	CZ	H6
(3	2.004 H1	3 359	(3	н5
05	3.368	5.557	65	115
C3	H6	3.249	C4	H2
	2.658			
C4	H6	2.700	C5	H1
~ -	3.369			
C5	H2	3.216	C5	НЗА
CE	2./5/ U2D	2 266	CE	цо
65	пзв 3 209	5.500	63	по
С6	H2	2.712	С6	НЗА
	3.287			-
C6	H4A	2.777	C6	H4B
	3.368			
C6	H8	2.726	C6	H12
07	2.647	2 7 4 7	C7	
L/	HI 2 727	2./4/	L/	HS
C7	2.727 H9	3 261	C7	H11
	3.277	0.201	0,	
C8	H1	3.390	C8	H5
	3.519			
C8	H6	3.314	C8	H12
	3.244			

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens

С9	H11 2 549	3.237	С9	H13
С9	H18A	3.364	C10	H8
C10	H12 745	3.274	C10	H14A
C10	H14B 2.709	2.741	C10	H18A
C10	H18B 3.235	2.721	C11	H9
C11	H13 2.798	3.324	C11	H14A
C11	H14B 3 491	3.287	C11	H18A
C11	H18B 3 597	2.943	C12	H1
C12	H5 2 488	3.339	C12	H6
C12	H8 2.665	3.250	C13	H9
C13	H11 2 769	2.698	C13	H15A
C13	H15B 3 334	3.385	C13	H16
C13	H17A	2.764	C13	H17B
C14	H11 2 747	2.881	C14	H16
C14	H17A 3.362	3.284	C14	H18A

Table 10. Intramolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom	distance	atom	atom
C14	H18B	2.739	C15	H13
C15	H17A	2.733	C15	H17B
C15	H18B	3.291	C15	H19A
C15	H19B 2 796	3.378	C15	H20A
C15	H20B 3.300	3.476	C16	H13
C16	H14A 3.383	2.776	C16	H14B
C16	H18A 2.790	3.392	C16	H18B
C16	H20A 2 772	2.747	C16	H20B
C17	H13 3 276	2.719	C17	H14A
C17	H15A 3 344	2.734	C17	H15B
C17	H19A	2.739	C17	H19B
C18	H11 2 736	3.136	C18	H14A
C18	H14B	3.361	C18	H15A
C18	H16 2 717	2.757	C19	H15A
C19	H15B	2.749	C19	H17A
C19	H17B	2.697	C19	H21A
C19	H21B	2.754	C19	H21C
C20	H15A 2 820	3.410	C20	H15B
C20	H16	2.719	C21	H19A
C21	H19B	2.712	H1	H2
H1	H6 3.380	2.291	H1	H8

H2	H3A 2,250	2.864	H2	H3B
H2	2.350 H4A 3.565	2.498	H2	H4B
H2	H6 2 869	2.488	НЗА	H4A
НЗА	H4B 2.347	2.355	H3B	H4A
H3B	H4B 2.318	2.382	H4A	H5
H4A	H6 2.384	2.579	H4B	H5
Н5	H6 3.367	2.308	Н5	H12
H6	H12 2.340	2.245	H8	Н9
Н9	H13 3.393	2.323	Н9	H18A
H11	H12 2.321	2.325	H11	H14A
H11	H14B 2.642	3.236	H11	H18B
H13	H14A 2.361	2.872	H13	H14B
H13	H15A 2 574	2.581	H13	H17A
H13	H18A 2 872	2.358	H13	H18B
H14A	H15A 2 345	2.865	H14A	H15B
H14A	H16 2.599	2.611	H14A	H18B

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
H14B	H15A 2.373	2.343	H14B	H15B
H15A	H16 2.605	2.863	H15A	H17A
H15A	H19A 3.588	2.514	H15A	H19B
H15A	H20A 2.340	3.015	H15B	H16
H15B	H19A 2.246	3.014	H15B	H20A
H15B	H20B 2.863	3.091	H16	H17A
H16	H17B 2.626	2.341	H16	H18B
H16	H19A 2.384	2.857	H16	H19B
H16	H20A 2 554	2.970	H16	H20B
H17A	H18A	2.346	H17A	H18B
H17A	H19A	2.539	H17A	H19B
H17B	H18A	2.379	H17B	H18B
H17B	H19A	3.045	H17B	H19B
H19A	H20A	2.374	H19A	H20B
H19A	H21A	2.923	H19A	H21B
H19A	H21C	3.592	H19B	H20A
H19B	H20B	2.353	H19B	H21A
H19B	H21B	3.057	H19B	H21C
H20A	H21A	2.854	H20A	H21B
H20A	H21C	2.374	H20B	H21A
H20B	L.309 H21B 2.327	2.853	H20B	H21C

atom	atom	distance	atom	atom
	distance			1
F1	C4 ¹	3.573(7)	F1	$C5^{1}$
14	3.117(6)		54	04.01
FI		3.155(6)	FI	$C12^{1}$
	3.282(6)		70	a- 2
F2	F3 ²	3.183(5)	F2	$C5^3$
	3.495(7)			
F2	$C8^2$	3.366(6)	F3	F24
	3.183(5)			
F3	C2 ⁵	3.298(6)	F3	$C3^{6}$
	3.278(6)			
C2	F3 ³	3.298(6)	C3	F3 ⁶
	3.278(6)			
C4	F1 ⁷	3.573(7)	C5	F1 ⁷
	3.117(6)			
C5	F2 ⁵	3.495(7)	C6	F1 ⁷
	3.155(6)			
C8	F2 ⁴	3.366(6)	C12	F1 ⁷
	3.282(6)			

Table 11. Intermolecular contacts less than 3.60 Å $\,$

Symmetry Operators:

(1) X,Y+1,Z	(2) X,-Y+2,Z
(3) X,-Y+1,Z	(4) X,-Y+2,Z+1
(5) X,-Y+1,Z+1	(6) -X+2,-Y+1,-Z+1
(7) X,Y-1,Z	

atom	atom	distance	atom	atom
F1	H4A ¹	3.028	F1	H51
	2.496			
F1	$H6^{1}$	2.478	F1	$H12^{1}$
-	2.639		70	
FI	H14B ²	3.520	FZ	H3B ₃
F2	3.199	2 000	F.2	11403
FΖ	H4A ⁺	2.900	FΖ	H4B ³
F2	5.505 Ц52	2611	F2	Н61
Γ.Ζ	3 4 8 5	2.044	1.7	110
F2	9.405 H8 ⁴	2 534	F3	H2 ⁵
1 2	2.479		10	112
F3	H3A ⁶	2.695	F3	H3B ⁶
	3.134			
F3	H3B ⁵	3.217	F3	H4A ⁵
	3.476			
F3	H4B ⁶	3.175	C1	$H6^{1}$
	3.559			
C1	$H12^{1}$	3.451	C1	$H14B^2$
	3.193			
C2	H4A ¹	3.576	C2	$H5^2$
	3.118	o		
C3	H3B/	3.471	C3	H3B ₃
C 2	3.346	2 400	C 2	114 43
63	H4A ⁺ 2 225	3.499	63	H4A ³
CA.	5.555 H2V8	3 500	CA.	ЦЗУ 6
64	3 5 2 9	2.203	CŦ	ПЈА
C4	H3B ⁷	3 041	64	H4B ⁹
01	3.118	01011		IIID
C5	H2 ⁵	3.007	C5	H4B ⁹
	3.249			
C7	H2 ⁵	3.121	C7	H13 ²
	3.600			
C7	$H14B^2$	3.214	C8	H2 ⁵
	2.875			
C8	H6 ⁵	3.529	C8	$H11^1$
00	3.524	0.000	<u></u>	114 402
68	$H12^{1}$	3.290	C8	H14B ²
<u>C0</u>	3.446 1115	2.000	<u>C0</u>	1125
69	П1° 2 212	3.070	69	ΠΔ°
69	5.512 H6 ⁵	3 067	۲9	H111
	3 1 9 1	0.007		1111
	J.I./ I			

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens

С9	H12 ⁵	3.569	С9	H14A ¹
С9	3.337 H15A ² 2.930	3.582	C10	H1 ⁵
C10	H15A ² 3.304	3.242	C11	H1 ⁵
C11	H8 ⁸ 3.281	3.519	C11	H9 ⁸
C11	H13 ² 3.214	3.486	C11	H15A ²
C11	H15B ¹⁰ 3.185	3.302	C12	H8 ⁸
C12	H9 ² 3.025	3.530	C12	H13 ²
C12	H14B ¹⁰ 3.527	3.509	C12	H14B ²
C12	H15A ² 3.402	3.570	C13	H1 ⁵
C13	H14A ¹ 3.173	3.461	C14	H1 ⁵
C14	H9 ⁸ 3.448	3.229	C14	H12 ¹¹
C14	H13 ⁸ 3.319	3.478	C15	H11 ¹¹
C15	H17A ⁸ 3 355	3.493	C15	H18A ⁵
C16	H17A ⁸ 3 493	3.475	C17	H16 ¹
C17	H20B ¹ 3.541	3.278	C17	H21A ¹²

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom	distance	atom	atom
C17	H21B ² 3 490	3.296	C18	H14A ¹
C18	H15A ² 3.083	3.182	C18	H19A ²
C18	H20A ¹⁰ 3.380	3.522	C19	H18A ⁵
C19	H20B ¹ 3.495	3.564	C19	H21A ¹²
C20	H17A ⁸ 3.475	3.190	C20	H18A ⁵
C20	H18B ¹¹ 3.557	3.423	C20	H19A ⁸
C21	H16 ¹¹ 3.456	3.293	C21	H17B ¹³
C21	H17B ⁵ 3.177	3.506	C21	H19B ¹³
C21	H21B ¹⁴ 3.425	3.452	C21	H21C ¹⁵
H1	C9 ² 2.930	3.098	H1	C10 ²
H1	C11 ² 3.402	3.304	H1	C13 ²
H1	C14 ² 3.588	3.173	H1	H6 ¹
H1	H9 ² 3.067	3.405	H1	H9 ⁴
H1	H12 ¹ 3.489	3.198	H1	H13 ²
H1	H14A ² 2.375	3.483	H1	H14B ²
H2	F3 ² 3.007	2.479	H2	C5 ²
H2	C7 ² 2.875	3.121	H2	C8 ²
H2	C9 ² 2.667	3.312	H2	H5 ²
H2	H8 ² 2.695	2.996	НЗА	F3 ⁶
НЗА	C4 ¹ 3 529	3.509	НЗА	C4 ⁶
НЗА	H3A ⁶ 2.953	3.425	НЗА	H3B ³

112.4	TT 4 A 1	2 770	110 4	114 43
H3A	H4A ¹	2.770	H3A	H4A ³
	3.515			
H3A	$H4B^{1}$	3.493	H3A	H4B ⁶
	2.852			
H3A	$H5^1$	3.445	H3B	F2 ⁷
	3.199			
H3B	F3 ⁶	3.134	H3B	F3 ²
	3.217			
H3B	C3 ⁷	3.346	H3B	C3 ³
	3.471			
H3B	$C4^{3}$	3 041	H3B	H347
1150	2 953	5.011	1150	11571
H3B	L.755 H3B7	2 0 4 0	H3B	H3B 3
IIJD	2040	2.747	115D	IIJD
מכוו	2.949	2 400	סכוו	11403
пзв		2.409	пзв	H4D°
	2.975	0.400	TT 4 A	D 4 ⁰
H3B	H5 ²	3.433	H4A	F1º
	3.028			
H4A	F2 ⁸	2.900	H4A	$F3^2$
	3.476			
H4A	C2 ⁸	3.576	H4A	C3 ⁸
	3.499			
H4A	C3 ⁷	3.335	H4A	H3A ⁸
	2.770			
H4A	H3A ⁷	3.515	H4A	H3B ⁷
	2.409			
H4A	H4B ⁹	3.212	H4B	F2 ⁷
	3 303	0.2.2.2		
H4R	F36	3 175	H4R	C4 ⁹
1110	2 1 1 8	0.17.0	1110	01
	C59	2 240	U/P	U2 48
114D	UJ ²	3.247	114D	115A°
	3.493			

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H4B	H3A ⁶	2.852	H4B	H3B ⁷
H4B	H4A ⁹ 2 504	3.212	H4B	H4B ⁹
H4B	H5 ⁹ 2,496	2.680	Н5	F1 ⁸
Н5	F2 ⁵ 3.118	2.644	Н5	C2 ⁵
Н5	H2 ⁵ 3.445	2.667	Н5	H3A ⁸
Н5	H3B ⁵ 2.680	3.433	Н5	H4B ⁹
Н5	H8 ⁸ 2.478	3.417	H6	F1 ⁸
H6	F2 ⁸ 3.559	3.485	Н6	C1 ⁸
H6	C8 ² 3.067	3.529	Н6	C9 ²
H6	H1 ⁸ 3 579	3.588	Н6	H8 ²
Н6	H9 ² 2 534	2.778	Н8	F2 ¹⁶
Н8	C11 ¹ 3 185	3.519	Н8	C12 ¹
Н8	H2 ⁵ 3 417	2.996	Н8	H51
Н8	H6 ⁵ 3 486	3.579	Н8	H11 ¹
Н8	H12 ¹ 3 281	2.894	Н9	C11 ¹
Н9	C12 ⁵ 3 229	3.530	Н9	C14 ¹
Н9	H1 ⁵ 3.067	3.405	Н9	H1 ¹⁶
Н9	H6 ⁵ 2 885	2.778	Н9	H11 ¹
Н9	H12 ⁵	2.834	Н9	H14A ¹
Н9	H14B ¹	2.907	H11	C8 ⁸
H11	C9 ⁸ 3.319	3.191	H11	C15 ¹⁰

H11	H8 ⁸	3.486	H11	H9 ⁸
H11	2.885 H14B ¹⁰ 3 311	3.439	H11	H15A ¹⁰
H11	H15A ² 2.561	3.481	H11	H15B ¹⁰
H11	H18A ⁸ 3.458	3.566	H11	H20A ¹⁰
H12	F1 ⁸ 3.451	2.639	H12	C1 ⁸
H12	C8 ⁸ 3.569	3.290	H12	C9 ²
H12	$C14^{10}$ 3.198	3.448	H12	H1 ⁸
H12	H8 ⁸ 2 834	2.894	H12	H9 ²
H12	H13 ² 3 515	2.828	H12	H14A ¹⁰
H12	H14B ¹⁰ 3 405	2.680	H12	H15B ¹⁰
H13	C7 ⁵ 3 486	3.600	H13	C11 ⁵
H13	C12 ⁵ 3 478	3.025	H13	C14 ¹
H13	H1 ⁵ 2 828	3.489	H13	H12 ⁵
H13	H14A ¹	2.824	H13	H14B ¹
H13	H15B ¹ 3 337	3.217	H14A	C9 ⁸
H14A	C13 ⁸ 3.490	3.461	H14A	C18 ⁸

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom	distance	atom	atom
H14A	H1 ⁵	3.483	H14A	H9 ⁸
H14A	2.640 H12 ¹¹	3.515	H14A	H13 ⁸
H14A	2.824 H17A ⁸	3.500	H14A	H18A ⁸
H14B	2.030 F1 ⁵ 2.103	3.520	H14B	C1 ⁵
H14B	C7 ⁵	3.214	H14B	C8 ⁵
H14B	C12 ¹¹ 3 527	3.509	H14B	C12 ⁵
H14B	H1 ⁵ 2 907	2.375	H14B	H9 ⁸
H14B	H11 ¹¹	3.439	H14B	H12 ¹¹
H14B	H13 ⁸	3.435	H15A	C9 ⁵
H15A	C10 ⁵	3.242	H15A	C11 ⁵
H15A	3.214 C12 ⁵	3.570	H15A	C18 ⁵
H15A	3.182 H11 ¹¹	3.311	H15A	H11 ⁵
H15A	3.481 H18A ⁵	2.629	H15A	H18B ⁵
H15B	C11 ¹¹	3.302	H15B	H11 ¹¹
H15B	2.561 H12 ¹¹ 2.217	3.405	H15B	H13 ⁸
H15B	H17A ⁸	2.834	H15B	H18A ⁵
H15B	5.290 H18B ¹¹	3.511	H16	C17 ⁸
H16	C21 ¹⁰	3.293	H16	H17A ⁸
H16	2.823 H17B ⁸	3.455	H16	H18A ⁸
H16	H20A ¹⁰	3.252	H16	H21B ¹⁰
H16	2.815 H21C ¹⁰ 3.493	3.021	H17A	C15 ¹

H17A	C16 ¹ 3 190	3.475	H17A	C20 ¹
H17A	H14A ¹ 2 834	3.500	H17A	H15B ¹
H17A	H16 ¹ 2.984	2.823	H17A	H20A ¹
H17A	H20B ¹ 3 389	2.558	H17A	H21B ²
H17B	C21 ¹² 3 506	3.456	H17B	C21 ²
H17B	H16 ¹ 3 174	3.455	H17B	H19A ²
H17B	H20B ¹ 2 695	3.147	H17B	H21A ¹²
H17B	H21B ² 3 420	2.554	H17B	H21C ¹²
H17B	H21C ¹⁰	3.010	H18A	C15 ²
H18A	C19 ²	3.380	H18A	C20 ²
H18A	H11 ¹ 2 836	3.566	H18A	H14A ¹
H18A	H15A ²	2.629	H18A	H15B ²
H18A	H16 ¹	3.251	H18A	H19A ²
H18A	H20A ²	2.965	H18A	H21B ²
H18B	C20 ¹⁰	3.423	H18B	H15A ²
H18B	2.922 H15B ¹⁰ 2.700	3.511	H18B	H19A ²

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H18B	H20A ¹⁰ 3.485	2.568	H18B	H21C ¹⁰
H19A	C18 ⁵ 3.557	3.083	H19A	C20 ¹
H19A	H17B ⁵ 2.671	3.174	H19A	H18A ⁵
H19A	H18B ⁵ 3.280	2.700	H19A	H20A ¹
H19A	H20B ¹ 3.485	3.021	H19A	H21C ¹
H19B	C21 ¹² 3.299	3.177	H19B	H20B ¹
H19B	H20B ¹² 2.570	3.215	H19B	H21A ¹²
H19B	H21C ¹² 3 522	3.063	H20A	C18 ¹¹
H20A	H11 ¹¹ 3 252	3.458	H20A	H16 ¹¹
H20A	H17A ⁸ 2 965	2.984	H20A	H18A ⁵
H20A	H18B ¹¹ 3 280	2.568	H20A	H19A ⁸
H20B	C17 ⁸	3.278	H20B	C19 ⁸
H20B	H17A ⁸	2.558	H20B	H17B ⁸
H20B	H19A ⁸	3.021	H20B	H19B ⁸
H20B	H19B ¹³	3.215	H20B	H21A ¹³
H20B	H21B ¹⁰	3.582	H21A	C17 ¹³
H21A	C19 ¹³	3.495	H21A	H17B ¹³
H21A	H19B ¹³	2.570	H21A	H20B ¹²
H21A	H21A ¹⁴	3.485	H21A	H21B ¹⁴
H21A	H21C ¹⁵	3.481	H21B	C17 ⁵
H21B	5.296 C21 ¹⁴ 2.815	3.452	H21B	H16 ¹¹

H21B	H17A ⁵ 2 554	3.389	H21B	H17B ⁵
H21B	H18A ⁵	3.151	H21B	H20B ¹¹
H21B	H21A ¹⁴	2.918	H21B	H21B ¹⁴
H21C	3.164 C21 ¹⁵	3.425	H21C	H16 ¹¹
H21C	3.021 H17B ¹³	3.420	H21C	H17B ¹¹
H21C	3.010 H18B ¹¹	3.485	H21C	H19A ⁸
H21C	3.485 H19B ¹³	3 063	Н21С	Η21Δ ¹⁵
11210	3.481	3.003	11210	112 111
HZIC	$HZIC^{13}$	2.644		

Symmetry Operators:

(1) X,Y+1,Z	(2) X,-Y+1,Z
(3) -X+2,Y+1/2,-Z+1/2	(4) X,-Y+2,Z
(5) X,-Y+1,Z+1	(6) -X+2,-Y+1,-Z+1
(7) -X+2,Y+1/2-1,-Z+1/2	(8) X,Y-1,Z
(9) -X+2,-Y,-Z+1	(10) X,-Y,Z
(11) X,-Y,Z+1	(12) -X+1,Y+1/2,-Z+1/2+1
(13) -X+1,Y+1/2-1,-Z+1/2+1	(14) -X+1,-Y,-Z+2
(15) -X+1,-Y-1,-Z+2	(16) X,-Y+2,Z+1

X-Ray Data Collection for 5

Data Collection

A colorless platelet crystal of C₂₁H₃₀F₂ having approximate dimensions of 0.100 x 0.040 x 0.010 mm was mounted in a loop. All measurements were made on a Rigaku XtaLAB P200 diffractometer using multi-layer mirror monochromated Mo-K α radiation.

The crystal-to-detector distance was 45.01 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

a = 11.934(3) Å b = 5.5818(15) Å β = 90.656(6)^o c = 26.703(7) Å V = 1778.7(8) Å³

For Z = 4 and F.W. = 320.46, the calculated density is 1.197 g/cm^3 . Based on the reflection conditions of:

h0l: l = 2n

packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P2/c (#13)

The data were collected at a temperature of $-100 \pm 1^{\circ}$ C to a maximum 20 value of 50.8°. A total of 1080 oscillation images were collected. A sweep of data was done using ω scans from -100.0 to 80.0° in 0.50° step, at χ =45.0° and ϕ = 0.0°. The exposure rate was 24.0 [sec./°]. The detector swing angle was -10.42°. A second sweep was performed using ω scans from -100.0 to 80.0° in 0.50° step, at χ =45.0° and ϕ = 90.0°. The exposure rate was 24.0 [sec./°]. The detector swing angle was -10.42°. Another sweep was performed using ω scans from -100.0 to 80.0° in 0.50° step, at χ =45.0° and ϕ = 180.0°. The exposure rate was 24.0 [sec./°]. The detector swing angle was -10.42°. Another sweep was performed using ω scans from -100.0 to 80.0° in 0.50° step, at χ =45.0° and ϕ = 180.0°. The exposure rate was 24.0 [sec./°]. The detector swing angle was -10.42°.

Data Reduction

Of the 19791 reflections were collected, where 3250 were unique ($R_{int} = 0.1637$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). ¹

The linear absorption coefficient, μ , for Mo-K α radiation is 0.816 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.827 to 0.999. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement³ on F² was based on 3250 observed reflections and 228 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0810$$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1732$$

The goodness of fit⁴ was 1.02. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.17 and -0.16 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 ⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure⁹ crystallographic software package except for refinement, which was performed using SHELXL2013¹⁰.

References

(1) <u>CrystalClear</u>: Data Collection and Processing Software, Rigaku Corporation (1998-2014). Tokyo 196-8666, Japan.

(2) <u>SIR2011</u>: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.

(3) Least Squares function minimized: (SHELXL2013)

 $\Sigma w (F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(4) Goodness of fit is defined as:

 $[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where: N_0 = number of observations N_V = number of variables

(5) International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2014). Tokyo 196-8666, Japan.

(10) <u>SHELXL2013</u>: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₂₁ H ₃₀ F ₂
Formula Weight	320.46
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.100 X 0.040 X 0.010 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 11.934(3) Å b = 5.5818(15) Å c = 26.703(7) Å β = 90.656(6) ⁰ V = 1778.7(8) Å ³
Space Group	P2/c (#13)
Z value	4
D _{calc}	1.197 g/cm ³
F000	696.00
μ(ΜοΚα)	0.816 cm ⁻¹

B. Intensity Measurements

Diffractometer	XtaLAB P200
Radiation	MoKa ($\lambda = 0.71075$ Å)
monochromated	multi-layer million
Voltage, Current	45kV, 66mA
Temperature	-100.0°C
Detector Aperture	83.8 x 70.0 mm
Data Images	1080 exposures
ω oscillation Range (χ=45.0, φ=0.0)	-100.0 - 80.00
Exposure Rate	24.0 sec./ ⁰
Detector Swing Angle	-10.420
ω oscillation Range (χ=45.0, φ=90.0)	-100.0 - 80.00
Exposure Rate	24.0 sec./ ⁰
Detector Swing Angle	-10.420
ω oscillation Range (χ=45.0, φ=180.0)	-100.0 - 80.00
Exposure Rate	24.0 sec./ ⁰
Detector Swing Angle	-10.420
Detector Position	45.01 mm
Pixel Size	0.172 mm
20 _{max}	50.8 ⁰
No. of Reflections Measured	Total: 19791 Unique: 3250 (R _{int} = 0.1637)
Corrections	Lorentz-polarization

Absorption (trans. factors: 0.827 - 0.999)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR2011)
Refinement	Full-matrix least-squares on F^2
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.0462 · P) ² + 1.2477 · P]
2Fc ²)/3	where $P = (Max(Fo^2, 0) +$
$2\theta_{max}$ cutoff	50.8 ⁰
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	3250
No. Variables	228
Reflection/Parameter Ratio	14.25
Residuals: R1 (I>2.00σ(I))	0.0810
Residuals: R (All reflections)	0.2025
Residuals: wR2 (All reflections)	0.1732
Goodness of Fit Indicator	1.019
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.17 e⁻/Å ³
Minimum peak in Final Diff. Map	-0.16 e⁻/Å ³

atom	Х	У	Z	B _{eq}	occ
F1	0.9313(3) 0.742(4)	-0.3605(5)	0.34185(12)	5.14(9)	
F2	1.1524(3) 0.742(4)	-0.3612(6)	0.36773(11)	5.05(9)	
F1A	0.8168(7) 0.258(4)	-0.0626(16)	0.3923(3)	4.2(2)	
F2A	0.9569(9)	0.1699(19)	0.4588(4)	5.9(3)	
C1	0.9965(3)	-0.1729(8)	0.32871(15)	3,78(9)	1
C2	1.0884(3)	-0.1613(8)	0.36712(15)	4.18(9)	1
C3	1.0477(3)	-0.1147(7)	0.41880(14)	3.87(9)	1
C4	0.9790(4)	0.1147(8)	0.41868(18)	4.67(10)	1
C5	0.8853(3)	0.1076(7)	0.38025(14)	3.67(9)	1
C6	0.9283(3)	0.0577(6)	0.32800(14)	2.88(8)	1
C7	0.8381(3)	0.0678(6)	0.28784(13)	2.69(7)	1
C8	0.7545(3)	-0.1040(7)	0.28260(14)	3.11(8)	1
С9	0.6719(3)	-0.0834(7)	0.24659(14)	3.18(8)	1
C10	0.6657(3)	0.1097(6)	0.21377(13)	2.64(7)	1
C11	0.7494(3)	0.2829(6)	0.21954(13)	2.92(8)	1
C12	0.8326(3)	0.2612(6)	0.25523(14)	2.94(8)	1
C13	0.5758(3)	0.1297(7)	0.17432(13)	2.76(7)	1
C14	0.6196(3)	0.0809(7)	0.12207(13)	3.39(8)	1
C15	0.5274(3)	0.0958(7)	0.08224(14)	3.44(8)	1
C16	0.4656(3)	0.3359(6)	0.08250(13)	2.88(8)	1
C17	0.4229(3)	0.3843(7)	0.13485(13)	3.43(8)	1
C18	0.5156(3)	0.3729(7)	0.17400(13)	3.41(8)	1
C19	0.3744(3)	0.3433(7)	0.04208(13)	3.35(8)	1
C20	0.3148(3)	0.5811(7)	0.03574(16)	4.18(9)	1
C21	0.2268(3)	0.5828(8)	-0.00557(15)	4.84(10)	1

Table 1. Atomic coordinates and $B_{\mbox{iso}}/B_{\mbox{eq}}$ and occupancy

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

atom	Х	У	Z	B _{iso}	occ
H3A	1.11224	-0.09855	0.44218	4.649	1
H3B	1.00100	-0.25047	0.43012	4.649	1
H6	0.98212	0.18947	0.32026	3.453	1
H8	0.75444	-0.23853	0.30439	3.734	1
H9	0.61683	-0.20589	0.24400	3.821	1
H11	0.74880	0.41915	0.19823	3.500	1
H12	0.88822	0.38263	0.25768	3.532	1
H13	0.51835	0.00437	0.18164	3.316	1
H14A	0.65364	-0.08075	0.12129	4.064	1
H14B	0.67883	0.19882	0.11426	4.064	1
H15A	0.47277	-0.03469	0.08784	4.133	1
H15B	0.56078	0.07099	0.04887	4.133	1
H16	0.52139	0.46356	0.07450	3.459	1
H17A	0.38790	0.54501	0.13568	4.120	1
H17B	0.36463	0.26491	0.14306	4.120	1
H18A	0.48337	0.40229	0.20745	4.087	1
H18B	0.57075	0.50111	0.16738	4.087	1
H19A	0.40845	0.29967	0.00969	4.017	1
H19B	0.31785	0.21946	0.04988	4.017	1
H20A	0.37113	0.70627	0.02854	5.013	1
H20B	0.27863	0.62332	0.06773	5.013	1
H21A	0.16651	0.47105	0.00286	5.811	1
H21B	0.26089	0.53383	-0.03716	5.811	1
H21C	0.19589	0.74470	-0.00913	5.811	1
H1A	1.02894	-0.20191	0.29488	4.530	
	0.742(4)				
H1B	0.94670	-0.30974	0.33621	4.530	
	0.258(4)				
H1C	1.02916	-0.19964	0.29526	4.530	
	0.258(4)				
H2A	1.13818	-0.02444	0.35786	5.016	
	0.742(4)				
H2B	1.13003	-0.31470	0.36696	5.016	
	0.258(4)				
H2C	1.14139	-0.03274	0.35775	5.016	
	0.258(4)				
H4A	0.94695	0.13926	0.45232	5.600	
	0.742(4)				
H4B	1.02874	0.25214	0.41149	5.600	
	0.742(4)				
H4C	1.03130	0.24178	0.40666	5.600	
	0.258(4)				
H5A	0.84546	0.26317	0.38027	4.407	
	0.742(4)				

Table 2. Atomic coordinates and $\mathrm{B}_{\mathrm{iSO}}$ and occupancy involving hydrogen atoms

H5B	0.83108	-0.01844	0.38957	4.407
	0.742(4)			
H5C	0.84461	0.26421	0.38034	4.407
	0.258(4)			
Table 3. Anisotropic displacement parameters

atom	U11 U23	U22	U33	U ₁₂	U ₁₃	
F1	0.079(2)	0.0299(18)	0.085(3)	-0.0041(17)	-0.037(2)	
F2	0.071(2)	0.063(2)	0.058(2)	0.0389(19)	-0.0040(17)	-
0.0069(18	3)					
F1A	0.044(5) 0.015(5)	0.063(6)	0.053(6)	-0.009(5)	0.013(4)	
F2A 0.024(6)	0.101(8)	0.087(8)	0.037(6)	0.033(6)	-0.011(5)	-
C1	0.050(3) 0.003(2)	0.051(3)	0.042(3)	0.007(2)	0.005(2)	
C2	0.044(3)	0.055(3)	0.060(3)	0.013(2)	-0.000(2)	
C3	0.051(3)	0.052(3)	0.045(3)	0.009(2)	-0.008(2)	-
0.000(2) CA	0.067(3)	0.058(3)	0.052(3)	0 012(2)	-0.023(3)	_
0 008(3)	0.007(3)	0.030(3)	0.032(3)	0.012(2)	-0.023(3)	-
0.000(3) C5	0.056(3)	0 038(3)	0.046(3)	0.007(2)	-0.003(2)	_
0.002(2)	0.030(3)	0.030(3)	0.010(3)	0.007(2)	0.003(2)	
C6	0.032(2)	0.030(2)	0.047(2)	-0.0029(18)	-0.0016(19)	
	0.0116(19)					
C7	0.034(2)	0.029(2)	0.040(2)	0.0022(18)	-0.0004(19)	-
0.0005(19)					
C8	0.041(2)	0.033(2)	0.044(2)	-0.0034(19)	-0.002(2)	
69	0.0080(19)	0 032(2)	0.052(3)	-0.0048(18)	-0.001(2)	-
0.001(2)	0.000(2)	0.052(2)	0.052(5)	0.0010(10)	0.001(2)	
C10	0.037(2)	0.029(2)	0.035(2)	-0.0024(18)	0.0018(18)	-
0.0041(18	(<u>-</u>)	0.0_/(_)	0.000(_)	0.000 1(10)	0.0010(10)	
C11	0.041(2)	0.031(2)	0.039(2)	-0.0023(18)	0.001(2)	
C12	0.036(2)	0.030(2)	0.046(2)	-0.0026(18)	0.002(2)	
C13	0.035(2)	0.037(2)	0.033(2)	-0.0044(18)	0.0003(18)	
C14	0.047(2)	0.036(2)	0.045(3)	0.0037(19)	-0.005(2)	-
0.004(2)	0.054(0)	0.044(0)			0.000(0)	
C15 0.006(2)	0.051(3)	0.044(2)	0.036(2)	0.006(2)	-0.002(2)	-
C16	0.044(2)	0.030(2)	0.035(2)	-0.0056(18)	-0.0033(19)	-
C17	0.044(2)	0.047(3)	0.040(2)	0.007(2)	-0.0003(19)	-
0.002(2) C18 0.002(2)	0.047(3)	0.049(3)	0.034(2)	0.011(2)	-0.000(2)	-

C19	0.046(3) 0.000(2)	0.043(2)	0.039(2)	-0.003(2)	-0.003(2)	
C20 0.002(2)	0.054(3)	0.046(3)	0.058(3)	0.001(2)	-0.015(2)	
C21	0.058(3) 0.011(3)	0.057(3)	0.068(3)	-0.003(2)	-0.020(3)	

The general temperature factor expression: $\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl))$

-

Table 4. Bond lengths (Å)

atom	atom	distance	atom	atom
F1	C1 1 352(5)	1.354(5)	F2	C2
F1A	C5 1 148(11)	1.297(9)	F2A	C4
C1	C2 1 523(5)	1.495(6)	C1	C6
C2	C3 1 520(6)	1.491(6)	C3	C4
C4	C5	1.510(6)	C5	C6
C6	1.310(3) C7	1.511(5)	C7	C8
C7	1.390(3) C12	1.388(5)	C8	С9
С9	1.374(5) C10	1.391(5)	C10	C11
C10	1.397(5) C13	1.500(5)	C11	C12
C13	1.374(5) C14	1.520(5)	C13	C18
C14	1.550(5) C15	1.524(5)	C15	C16
C16	1.530(5) C17	1.517(5)	C16	C19
C17	1.524(5) C18 1.514(5)	1.514(5)	C19	C20
C20	C21	1.515(6)		

atom	atom	distance	atom	atom
C1	distance	1 000	C1	111 D
CI .	HIA	1.000	U	HIB
C1	0.990	0.000	CO	1124
C1	1 000	0.990	62	ПZА
C2	1.000 H2B	0.000	C2	H2C
62	0 990	0.770	62	1120
(3	H3A	0 990	(3	H3B
05	0.990	0.770	05	ПЭD
C4	H4A	0.990	C4	H4B
	0.990			
C4	H4C	1.000	C5	H5A
	0.990			
C5	H5B	0.990	C5	H5C
	1.000			
С6	Н6	1.000	C8	H8
	0.950			
С9	H9	0.950	C11	H11
	0.950			
C12	H12	0.950	C13	H13
	1.000			
C14	H14A	0.990	C14	H14B
	0.990			
C15	H15A	0.990	C15	H15B
01.6	0.990	4 000	04 F	
C16	H16	1.000	C17	H17A
017	0.990	0.000	610	11104
C17	H1/B	0.990	C18	HI8A
C10	0.990 1110D	0.000	C10	11101
C10		0.990	619	П19А
C10	0.990 H10R	0.000	C20	H20A
619	0 990	0.990	620	IIZUA
C20	H20B	0 990	C21	H21A
020	0.980	017.70	<u></u>	116111
C21	H21B	0.980	C21	H21C
	0.980			

Table 5. Bond lengths involving hydrogens (Å)

Table 6. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom
F1	C1	C2	106.0(3)	F1	C1	С6
C2	C1	C6	111.1(3)	F2	C2	C1
F2	112.5(4) C2	C3	108.8(3)	C1	C2	С3
C2	C3	C4	109.0(3)	F2A	C4	С3
F2A	110.7(6) C4	C5	117.7(6)	C3	C4	C5
F1A	112.0(4) C5	C4	108.3(5)	F1A	C5	C6
C4	108.3(5) C5	C6	112.0(3)	C1	C6	C5
C1	109.3(3) C6	C7	114.6(3)	C5	C6	C7
C6	113.6(3) C7	C8	123.4(3)	C6	C7	C12
C8	120.2(3) C7	C12	116.4(3)	C7	C8	С9
C8	121.4(3) C9	C10	122.5(3)	С9	C10	C11
С9	115.7(3) C10	C13	122.2(3)	C11	C10	C13
C10	122.1(3) C11	C12	121.7(3)	C7	C12	C11
C10	122.2(3) C13	C14	112.4(3)	C10	C13	C18
C14	113.6(3) C13	C18	108.6(3)	C13	C14	C15
C14	112.2(3) C15	C16	112.9(3)	C15	C16	C17
C15	109.1(3) C16	C19	111.1(3)	C17	C16	C19
C16	113.8(3) C17	C18	112.2(3)	C13	C18	C17
C16	112.3(3) C19 114.1(3)	C20	115.7(3)	C19	C20	C21

atom	atom angle	atom	angle	atom	atom	atom
F1	C1	H1A	109.8	C2	C1	H1A
C2	109.8 C1	H1B	109.4	C2	C1	H1C
C6	109.4 C1	H1A	109.8	C6	C1	H1B
C6	109.4 C1	H1C	109.4	H1B	C1	H1C
F2	108.0 C2	H2A	107.2	C1	C2	H2A
C1	107.2 C2	H2B	108.9	C1	C2	H2C
C3	108.9 C2	H2A	107.2	С3	C2	H2B
C3	108.9 C2	H2C	108.9	H2B	C2	H2C
C2	107.7 C3	H3A	109.9	C2	C3	H3B
C4	109.9 C3	H3A	109.9	C4	C3	H3B
H3A	109.9 C3	H3B	108.3	F2A	C4	H4C
C3	105.1 C4	H4A	109.2	С3	C4	H4B
C3	109.2 C4	H4C	105.1	C5	C4	H4A
C5	109.2 C4	H4B	109.2	C5	C4	H4C
H4A	105.1 C4	H4B	107.9	F1A	C5	H5C
C4	109.4 C5	H5A	109.2	C4	C5	H5B
C4	109.2 C5	H5C	109.4	C6	C5	H5A
C6	109.2 C5	H5B	109.2	C6	C5	H5C
H5A	109.4 C5	H5B	107.9	C1	C6	Н6
C5	106.2 C6	Н6	106.2	C7	C6	H6
C7	106.2 C8	H8	119.3	С9	C8	H8
C8	119.3 C9 118.7	Н9	118.7	C10	С9	H9

Table 7. Bond angles involving hydrogens (⁰)

C10	C11	H11	119.1	C12	C11	H11
C7	119.1 C12 118.9	H12	118.9	C11	C12	H12
C10	C13	H13	107.3	C14	C13	H13
C18	C13	H13	107.3	C13	C14	H14A
C13	C14 109.2	H14B	109.2	C15	C14	H14A
C15	C14 1079	H14B	109.2	H14A	C14	H14B
C14	C15	H15A	109.0	C14	C15	H15B
C16	C15	H15A	109.0	C16	C15	H15B
H15A	C15	H15B	107.8	C15	C16	H16
C17	C16	H16	107.5	C19	C16	H16
C16	C17	H17A	109.2	C16	C17	H17B
C18	C17	H17A	109.2	C18	C17	H17B
H17A	C17	H17B	107.9	C13	C18	H18A
C13	C18	H18B	109.2	C17	C18	H18A
C17	C18 107.9	H18B	109.1	H18A	C18	H18B

atom	atom angle	atom	angle	atom	atom	atom
C16	C19 108.4	H19A	108.4	C16	C19	H19B
C20	C19 108.4	H19A	108.4	C20	C19	H19B
H19A	C19	H19B	107.4	C19	C20	H20A
C19	C20	H20B	108.7	C21	C20	H20A
C21	C20	H20B	108.7	H20A	C20	H20B
C20	C21	H21A	109.5	C20	C21	H21B
C20	C21	H21C	109.5	H21A	C21	H21B
H21A	C21 109.5	H21C	109.5	H21B	C21	H21C

Table 7. Bond angles involving hydrogens (⁰) (continued)

Table 8. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2 angle	atom3	atom4	angle	atom1	atom2	atom3	atom4	
F1 62.3(4)	C1	C2	F2	61.7(4)	F1	C1	C2	С3	-
F1	C1	C6	C5	62.2(4)	F1	C1	C6	C7	-
C2	C1	C6	C5	-55.0(4)	C2	C1	C6	C7	
C6	C1 57 6(4)	C2	F2	-178.4(3)	C6	C1	C2	C3	
F2 55 9(4)	C2	C3	C4	178.1(3)	C1	C2	C3	C4	-
C2	C3 54 5(4)	C4	F2A	-172.0(3)	C2	С3	C4	C5	
F2A	C4	C5 7)	F1A	-66.6(8)	F2A	C4	C5	C6	
C3 56 0(4)	C4	, С5	F1A	63.4(4)	С3	C4	C5	C6	-
F1A	C5 65 0(5)	C6	C1	-64.4(5)	F1A	C5	C6	C7	
C4 175 6(3	C5	C6	C1	55.0(4)	C4	C5	C6	C7	-
C1 127 4(3	C6	C7	C8	55.7(4)	C1	C6	C7	C12	-
C5	,) C6 106.0(?	C7	C8	-70.9(4)	C5	C6	C7	C12	
C6	C7	C8	С9	177.8(3)	C6	C7	C12	C11	-
C8	, C7 07(5)	C12	C11	-0.1(5)	C12	C7	C8	С9	
C7	C8 0 2(5)	С9	C10	-0.8(6)	C8	С9	C10	C11	
C8	C9 0 5(5)	C10	C13	179.5(3)	С9	C10	C11	C12	
С9	C10	C13	C14	-106.4(4)	С9	C10	C13	C18	
C11 50.9(4)	C10	C13	C14	72.9(4)	C11	C10	C13	C18	-
C13	C10	C11	C12	-178.9(3)	C10	C11	C12	C7	-
C10	C13	C14	C15	178.7(3)	C10	C13	C18	C17	-
C14 54.7(4)	C13	C18	C17	56.0(3)	C18	C13	C14	C15	-

C13	C14	C15	C16	55.9(4)	C14	C15	C16	C17	-
53.9(4)								
C14	C15	C16	C19	179.9(3)	C15	C16	C17	C18	
	54.7(4	4)							
C15	C16	C19	C20	-174.6(3)	C17	C16	C19	C20	
	61.8(4	4)							
C19	C16	C17	C18	179.4(3)	C16	C17	C18	C13	-
57.7(4)								
C16	C19	C20	C21	178.6(3)					

atom	atom distance	distance	atom	atom
F1	F2	2.721(5)	F1	С3
F1	C4 2 862(5)	3.397(6)	F1	C5
F1	C7 2.988(5)	2.999(5)	F1	C8
F1A	F2A 2.819(9)	2.750(13)	F1A	C1
F1A	C2 2.852(9)	3.364(9)	F1A	С3
F1A	C7 3.023(9)	2.897(9)	F1A	C8
F2A	C2 3.561(10)	3.459(11)	F2A	C6
C1	C4 3.150(5)	2.899(6)	C1	C8
C2	C5 2.959(5)	2.876(6)	C3	С6
C5	C8 3.497(5)	3.247(5)	C5	C12
C7	C10 2.739(5)	2.847(5)	C8	C11
С9	C12 3.498(5)	2.725(5)	С9	C14
C11	C14 3.073(5)	3.218(5)	C11	C18
C13	C16 2 917(5)	2.999(5)	C14	C17
C15	C18 3.130(6)	2.902(5)	C17	C20

Table 9. Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom
F1	H3B	2.565	F1	H6
	3.183			-
F1	H8	2.422	F1	H2A
	3.126			
F1	H5B 2 E 2 1	2.595	F2	НЗА
F2	2.321 H3B	2.548	F2	H1A
	2.585			
F1A	H3B	2.627	F1A	H6
	3.109			
F1A	H8	2.644	F1A	H1B
	2.570			
F1A	H4C	3.093	F2A	H3A
	2.429			
F2A	H3B	2.526	F2A	H5C
C1	2.529	2 2 4 1	C1	סכנו
CI	H3A 2 7 4 2	3.341	CI	H3B
C1	2.742 H8	2 976	C1	HAR
C1	3 2 6 2	2.770	CI	птр
C1	9.202 H4C	3.137	C1	H5A
01	3.335	01207		
C1	H5B	2.712	C1	H5C
	3.346			
C2	H6	2.640	C2	H4A
	3.306			
C2	H4B	2.694	C2	H4C
	2.580			
C2	H5B	3.236	C3	H6
<u>C</u> 2	3.221	2.250	<u>C2</u>	111 D
63	П1А 2 728	3.350	63	ПІВ
(3	2.720 H1C	3 3 3 8	(3	Н5Δ
65	3 3 5 8	5.550	0.5	ПЭЛ
C3	H5B	2.745	63	H5C
	3.368			
C4	H6	2.662	C4	H1B
	3.254			
C4	H2A	2.630	C4	H2B
	3.310			
C4	H2C	2.674	C5	H3A
	3.360			
C5	H3B	2.763	C5	H8
	3.194			

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens

C5	H1A 2 714	3.348	C5	H1B
C5	H1C 3 170	3.336	C5	H2A
C5	H2C 3 331	3.218	C6	H3B
C6	H8 2.650	2.721	C6	H12
C6	H2A 3.338	2.660	C6	H2B
C6	H2C 3.356	2.703	C6	H4A
C6	H4B 2.631	2.743	C6	H4C
C7	H9 3.263	3.257	C7	H11
C7	H1A 2.784	2.735	C7	H1B
C7	H1C 2.699	2.731	C7	H5A
C7	H5B 2.703	2.761	C7	H5C
C8	H6 3.224	3.318	C8	H12
C8	H1A 2.925	3.333	C8	H1B
C8	H1C 3 481	3.335	C8	H5A
C8	H5B 3.483	3.027	C8	H5C

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
С9	H11 2.556	3.226	С9	H13
С9	H14A 3.271	3.351	C10	H8
C10	H12 2.691	3.267	C10	H14A
C10	H14B 2.724	2.710	C10	H18A
C10	H18B 3.225	2.749	C11	Н9
C11	H13 3.499	3.314	C11	H14A
C11	H14B 3.257	2.963	C11	H18A
C11	H18B 2.508	2.811	C12	H6
C12	H8 3.341	3.226	C12	H5A
C12	H5C 2.681	3.342	C13	H9
C13	H11 2 761	2.693	C13	H15A
C13	H15B	3.369	C13	H16
C13	H17A 2 751	3.378	C13	H17B
C14	H11 2 741	3.163	C14	H16
C14	H17B	3.266	C14	H18A
C14	H18B	2.706	C15	H13
C15	H17A	3.339	C15	H17B
C15	H18B	3.245	C15	H19A
C15	H19B	2.725	C16	H13
C16	5.205 H14A 2.781	3.386	C16	H14B
C16	2.781 H18A 2.738	3.361	C16	H18B

C16	H20A 2 773	2.754	C16	H20B
C17	H13 3 277	2.706	C17	H14B
C17	H15A 3 335	2.723	C17	H15B
C17	H19A 2 739	3.378	C17	H19B
C17	H20A 2 808	3.410	C17	H20B
C18	H11 3 341	2.862	C18	H14A
C18	H14B	2.712	C18	H15A
C18	H16 2 700	2.706	C19	H15A
C19	H15B	2.698	C19	H17A
C19	H17B	2.736	C19	H21A
C19	H21B	2.716	C19	H21C
C20	H16 2 805	2.743	C20	H17A
C20	H17B	3.412	C21	H19A
C21	H19B	2.730	НЗА	H2A
H3A	H2B	2.355	НЗА	H2C
НЗА	2.314 H4A 2.340	2.396	НЗА	H4B

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
H3A	H4C 2.604	2.328	НЗВ	H1B
H3B	H2A 2.325	2.840	НЗВ	H2B
H3B	H2C 2.347	2.845	НЗВ	H4A
H3B	H4B 2.842	2.869	НЗВ	H4C
H3B	H5B 2.273	2.629	Н6	H12
H6	H1A 2.851	2.356	Н6	H1B
H6	H1C 2.421	2.342	Н6	H2A
Н6	H2B 2 472	3.541	H6	H2C
H6	H4A	3.567	H6	H4B
H6	H4C	2.392	Н6	H5A
H6	H5B	2.846	Н6	H5C
Н8	2.343 H9 2.205	2.296	H8	H1A
H8	5.295 H1B	2.470	Н8	H1C
H8	H5B	2.733	Н9	H13
Н9	2.342 H14A 2.206	3.384	H11	H12
H11	2.296 H14B	2.682	H11	H18A
H11	H18B	2.316	H12	H5A
H12	3.385 H5C	3.387	H13	H14A
H13	2.343 H14B	2.857	H13	H15A
H13	2.566 H17B 2.364	2.549	H13	H18A
H13	L.304 H18B 2.341	2.869	H14A	H15A

H14A	H15B	2.374	H14B	H15A
	2.864			
H14B	H15B	2.342	H14B	H16
	2.607			
H14B	H18B	2.562	H15A	H16
	2 864			
Н15А	H17R	2 585	H15A	Н104
ШЪА	1117D 2 007	2.303	IIIJA	ШЛ
	2.097	2 522		1117
HI5A	HI9B	2.533	H15B	H16
	2.345			
H15B	H19A	2.446	H15B	H19B
	3.016			
H16	H17A	2.339	H16	H17B
	2.856			
H16	H18B	2.551	H16	H19A
	2.365			
H16	H19R	2 855	H16	H20A
mo	2 5 5 1	2.035	1110	112011
1117	2.331	2 0 2 5	11170	11101
H10	HZUB	3.035	HI/A	H194
	2.357			
H17A	H18B	2.344	H17A	H19B
	3.034			
H17A	H20A	3.004	H17A	H20B
	2.265			
H17B	H18A	2.344	H17B	H18B
	2.859			
H17B	H19B	2.556	H17B	H20B
	3 009			
Н10 Л	H20A	2 368	Н10 Л	H20B
1119A	2050	2.300	1117A	11200
11104	2.030	2.045	11104	11040
HIYA	HZIA	3.045	HIYA	HZIR
	2.515			

atom	atom	distance	atom	atom
	distance			
H19A	H21C	3.582	H19B	H20A
	2.850			
H19B	H20B	2.352	H19B	H21A
	2.600			
H19B	H21B	2.984	H20A	H21A
	2.849			
H20A	H21B	2.384	H20A	H21C
	2.320			
H20B	H21A	2 337	H20B	H21B
11200	2.851	21007	11200	11210
H20B	H21C	2 366	H1A	H2A
11200	2 336	21000		11211
H1R	H2R	2 3 2 8	H1R	H2C
mid	2844	2.320	IIID	1120
H1C	L:044 H2B	2 3 4 0	H1C	H2C
IIIC	112D 2 2 2 2	2.540	IIIC	1120
U2A	2.323 U/A	2 5 1 1	U2 A	
ΠΖΑ	П4А 2.407	5.541	ΠΖΑ	Π4D
	2.487	2 401	1120	UAC
HZB	H4U	3.491	HZC	H4C
** / *	2.412	0.045	** / *	
H4A	H5A	2.365	H4A	H2R
	2.333			
H4B	H5A	2.333	H4B	H5B
	2.856			
H4C	H5C	2.332		

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
F1	$C5^1$	3.190(5)	F1	$C6^1$
F1	3.269(5) C12 ¹ 3.288(5)	3.336(5)	F2	C11 ²
F1A	$C20^{3}$	3.191(9)	F2A	F2A ⁴
F2A	3.074(14) C3 ⁴ 3.426(11)	3.284(10)	F2A	C21 ⁵
С3	5.420(11) F2A ⁴ 3.190(5)	3.284(10)	C5	F1 ⁶
C6	$F1^{6}$	3.269(5)	C11	F2 ⁷
C12	5.288(5) F1 ⁶ 3.191(9)	3.336(5)	C20	F1A ⁸
C21	F2A ⁵	3.426(11)		

Table 11. Intermolecular contacts less than 3.60 Å $\,$

Symmetry Operators:

(1) X,Y-1,Z	(2) -X+2,Y-1,-Z+1/2
(3) -X+1,Y-1,-Z+1/2	(4) -X+2,-Y,-Z+1
(5) -X+1,Y,-Z+1/2	(6) X,Y+1,Z
(7) -X+2,Y+1,-Z+1/2	(8) -X+1,Y+1,-Z+1/2

atom	atom	distance	atom	atom
F1	distance	2640	F1	11101
ГI	2 710	2.049	ΓI	Π12-
F1	$H20B^{2}$	3.500	F1	H4B ¹
	3.072			
F1	H5A ¹	2.557	F2	$H6^{1}$
	3.460			
F2	H11 ³	2.458	F2	H14A ⁴
20	2.807		20	
FZ	H14B ³	3.209	FZ	H18R ₃
F2	3.529 U21R5	2 007	F2	
ΓZ	2 871	2.997	1.7	II4D
F1A	H15A ⁶	3.505	F1A	H17A ²
	3.358			
F1A	H17B ⁶	2.979	F1A	H19B ⁶
	2.739			
F1A	H20A ²	3.357	F1A	H20B ²
	2.353			
F1A	H21C ²	3.305	F2A	H3A′
E2 A	2.807 11208	2 267	E 2 A	ц 2D7
ΓΖΑ	пзв ⁻ 3 037	5.507	ΓZA	пэр
F2A	H19B ⁶	3.296	F2A	H21A ⁶
	2.465	0.270		
F2A	H21A ⁹	3.405	F2A	$H21C^2$
	3.289			
F2A	H21C ⁹	3.007	C1	$H6^{1}$
01	3.571	0.070	61	
CI		3.372	CI	HIA
C1	5.515 H1C ⁴	3 3 2 4	(2	H11 ³
01	3.519	5.521	62	
C2	H14A ⁴	3.123	C2	$H14B^4$
	3.460			
C2	$H4B^{1}$	3.557	C2	$H4C^{1}$
	3.564			
C3	H21A ⁵	3.306	C3	H21C ⁹
<u>C2</u>	3.319	2 4 4 4	<u>()</u>	
63	П4А ⁷ 3 547	5.444	63	П40-
C4	H3B ⁸	3.566	C4	H21A ⁶
5.	3.383	2.300	5.	
C4	H21C ⁹	3.304	C5	H17B ⁶
	3.164			

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens

C5	H19B ⁶ 3 538	3.139	C5	H1B ⁸
C6	H1B ⁸ 3 251	3.545	C7	H17B ⁶
C7	H1A ⁴ 3 121	3.121	C7	H1C ⁴
C8	H11 ¹ 3 351	3.487	C8	H12 ¹
C8	H13 ⁶ 3 402	3.457	C8	H17A ²
C8	H17B ⁶ 3 374	3.204	C8	H1A ⁴
C8	H1C ⁴ 3 524	3.376	С9	H9 ⁶
С9	H11 ¹ 3 028	3.201	С9	H13 ⁶
С9	H17B ⁶	3.561	С9	H18A ⁶
С9	H18B ¹ 3 599	3.354	С9	H2C ⁴
C10	H18A ⁶	3.216	C10	H2A ⁴
C10	H2C ⁴	3.111	C11	H6 ⁴
C11	H8 ⁸ 3 3 3 1	3.503	C11	H9 ⁸
C11	H18A ⁶	3.477	C11	H2A ⁴
C11	H2B ¹⁰ 3.020	3.539	C11	H2C ⁴

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom	distance	atom	atom
C12	H6 ⁴	3.035	C12	H8 ⁸
C12	3.228 H12 ⁴	3.421	C12	H1A ⁴
C12	3.355 H1B ⁸ 2.249	3.492	C12	H1C ⁴
C12	5.546 H2A ⁴ 3.451	3.436	C12	H2C ⁴
C13	H18A ⁶ 3 514	3.582	C13	H18B ¹
C14	H18B ¹ 3.446	3.506	C14	H21B ¹¹
C14	H2A ⁴ 2.966	2.992	C14	H2C ⁴
C15	H16 ¹ 3 395	3.536	C15	H19A ¹²
C15	H20A ¹ 3 394	3.194	C15	H20A ¹¹
C15	H21B ¹¹ 3 517	3.490	C16	H15A ⁸
C16	H19A ¹¹	3.542	C16	H20A ¹¹
C16	H21B ¹¹	3.569	C17	H8 ¹³
C17	H15A ⁸	3.530	C17	H5A ⁶
C17	H5C ⁶	3.283	C18	H9 ⁸
C18	H9 ¹³	3.592	C18	H13 ⁸
C18	H18A ⁶	3.170	C19	H15B ¹²
C19	H16 ¹¹ 3 561	3.534	C19	H19A ¹¹
C19	H20A ¹	3.574	C19	H5A ⁶
C19	H5C ⁶	3.383	C20	H15A ⁸
C20	H15B ¹¹	3.340	C20	H16 ¹¹
C20	H19A ¹¹ 3.583	3.594	C20	H19B ⁸

C20	H5A ⁶	3.455	C20	H5B ¹³
	3.476			
C20	H5C ⁶	3.445	C21	$H3A^{14}$
C21	3.328 H3A ¹⁵	3 472	C21	H3B ₁₃
021	3.527	5.172	621	115D
C21	H14B ¹¹	3.355	C21	H15B ¹¹
	3.401			
C21	H16 ¹¹	3.552	C21	H4A ⁶
	3.538			
C21	$H4B^{15}$	3.349	C21	$H4C^{15}$
	3.430			
H3A	F2A ⁷	2.807	H3A	C21 ⁵
	3.328			
H3A	C21 ⁹	3.472	H3A	$H14A^4$
	3.286			
H3A	$H14B^4$	3.366	H3A	H21A ⁵
	2.710			
H3A	H21B ⁵	3.055	H3A	H21C ⁹
	2.561			
H3A	H4A ⁷	2.921	H3B	$F2A^1$
	3.367			
H3B	F2A ⁷	3.037	H3B	$C4^1$
	3.566			
H3B	$C21^{2}$	3.527	H3B	H20B ²
	3.412			
H3B	H21A ²	3.114	H3B	H21A ⁵
	3.017			
H3B	H21B ⁵	3.581	H3B	$H21C^2$
	3.176			
H3B	$H4A^{1}$	3.518	H3B	H4A ⁷
	3.253			

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H3B	H4B ¹	2.841	H3B	H4C ¹
H3B	2.926 H5A ¹ 2.540	3.540	H3B	H5C ¹
H6	5.540 F1 ⁸ 3.460	2.649	Н6	F2 ⁸
H6	C1 ⁸ 3 427	3.571	Н6	C11 ⁴
H6	C12 ⁴ 3 498	3.035	Н6	H11 ⁴
H6	H12 ⁴ 3 510	2.822	H6	H1A ⁸
H6	H1B ⁸ 3 521	2.860	H6	H1C ⁸
H6	$H2B^{8}$	3.504	H8	C11 ¹
H8	C12 ¹	3.228	Н8	C17 ²
H8	H11 ¹	3.419	Н8	$H12^{1}$
H8	2.936 H13 ⁶	3.550	Н8	H17A ²
H8	2.640 H17B ²	3.423	Н8	H17B ⁶
H8	3.454 H18A ²	3.486	Н8	H20B ²
Н8	3.527 H5C ¹	3.595	Н9	C9 ⁶
Н9	3.524 C11 ¹	3.331	Н9	C181
Н9	3.230 C18 ²	3.592	Н9	H9 ⁶
Н9	2.810 H11 ¹	2.898	Н9	H13 ⁶
H9	2.828 H17A ²	3.502	Н9	H18A ¹
H9	2.870 H18A ²	2.816	Н9	H18B ¹
H11	2.672 F2 ¹⁰	2.458	H11	C2 ¹⁰
H11	3.519 C8 ⁸ 3.201	3.487	H11	C9 ⁸

H11	H6 ⁴ 3 419	3.498	H11	H8 ⁸
H11	H9 ⁸ 3 396	2.898	H11	H1A ¹⁰
H11	H1C ¹⁰	3.401	H11	H2A ⁴
H11	H2B ¹⁰ 3 219	2.718	H11	H2C ⁴
H12	F1 ⁸ 3 372	2.710	H12	C1 ⁸
H12	C8 ⁸ 3 421	3.351	H12	C12 ⁴
H12	H6 ⁴	2.822	H12	H8 ⁸
H12	H12 ⁴	2.704	H12	H1A ⁸
H12	H1A ¹⁰	2.891	H12	H1B ⁸
H12	H1C ⁸	3.039	H12	H1C ¹⁰
H13	C8 ⁶	3.457	H13	C9 ⁶
H13	C18 ¹	3.531	H13	H8 ⁶
H13	5.550 H9 ⁶ 2.224	2.828	H13	$H17A^1$
H13	5.254 H18A ¹	3.457	H13	H18B ¹
H14A	2.904 F2 ⁴ 2.122	2.807	H14A	$C2^4$
H14A	3.123 H3A ⁴ 3.237	3.286	H14A	H16 ¹

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H14A	H18B ¹	2.823	H14A	H21B ¹²
H14A	H2A ⁴ 2 907	2.559	H14A	H2B ⁴
H14A	H2C ⁴ 3 209	2.517	H14B	F2 ¹⁰
H14B	C2 ⁴ 3.355	3.460	H14B	C21 ¹¹
H14B	H3A ⁴ 2.649	3.366	H14B	H21B ¹¹
H14B	H21C ¹¹ 2.615	3.211	H14B	H2A ⁴
H14B	H2B ¹⁰ 2.607	3.578	H14B	H2C ⁴
H14B	H4B ⁴ 3 519	3.577	H14B	H4C ⁴
H15A	F1A ⁶	3.505	H15A	C16 ¹
H15A	C17 ¹ 3 167	3.530	H15A	C20 ¹
H15A	H16 ¹ 2 862	2.883	H15A	H17A ¹
H15A	H18B ¹ 3 326	3.541	H15A	H19A ¹²
H15A	H20A ¹ 3.045	2.455	H15A	H20B ¹
H15B	C19 ¹² 3 340	3.448	H15B	C20 ¹¹
H15B	C21 ¹¹	3.401	H15B	H15B ¹²
H15B	H16 ¹	3.492	H15B	H19A ¹²
H15B	H19B ¹²	3.430	H15B	H20A ¹
H15B	H20A ¹¹	2.553	H15B	H21B ¹¹
H15B	H21C ¹¹	3.269	H16	C15 ⁸
H16	5.550 C19 ¹¹	3.534	H16	C20 ¹¹
H16	3.501 C21 ¹¹ 3.237	3.552	H16	H14A ⁸

H16	H15A ⁸ 3 492	2.883	H16	H15B ⁸
H16	H19A ¹¹ 3 193	2.747	H16	H20A ¹¹
H16	H21B ¹¹ 3 358	2.794	H17A	F1A ¹³
H17A	C8 ¹³ 2 640	3.402	H17A	H8 ¹³
H17A	H9 ¹³ 3.234	3.502	H17A	H13 ⁸
H17A	H15A ⁸ 3.223	2.862	H17A	H5A ⁶
H17A	H5C ⁶ 2 979	3.211	H17B	F1A ⁶
H17B	C5 ⁶ 3 251	3.164	H17B	C7 ⁶
H17B	C8 ⁶	3.204	H17B	C9 ⁶
H17B	H8 ⁶ 3 423	3.454	H17B	H8 ¹³
H17B	H5A ⁶	2.577	H17B	H5B ⁶
H17B	H5C ⁶	2.567	H18A	C9 ⁶
H18A	C10 ⁶	3.216	H18A	C11 ⁶
H18A	C13 ⁶	3.582	H18A	C18 ⁶
H18A	H8 ¹³	3.486	H18A	H9 ⁸
H18A	2.870 H9 ¹³ 3.457	2.816	H18A	H13 ⁸

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H18A	H18A ⁶	2.302	H18A	H18B ⁶
H18B	5.450 F2 ¹⁰	3.529	H18B	C9 ⁸
H18B	5.554 C13 ⁸ 2 E06	3.514	H18B	C14 ⁸
H18B	H9 ⁸	2.672	H18B	H13 ⁸
H18B	2.904 H14A ⁸ 2.541	2.823	H18B	H15A ⁸
H18B	H18A ⁶	3.456	H19A	C15 ¹²
H19A	C16 ¹¹	3.542	H19A	C19 ¹¹
H19A	C20 ¹¹	3.594	H19A	H15A ¹²
H19A	3.326 H15B ¹²	2.622	H19A	H16 ¹¹
H19A	2.747 H19A ¹¹	3.173	H19A	H20A ¹
H19A	3.381 H20A ¹¹	2.833	H19B	F1A ⁶
H19B	2.739 F2A ⁶	3.296	H19B	C5 ⁶
H19B	3.139 C20 ¹	3.583	H19B	H15B ¹²
H19B	3.430 H20A ¹	2.990	H19B	H20B ¹
H19B	3.395 H21C ¹	3.402	H19B	H4A ⁶
H19B	3.192 H5A ⁶	2.724	H19B	H5B ⁶
H19B	2.757 H5C ⁶	2.716	H20A	F1A ¹³
H20A	3.357 C15 ⁸	3.194	H20A	C15 ¹¹
H20A	3.394 C16 ¹¹	3.574	H20A	C19 ⁸
H20A	3.574 H15A ⁸	2.455	H20A	H15B ⁸
H20A	3.088 H15B ¹¹ 3.193	2.553	H20A	H16 ¹¹

H20A	H19A ⁸ 2.833	3.381	H20A	H19A ¹¹
H20A	H19B ⁸ 3.500	2.990	H20B	F1 ¹³
H20B	F1A ¹³ 3.412	2.353	H20B	H3B ¹³
H20B	H8 ¹³ 3.045	3.527	H20B	H15A ⁸
H20B	H19B ⁸ 2.865	3.395	H20B	H5A ⁶
H20B	H5B ¹³ 2.855	2.655	H20B	H5C ⁶
H21A	F2A ⁶ 3.405	2.465	H21A	F2A ¹⁵
H21A	C3 ¹⁴ 3.383	3.306	H21A	C4 ⁶
H21A	H3A ¹⁴ 3.114	2.710	H21A	H3B ¹³
H21A	H3B ¹⁴ 2.595	3.017	H21A	H4A ⁶
H21A	H4B ⁶ 3.309	3.504	H21A	H4B ¹⁵
H21A	H4C ¹⁵ 3.334	3.417	H21A	H5A ⁶
H21A	H5C ⁶ 2 997	3.330	H21B	F2 ¹⁴
H21B	C14 ¹¹ 3 490	3.446	H21B	C15 ¹¹
H21B	C16 ¹¹ 3 055	3.569	H21B	H3A ¹⁴
H21B	H3B ¹⁴ 3.541	3.581	H21B	H14A ¹²

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H21B	H14B ¹¹ 3 083	2.649	H21B	H15B ¹¹
H21B	H16 ¹¹ 3 225	2.794	H21B	H2B ¹⁴
H21B	H4B ¹⁵ 3 351	3.301	H21B	H4C ¹⁵
H21C	F1A ¹³ 3 289	3.305	H21C	F2A ¹³
H21C	F2A ¹⁵ 3 319	3.007	H21C	C3 ¹⁵
H21C	C4 ¹⁵ 2 561	3.304	H21C	H3A ¹⁵
H21C	H3B ¹³ 3 211	3.176	H21C	H14B ¹¹
H21C	H15B ¹¹ 3 402	3.269	H21C	H19B ⁸
H21C	H4A ¹³	3.181	H21C	H4A ¹⁵
H21C	H4B ¹⁵	2.894	H21C	H4C ¹⁵
H21C	2.970 H5B ¹³	3.474	H1A	C1 ⁴
H1A	5.515 C7 ⁴	3.121	H1A	C8 ⁴
H1A	5.374 C12 ⁴	3.355	H1A	H6 ¹
H1A	H11 ³	3.396	H1A	H12 ¹
H1A	5.024 H12 ³	2.891	H1A	H1A ⁴
H1B	2.407 C5 ¹	3.538	H1B	C61
H1B	3.545 C12 ¹	3.492	H1B	H6 ¹
H1B	2.860 H12 ¹	2.793	H1B	H1C ⁴
H1B	3.579 H4C ¹	3.284	H1B	H5C ¹
H1C	2.926 C1 ⁴	3.324	H1C	C7 ⁴
H1C	3.121 C8 ⁴ 3.348	3.376	H1C	C12 ⁴

H1C	$H6^1$	3 5 2 1	H1C	H113
mo	3.401	5.521	mit	
H1C	H12 ¹	3.039	H1C	H12 ³
H1C	2.905 H1B ⁴	3.579	H1C	H1C ⁴
H2A	2.508 C10 ⁴	3.130	H2A	C11 ⁴
H2A	3.013 C12 ⁴	3.436	H2A	C14 ⁴
H2A	2.992 H11 ⁴	3.200	H2A	H14A ⁴
H2A	2.559 H14B ⁴	2.615	H2B	C11 ³
H2B	3.539 H6 ¹	3.504	H2B	H11 ³
uэр	2.718	2 007	и2В	ш1 <i>1</i> р3
ΠZD	3.578	2.907	нав	П14D°
H2B	H21B ⁵ 2.944	3.225	H2B	H4C ¹
H2C	C9 ⁴ 3.111	3.599	H2C	C10 ⁴
H2C	C11 ⁴ 3 451	3.020	H2C	C12 ⁴
H2C	C14 ⁴	2.966	H2C	H11 ⁴
H2C	5.219 H14A ⁴	2.517	H2C	H14B ⁴
H4A	2.607 C3 ⁷	3.444	H4A	C21 ⁶
H4A	3.538 H3A ⁷ 3.518	2.921	H4A	H3B ⁸

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H4A	H3B ⁷ 2 102	3.253	H4A	H19B ⁶
H4A	H21A ⁶	2.595	H4A	H21C ²
H4A	H21C ⁹	3.199	H4A	H4A ⁷
H4B	F1 ⁸ 2 871	3.072	H4B	F2 ⁸
H4B	C2 ⁸ 3.547	3.557	H4B	C3 ⁸
H4B	C21 ⁹ 2.841	3.349	H4B	H3B ⁸
H4B	H14B ⁴ 3 504	3.577	H4B	H21A ⁶
H4B	H21A ⁹ 3 301	3.309	H4B	H21B ⁹
H4B	H21C ⁹	2.894	H4C	C2 ⁸
H4C	C21 ⁹ 2 926	3.430	H4C	H3B ⁸
H4C	H14B ⁴	3.519	H4C	H21A ⁹
H4C	H21B ⁹	3.351	H4C	H21C ⁹
H4C	$H1B^{8}$	3.284	H4C	H2B ⁸
H5A	F1 ⁸ 3 294	2.557	H5A	C17 ⁶
H5A	C19 ⁶	3.392	H5A	C20 ⁶
H5A	H3B ⁸ 3 223	3.540	H5A	H17A ⁶
H5A	H17B ⁶	2.577	H5A	H19B ⁶
H5A	H20B ⁶	2.865	H5A	H21A ⁶
H5B	C20 ²	3.476	H5B	H17B ⁶
H5B	2.944 H19B ⁶ 2.655	2.757	H5B	H20B ²
H5B	H21C ² 3.283	3.474	H5C	C17 ⁶

C19 ⁶ 3 445	3.383	H5C	C20 ⁶
H3B ⁸	3.540	H5C	H8 ⁸
5.595 H17A ⁶	3.211	H5C	H17B ⁶
2.567 H19B ⁶	2.716	H5C	H20B ⁶
2.855 H21A ⁶ 2.926	3.330	H5C	H1B ⁸
	C19 ⁶ 3.445 H3B ⁸ 3.595 H17A ⁶ 2.567 H19B ⁶ 2.855 H21A ⁶ 2.926	$\begin{array}{cccc} C19^6 & 3.383 \\ 3.445 & & \\ H3B^8 & 3.540 \\ 3.595 & & \\ H17A^6 & 3.211 \\ 2.567 & & \\ H19B^6 & 2.716 \\ 2.855 & & \\ H21A^6 & 3.330 \\ 2.926 & & \\ \end{array}$	$\begin{array}{cccc} C19^6 & 3.383 & H5C \\ 3.445 & \\ H3B^8 & 3.540 & H5C \\ 3.595 & & \\ H17A^6 & 3.211 & H5C \\ 2.567 & & \\ H19B^6 & 2.716 & H5C \\ 2.855 & & \\ H21A^6 & 3.330 & H5C \\ 2.926 & & \\ \end{array}$

Symmetry Operators:

(2) -X+1,Y-1,-Z+1/2
(4) -X+2,Y,-Z+1/2
(6) -X+1,Y,-Z+1/2
(8) X,Y+1,Z
(10) -X+2,Y+1,-Z+1/2
(12) -X+1,-Y,-Z
(14) X-1,-Y,Z

X-Ray Data Collection for 6

Data Collection

A colorless prism crystal of C₂₁H₃₁F having approximate dimensions of 0.130 x 0.130 x 0.100 mm was mounted in a loop. All measurements were made on a Rigaku XtaLAB P200 diffractometer using multi-layer mirror monochromated Mo-K α radiation.

The crystal-to-detector distance was 45.05 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

a = 5.3032(6) Å b = 25.832(3) Å β = 97.667(3)^o c = 13.1164(17) Å V = 1780.8(4) Å³

For Z = 4 and F.W. = 302.47, the calculated density is 1.128 g/cm^3 . The reflection conditions of:

h0l: l = 2n0k0: k = 2n

uniquely determine the space group to be:

P21/c (#14)

The data were collected at a temperature of $-100 \pm 1^{\circ}$ C to a maximum 20 value of 50.7°. A total of 1080 oscillation images were collected. A sweep of data was done using ω scans from -100.0 to 80.0° in 0.50° step, at χ =45.0° and ϕ = 0.0°. The exposure rate was 10.0 [sec./°]. The detector swing angle was -10.42°. A second sweep was performed using ω scans from -100.0 to 80.0° in 0.50° step, at χ =45.0° and ϕ = 90.0°. The exposure rate was 10.0 [sec./°]. The detector swing angle was -10.42°. Another sweep was performed using ω scans from -100.0 to 80.0° in 0.50° step, at χ =45.0° and ϕ = 180.0°. The exposure rate was 10.0 [sec./°]. The detector swing angle was -10.42°. Another sweep was performed using ω scans from -100.0 to 80.0° in 0.50° step, at χ =45.0° and ϕ = 180.0°. The exposure rate was 10.0 [sec./°]. The detector swing angle was -10.42°.

Data Reduction

Of the 21702 reflections were collected, where 3277 were unique ($R_{int} = 0.0437$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). ¹

The linear absorption coefficient, μ , for Mo-K α radiation is 0.701 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.878 to 0.993. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement³ on F² was based on 3277 observed reflections and 210 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

R1 =
$$\Sigma$$
 ||Fo| - |Fc|| / Σ |Fo| = 0.0532

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1545$$

The goodness of fit⁴ was 1.07. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.43 and -0.24 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 ⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure⁹ crystallographic software package except for refinement, which was performed using SHELXL2013¹⁰.

References

(1) <u>CrystalClear</u>: Data Collection and Processing Software, Rigaku Corporation (1998-2014). Tokyo 196-8666, Japan.

(2) <u>SIR2011</u>: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.

(3) Least Squares function minimized: (SHELXL2013)

 $\Sigma w (F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(4) Goodness of fit is defined as:

 $[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where: N_0 = number of observations N_V = number of variables

(5) International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2014). Tokyo 196-8666, Japan.

(10) <u>SHELXL2013</u>: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₂₁ H ₃₁ F
Formula Weight	302.47
Crystal Color, Habit	colorless, prism
Crystal Dimensions	0.130 X 0.130 X 0.100 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 5.3032(6) Å b = 25.832(3) Å c = 13.1164(17) Å β = 97.667(3) ⁰ V = 1780.8(4) Å ³
Space Group	P2 ₁ /c (#14)
Z value	4
D _{calc}	1.128 g/cm ³
F000	664.00
μ(ΜοΚα)	0.701 cm ⁻¹

B. Intensity Measurements

Diffractometer	XtaLAB P200
Radiation	MoK α (λ = 0.71075 Å)
monochromated	multi-layer mirror
Voltage, Current	45kV, 66mA
Temperature	-100.0°C
Detector Aperture	83.8 x 70.0 mm
Data Images	1080 exposures
ω oscillation Range (χ=45.0, φ=0.0)	-100.0 - 80.0 ⁰
Exposure Rate	10.0 sec./ ⁰
Detector Swing Angle	-10.420
ω oscillation Range (χ=45.0, φ=90.0)	-100.0 - 80.00
Exposure Rate	10.0 sec./ ⁰
Detector Swing Angle	-10.420
ω oscillation Range (χ=45.0, φ=180.0)	-100.0 - 80.00
Exposure Rate	10.0 sec./ ⁰
Detector Swing Angle	-10.420
Detector Position	45.05 mm
Pixel Size	0.172 mm
20 _{max}	50.70
No. of Reflections Measured	Total: 21702 Unique: 3277 (R _{int} = 0.0437)
Corrections	Lorentz-polarization

Absorption (trans. factors: 0.878 - 0.993)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR2011)
Refinement	Full-matrix least-squares on F^2
Function Minimized	$\Sigma \text{ w } (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.0790 · P) ² + 0.5173 · P]
2Fc ²)/3	where $P = (Max(Fo^2, 0) +$
$2\theta_{max}$ cutoff	50.7 ⁰
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	3277
No. Variables	210
Reflection/Parameter Ratio	15.60
Residuals: R1 (I>2.00σ(I))	0.0532
Residuals: R (All reflections)	0.0650
Residuals: wR2 (All reflections)	0.1545
Goodness of Fit Indicator	1.067
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.43 e⁻/Å ³
Minimum peak in Final Diff. Map	-0.24 e ⁻ /Å ³

Table 1.	Atomic c	oordinates	and B _{iso}	/Beq	and	occupanc	y

atom	Х	у	Z	Beq	000
F1	1.0514(4)	0.24672(7)	0.60659(15)	6.20(6)	
	0.735(4)				
F1A	1.1384(9)	0.1828(2)	0.7331(4)	6.83(18)	
	0.265(4)				
C1	0.7980(5)	0.25144(8)	0.62893(16)	4.78(5)	1
C2	0.7134(3)	0.19845(7)	0.65605(13)	3.32(3)	1
C3	0.8729(5)	0.17961(8)	0.75577(14)	4.91(5)	1
C4	0.8518(6)	0.21836(9)	0.84230(16)	5.68(5)	1
C5	0.9348(4)	0.27142(8)	0.81629(17)	4.63(4)	1
C6	0.7907(6)	0.28981(9)	0.71587(17)	5.74(5)	1
C7	0.6977(3)	0.16083(7)	0.56674(12)	2.93(3)	1
C8	0.8825(3)	0.12386(7)	0.55594(12)	3.17(3)	1
С9	0.8547(3)	0.08924(7)	0.47488(13)	3.19(3)	1
C10	0.6416(3)	0.09001(6)	0.40037(12)	2.79(3)	1
C11	0.4597(3)	0.12777(7)	0.40998(13)	3.18(3)	1
C12	0.4865(3)	0.16220(7)	0.49128(13)	3.36(3)	1
C13	0.6018(3)	0.05050(6)	0.31459(12)	2.82(3)	1
C14	0.8167(3)	0.04823(7)	0.24805(13)	3.24(3)	1
C15	0.7579(3)	0.01017(7)	0.15924(13)	3.24(3)	1
C16	0.7056(3)	-0.04443(6)	0.19577(12)	2.83(3)	1
C17	0.5035(4)	-0.04284(7)	0.26802(13)	3.53(3)	1
C18	0.5587(3)	-0.00385(7)	0.35531(13)	3.40(3)	1
C19	0.6254(3)	-0.08164(7)	0.10653(13)	3.37(3)	1
C20	0.8103(4)	-0.08884(8)	0.02918(15)	4.10(4)	1
C21	0.7165(5)	-0.12858(9)	-0.05293(17)	5.45(5)	1

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

atom	Х	У	Z	B _{iso}	occ
H2	0.53563	0.20247	0.67246	3.983	1
H4A	0.67306	0.21974	0.85632	6.812	1
H4B	0.95802	0.20633	0.90569	6.812	1
H5A	1.11933	0.27112	0.81111	5.551	1
H5B	0.90542	0.29569	0.87192	5.551	1
H6A	0.86413	0.32308	0.69661	6.889	1
H6B	0.61126	0.29619	0.72541	6.889	1
H8	1.03085	0.12235	0.60522	3.801	1
H9	0.98422	0.06431	0.46989	3.827	1
H11	0.31379	0.12995	0.35958	3.818	1
H12	0.35795	0.18739	0.49583	4.031	1
H13	0.44355	0.06054	0.26863	3.381	1
H14A	0.84341	0.08313	0.22021	3.891	1
H14B	0.97608	0.03767	0.29109	3.891	1
H15A	0.90371	0.00909	0.11938	3.889	1
H15B	0.60749	0.02259	0.11282	3.889	1
H16	0.86630	-0.05796	0.23535	3.401	1
H17A	0.48851	-0.07773	0.29788	4.242	1
H17B	0.33756	-0.03424	0.22761	4.242	1
H18A	0.71186	-0.01492	0.40171	4.075	1
H18B	0.41381	-0.00307	0.39571	4.075	1
H19A	0.59321	-0.11596	0.13581	4.039	1
H19B	0.46200	-0.06923	0.06919	4.039	1
H20A	0.97670	-0.10015	0.06560	4.920	1
H20B	0.83572	-0.05524	-0.00429	4.920	1
H21A	0.55164	-0.11756	-0.08916	6.539	1
H21B	0.69778	-0.16227	-0.02041	6.539	1
H21C	0.83972	-0.13148	-0.10206	6.539	1
H1A	0.68655	0.26412	0.56640	5.738	
	0.735(4)				
H1B	0.68649	0.26398	0.56733	5.738	
	0.265(4)				
H1C	0.97369	0.24942	0.61149	5.738	
	0.265(4)				
H3A	0.81106	0.14528	0.77506	5.893	
	0.735(4)				
H3B	1.05311	0.17602	0.74475	5.893	
	0.735(4)				
H3C	0.82584	0.14372	0.77471	5.893	
	0.265(4)				

Table 2. Atomic coordinates and $\mathrm{B}_{\mathrm{iSO}}$ and occupancy involving hydrogen atoms

Table 3. Anisotropic displacement parameters

atom	U11 U22	U22	U33	U ₁₂	U ₁₃	
F1	0.0951(14)	0.0563(12)	0.0952(15)	-0.0299(9)	0.0534(11)	-
0.0219(9) F1A	0.054(3)	0.099(4)	0.100(4)	0.012(3)	-0.015(3)	-
0.040(3) C1	0.0962(17)	0.0413(12)	0.0461(11)	0.0075(10)	0.0166(11)	
C2	0.0391(9)	0.0507(11)	0.0362(9)	-0.0027(8)	0.0047(7)	-
C3	0.0939(17)	0.0517(13)	0.0370(10)	-0.0068(11)	-0.0059(10)	-
C4	0.115(2)	0.0578(14)	0.0385(11)	-0.0057(13)	-0.0063(11)	-
C5	0.0593(12)	0.0527(12)	0.0620(13)	-0.0046(10)	0.0014(10)	-
0.0225(10) 0 122(2)	0 0403(12)	0.0594(13)	0.0037(12)	0 0240(13)	_
0.0029(10	(0.122(2))	0.0403(12)	0.0374(13)	0.0037(12)	0.0240(13)	
C7	0.0367(8) 0.0011(7)	0.0420(10)	0.0328(8)	-0.0063(7)	0.0048(7)	
C8	0.0361(8)	0.0480(10)	0.0342(8)	-0.0018(7)	-0.0029(7)	
С9	0.0377(9)	0.0422(10)	0.0399(9)	0.0048(7)	0.0003(7)	
C10	0.0360(8)	0.0367(9)	0.0330(8)	-0.0033(7)	0.0037(6)	
C11 0.0016(8)	0.0340(8)	0.0465(10)	0.0380(9)	0.0014(7)	-0.0041(7)	-
C12	0.0365(8)	0.0466(10)	0.0435(10)	0.0043(7)	0.0012(7)	-
0.0050(8)		Ċ,	()	Ċŷ		
C13	0.0335(8) 0.0021(7)	0.0386(9)	0.0339(8)	-0.0004(7)	0.0005(6)	
C14	0.0457(9)	0.0350(9)	0.0440(9)	-0.0078(7)	0.0115(8)	
C15	0.0482(10) 0.0044(7)	0.0385(10)	0.0384(9)	-0.0022(7)	0.0131(7)	
C16	0.0355(8)	0.0358(9)	0.0361(8)	-0.0011(7)	0.0039(7)	
C17 0 0010(8)	0.0497(10)	0.0431(10)	0.0434(10)	-0.0143(8)	0.0133(8)	-
C18	0.0495(10) 0.0006(8)	0.0426(10)	0.0385(9)	-0.0094(8)	0.0120(8)	
C19	0.0007(8)	0.0398(10)	0.0434(10)	-0.0029(8)	0.0065(7)	
C20 0.0028(9)	0.0587(11)	0.0512(12)	0.0481(11)	0.0032(9)	0.0149(9)	-

C21 0.0911(17) 0.0624(14) 0.0547(12) 0.0108(12) 0.0143(12) - 0.0112(11)

The general temperature factor expression: $\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl))$

Table 4. Bond lengths (Å)

atom	atom distance	distance	atom	atom
F1	C1 1 480(6)	1.418(3)	F1A	С3
C1	C2	1.498(3)	C1	C6
C2	C3	1.539(3)	C2	С7
C3	1.310(2) C4	1.529(3)	C4	C5
C5	1.493(3) C6	1.509(3)	C7	C8
C7	1.389(2) C12	1.393(2)	C8	С9
С9	1.382(2) C10	1.392(2)	C10	C11
C10	1.389(2) C13	1.513(2)	C11	C12
C13	1.381(2) C14	1.526(2)	C13	C18
C14	1.530(2) C15	1.524(2)	C15	C16
C16	1.527(2) C17	1.523(3)	C16	C19
C17	1.530(2) C18	1.524(2)	C19	C20
C20	C21	1.523(3)		

atom	atom	distance	atom	atom
	distance			
C1	H1A	1.000	C1	H1B
	0.990			
C1	H1C	0.990	C2	H2
00	1.000	0.000	<u></u>	
63	H3A	0.990	63	H3B
C 2	0.990	1 000	C 4	TT 4 A
63		1.000	L4	H4A
C 4	0.990	0.000	CF	
L4	H4B	0.990	L5	H5A
CE	0.990 UED	0.000	66	ЦСЛ
65	0 000	0.990	60	поя
6	0.990 H6B	0 990	C8	ня
60	0.950	0.770	CO	110
69	H9	0 950	C11	H11
	0.950	0.700	011	
C12	H12	0.950	C13	H13
012	1.000		010	1110
C14	H14A	0.990	C14	H14B
	0.990			
C15	H15A	0.990	C15	H15B
	0.990			
C16	H16	1.000	C17	H17A
	0.990			
C17	H17B	0.990	C18	H18A
	0.990			
C18	H18B	0.990	C19	H19A
	0.990			
C19	H19B	0.990	C20	H20A
	0.990			
C20	H20B	0.990	C21	H21A
20 4	0.980		6.9.4	
C21	H21B	0.980	C21	H21C
	0.980			

Table 5. Bond lengths involving hydrogens (Å)

Table 6. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom
F1	angle C1	C2	107.01(17)	F1	C1	C6
	109.4(2)					~~
C2	C1	C6	112.36(18)	C1	C2	C3
C1	110.05(1	.5]	11202(15)	C2	C 2	C 7
CI	LZ 114.02(1	し/ 5)	112.93(15)	63	LΖ	L7
F1A	(3)	.5)	104 0(3)	F1A	(3	C4
1 1/1	106.1(3)	02	10110(3)	1 1/1	00	U1
C2	C3	C4	109.74(18)	С3	C4	C5
	112.25(1	.9)				
C4	C5	Ć6	110.99(18)	C1	C6	C5
	113.0(2)					
C2	C7	C8	123.57(14)	C2	C7	C12
	119.26(1	5)				
C8	C7	C12	117.16(15)	C7	C8	C9
60	121.28(1	4)	101 (0(1()	<u> </u>	C10	011
LØ	L9 11706(1	C10	121.60(16)	69	C10	CII
CO	117.00(1 C10	.5J C12	17715(14)	C11	C10	C13
69	120 76(1	3)	122.13(14)	611	010	C15
C10	C11	.5) C12	121.39(15)	C7	C12	C11
010	121.50(1	.6)	12110 (10)	0,	012	011
C10	C13	Č14	114.23(13)	C10	C13	C18
	111.84(1	3)				
C14	C13	C18	108.79(14)	C13	C14	C15
	111.68(1	4)				
C14	C15	C16	112.53(14)	C15	C16	C17
	110.04(1	4)		04 5	04.6	010
C15	L16	C19	112.57(13)	C17	C16	C19
C16	110.24(1	4J C10	112 00(15)	C12	C10	C17
C10	111 53(1	(10) (1)	115.00(15)	C15	C10	C17
C16	C19	C20	116.81(15)	C19	C20	C21
	112.17(1	.8)				

atom	atom	atom	angle	atom	atom	atom
F1	C1	H1A	109.3	C2	C1	H1A
C2	C1	H1B	109.1	C2	C1	H1C
C6	C1 109.1	H1A	109.3	C6	C1	H1B
C6	C1	H1C	109.1	H1B	C1	H1C
C1	C2	H2	106.1	С3	C2	H2
C7	C2 112.2	H2	106.1	F1A	С3	H3C
C2	C3 109 7	H3A	109.7	C2	С3	H3B
C2	C3 109.7	НЗС	112.2	C4	С3	H3A
C4	C3 112.2	H3B	109.7	C4	C3	H3C
НЗА	C3 109.2	H3B	108.2	С3	C4	H4A
С3	C4 109.2	H4B	109.2	C5	C4	H4A
C5	C4 1079	H4B	109.1	H4A	C4	H4B
C4	C5 109.4	H5A	109.4	C4	C5	H5B
C6	C5 109.4	H5A	109.4	C6	C5	H5B
H5A	C5 109.0	H5B	108.0	C1	C6	H6A
C1	C6 109.0	H6B	109.0	C5	C6	H6A
C5	C6 107.8	H6B	109.0	H6A	C6	H6B
C7	C8 1194	H8	119.4	С9	C8	H8
C8	C9 119.7	Н9	119.2	C10	С9	H9
C10	C11 1193	H11	119.3	C12	C11	H11
C7	C12	H12	119.3	C11	C12	H12
C10	C13 107.2	H13	107.2	C14	C13	H13

Table 7. Bond angles involving hydrogens (⁰)

C18	C13 109 3	H13	107.2	C13	C14	H14A
C13	C14 109.3	H14B	109.3	C15	C14	H14A
C15	C14 1079	H14B	109.3	H14A	C14	H14B
C14	C15 109.1	H15A	109.1	C14	C15	H15B
C16	C15 109.1	H15A	109.1	C16	C15	H15B
H15A	C15 107.9	H15B	107.8	C15	C16	H16
C17	C16 108.0	H16	107.9	C19	C16	H16
C16	C17 108.8	H17A	108.8	C16	C17	H17B
C18	C17 108.8	H17A	108.8	C18	C17	H17B
H17A	C17 109.3	H17B	107.7	C13	C18	H18A
C13	C18 109.3	H18B	109.3	C17	C18	H18A
C17	C18 108.0	H18B	109.3	H18A	C18	H18B
C16	C19 1081	H19A	108.1	C16	C19	H19B
C20	C19 108.1	H19A	108.1	C20	C19	H19B
H19A	C19 109.2	H19B	107.3	C19	C20	H20A

atom	atom angle	atom	angle	atom	atom	atom
C19	C20	H20B	109.2	C21	C20	H20A
C21	C20	H20B	109.2	H20A	C20	H20B
C20	C21	H21A	109.5	C20	C21	H21B
C20	C21	H21C	109.5	H21A	C21	H21B
H21A	C21 109.5	H21C	109.5	H21B	C21	H21C

Table 7. Bond angles involving hydrogens (⁰) (continued)

Table 8. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2 angle	atom3	atom4	angle	atom1	atom2	atom3	atom4	
F1	C1	C2	С3	64.96(18)	F1	C1	C2	C7	-
64.94(1	.8]					~ .		~ -	
F1	C1 53.1(3)	C6	C5	-65.5(2)	C2	C1	C6	C5	
C6	C1 174 99	C2 (17)	C3	-55.1(2)	C6	C1	C2	C7	
C1	C2	C3	F1A	-56.36(19)	C1	C2	C3	C4	
C1	C2	C7	C8	101.34(19)	C1	C2	C7	C12	-
79.6(2)									
C3	C2	C7	C8	-26.0(2)	C3	C2	C7	C12	
	152.98	(15)							
C7	C2	C3	F1A	72.45(18)	C7	C2	C3	C4	-
174.37([14]								
F1A	C3	C4	C5	54.2(3)	C2	С3	C4	C5	-
57.6(3)									
(3	C4	C5	6	54 7(3)	C4	C5	6	C1	_
51 0(3)	C I	0.5	00	51.7(5)	C1	05	00	01	
51.9(5)	C7	CO	CO	177(0(14))	CO	C7	C12	C11	
		Lδ	69	1/7.08(14)	LΖ	ե/	C12	CII	-
178.10([14]					~-			
C8	C7	C12	C11	1.0(2)	C12	C7	C8	C9	-
1.4(2)									
C7	C8	С9	C10	0.3(3)	C8	С9	C10	C11	
00	1.1(2)	010	04.0		00	01.0	014	04.0	
68	69	C10	C13	-176.54(14)	69	C10	C11	C12	-
1.5(2)									
C9	C10	C13	C14	-57.4(2)	C9	C10	C13	C18	
	66.70(1	l9)							
C11	C10	C13	C14	125.00(15)	C11	C10	C13	C18	-
110.88([16]								
C13	C10	C11	C12	176.19(13)	C10	C11	C12	C7	
	0.5(3)								
C10	C13	C14	C15	-176 48(11)	C10	C13	C18	C17	
010	176 70	(12)	015	170.10(11)	010	015	010	017	
C14	1/0./0	(12)	C17	F(10(1()	C10	C10	C1 4	C1F	
C14			CI/	-20.19(10)	C19	C13	C14	C15	
	57.79(1	[5]							
C13	C14	C15	C16	-57.10(17)	C14	C15	C16	C17	
	51.94(1	l7)							
C14	C15	C16	C19	175.33(12)	C15	C16	C17	C18	-
51.20(1	.6)								
C15	C16	C19	C20	58,47(18)	C17	C16	C19	C20	-
178 24	(12)								
1, 0.2 T	<u></u>								

C19	C16	C17	C18	-175.94(12)	C16	C17	C18	C13
	54.72	(18)						
C16	C19	C20	C21	177.19(12)				

atom	atom	distance	atom	atom
F1	C3 3 477(3)	2.868(3)	F1	C4
F1	C5 2 907(3)	2.968(3)	F1	C7
F1	C8 2 759(6)	3.340(3)	F1A	C1
F1A	C5 3 313(6)	2.812(6)	F1A	C6
F1A	C7 2 953(6)	3.031(5)	F1A	C8
C1	C4	2.904(3)	C1	C8
C1	C12	3.241(3)	C2	С5
С3	2.946(3) C6	2.917(3)	C3	C8
C7	C10	2.833(2)	C8	C11
С9	C12	2.743(2)	С9	C14
С9	C18	3.170(2)	C11	C18
C13	C16	2.996(2)	C14	C17
C15	2.912(3) C18 3.107(3)	2.930(3)	C15	C20

Table 9. Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom
-	distance			
F1	H2	3.188	F1	H5A
F 4	2.732		P 4	
F1	H6A	2.566	Fl	H6B
F1	3.237	2 21 5	F1	סכנו
ГІ	ПО 2 5 7 2	5.215	ГІ	пэр
F1 A	2.372 H2	2 2 2 0	F1 A	НЛА
I IN	3 267	5.250	I'IA	птл
F1A	H4B	2 643	F1A	H5A
	2.507	21010		
F1A	H8	2.308	F1A	H1C
	2.428			
C1	H4A	3.245	C1	H5A
	2.790			
C1	H5B	3.362	C1	H8
	3.584			
C1	H12	3.185	C1	H3A
	3.341			
C1	H3B	2.718	C1	H3C
60	3.368	0.500		
C2	H4A	2.720	C2	H4B
CO	3.363	2.226	C 2	
CΖ	ПЭА 2 242	5.550	62	поА
C2	5.545 H6R	2 762	C2	ня
62	2 728	2.702	62	110
C2	H12	2 645	63	H5A
3-	2.751			
С3	H5B	3.357	С3	H6B
	3.317			
C3	H8	2.689	С3	H1A
	3.355			
С3	H1B	3.344	C3	H1C
	2.718			
C4	H2	2.635	C4	H6A
	3.318	0.500		
C4	H6B	2.738	C4	HIC
CE	3.279	2 105	CE	111 A
65		3.185	65	HIA
C5	3.371 H1R	3 360	C5	H1C
65	2 780	5.500	40	1110
C5	H3A	3,353	65	H3B
	2.739			

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens

C5	H3C	3.381	C6	H2
C6	2.653 H4A	2.714	C6	H4B
С6	3.324 H3B	3.253	C7	Н9
	3.264		-	
C7	H11 2.669	3.269	C7	H1A
C7	H1B 2.737	2.665	C7	H1C
C7	H3A 2.825	2.748	C7	H3B
C7	H3C 3 255	2.757	C8	H2
C8	H12 3 345	3.235	C8	H1C
C8	H3A 2 858	3.000	C8	H3B
С8	H3C 3 235	2.969	С9	H11
С9	H13 3 337	3.324	С9	H14A
С9	H14B 2 922	2.901	С9	H18A
С9	H18B	3.404	C10	H8
C10	H12 2 727	3.265	C10	H14A
C10	H14B 2.736	2.776	C10	H18A

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
C10	H18B	2.688	C11	H9
C11	H13	2.533	C11	H18B
C12	H2 3 237	2.575	C12	H8
C12	H1A 2 958	2.958	C12	H1B
C13	H9 2.671	2.699	C13	H11
C13	H15A 2.747	3.370	C13	H15B
C13	H16 3.368	3.360	C13	H17A
C13	H17B 2.956	2.762	C14	Н9
C14	H16 3 299	2.763	C14	H17B
C14	H18A 3 343	2.708	C14	H18B
C15	H13 3 346	2.677	C15	H17A
C15	H17B 3 287	2.761	C15	H18A
C15	H19A 2 751	3.377	C15	H19B
C15	H20A 2 804	3.370	C15	H20B
C16	H13 3.381	3.248	C16	H14A
C16	H14B 2 803	2.764	C16	H18A
C16	H18B 2 776	3.391	C16	H20A
C16	H20B 2 690	2.815	C17	H13
C17	H14B 3 348	3.240	C17	H15A
C17	H15B 2 650	2.758	C17	H19A
C17	H19B 3.090	2.676	C18	H9

H14A 2 694	3.344	C18	H14B
H15B	3.297	C18	H16
H15A	2.763	C19	H15B
H17A 2.645	2.706	C19	H17B
H21A 2 726	2.708	C19	H21B
H21C 2 809	3.356	C20	H15A
H15B	3.311	C20	H16
H19A	2.663	C21	H19B
2.703 H4A 2.544	2.465	H2	H4B
H6A 2 5 3 6	3.563	H2	H6B
H8	3.546	H2	H12
2.413 H1A 2.215	2.326	H2	H1B
2.313 H1C 2.267	2.829	H2	H3A
2.307 H3B	2.864	H2	H3C
2.433 H5A	2.844	H4A	H5B
2.311 H6B 2.362	2.609	H4A	НЗА
	H14A 2.694 H15B 2.789 H15A 2.696 H17A 2.645 H21A 2.726 H21C 2.809 H15B 2.797 H19A 2.705 H4A 3.544 H6A 2.536 H8 2.413 H1A 2.315 H1C 2.367 H3B 2.433 H5A 2.311 H6B 2.362	H14A 3.344 2.694 $115B$ 3.297 2.789 2.763 $H15A$ 2.763 2.696 $117A$ 2.706 2.645 $121A$ 2.708 $H21A$ 2.708 2.726 $1121C$ 3.356 $H21C$ 3.356 2.809 $115B$ 3.311 2.797 $119A$ 2.663 $115B$ 3.311 2.797 $119A$ 2.663 2.705 $14A$ 2.465 3.544 $14A$ 2.465 3.544 $11A$ 2.326 $H8$ 3.546 2.413 $H1A$ 2.326 2.367 $H3B$ 2.864 2.433 $H5A$ 2.844 2.311 $H6B$ 2.609 2.362	H14A 3.344 C18 2.694 3.297 C18 H15B 3.297 C18 2.789 C19 C19 H15A 2.763 C19 2.696 C19 C19 H17A 2.706 C19 2.645 C19 C18 H21A 2.708 C19 2.726 C20 C20 H21C 3.356 C20 2.809 C19 C19 H15B 3.311 C20 2.797 C18 C19 H14A 2.663 C21 2.705 H19A 2.663 C21 H4A 2.465 H2 H2 3.544 H2 C45 H2 H6A 3.563 H2 L356 H8 3.546 H2 L413 H1A 2.3266 H2 L357 H1C 2.829 H2 L367 H3B 2.864 H2 L433 H5A 2.844 H4A L

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
H4A	H3B	2.875	H4A	H3C
UAD	2.427	0.014		
H4B	H5A	2.314	H4B	H5B
	2.360	2 202		חכוו
H4D	ПЗА 2 269	2.382	П4Б	пзв
H/R	2.300 H3C	2 205	нбл	нал
птр	2 312	2.375	11571	110/1
H5A	H6B	2.852	H5A	H1C
11011	2.688		11011	
H5A	H3B	2.614	H5B	H6A
-	2.388	-	-	-
H5B	H6B	2.308	H6A	H1A
	2.386			
H6A	H1B	2.381	H6A	H1C
	2.319			
H6B	H1A	2.328	H6B	H1B
	2.318			
H6B	H1C	2.855	H8	H9
	2.311			
H8	H1C	3.298	H8	H3A
	2.714	2.224		
H8	H3B	2.286	H8	H3C
110	2.660	2.207	110	
H9	H14A	3.296	H9	H14B
110	2.439	2 504	110	11100
ПУ	П10А 2 E12	2.394	ПЭ	птор
Н11	5.515 H12	2 3 1 1	Н11	Н13
1111	2 309	2.511	1111	1115
H11	H18B	3 499	H12	H1A
	2.719	0.177		
H12	H1B	2.719	H13	H14A
	2.366		-	
H13	H14B	2.862	H13	H15A
	3.582			
H13	H15B	2.523	H13	H17A
	3.597			
H13	H17B	2.553	H13	H18A
	2.865			
H13	H18B	2.361	H14A	H15A
	2.371			

H14A	H15B	2 350	H14B	H15A
	2.352	21000		111011
H14B	H15B	2.867	H14B	H16
	2.620	2.007		
H14B	H18A	2.541	H15A	H16
	2.331			
H15A	H19B	3.099	H15A	H20A
	2.947			
H15A	H20B	2.317	H15B	H16
	2.865			
H15B	H17B	2.654	H15B	H19A
	3.593			
H15B	H19B	2.536	H15B	H20B
	2.892			
H16	H17A	2.321	H16	H17B
	2.859			
H16	H18A	2.673	H16	H19A
	2.354			
H16	H19B	2.861	H16	H20A
	2.615			
H16	H20B	3.127	H17A	H18A
	2.337			
H17A	H18B	2.379	H17A	H19A
	2.473			
H17A	H19B	2.992	H17B	H18A
	2.863			
H17B	H18B	2.331	H17B	H19A
	2.860			
H17B	H19B	2.436	H19A	H20A
	2.377			
H19A	H20B	2.850	H19A	H21A
	2.930			

,	Table 10. Intramolecular contacts less than	3.60) Å	involving	hydrog	ens
((continued)			-		

atom	atom distance	distance	atom	atom
H19A	H21B 3 563	2.498	H19A	H21C
H19B	H20A	2.850	H19B	H20B
H19B	2.345 H21A	2.522	H19B	H21B
H19B	3.019 H21C	3.584	H20A	H21A
H20A	2.861 H21B	2.364	H20A	H21C
H20B	2.365 H21A	2 378	H20R	H21R
11200	2.861	2.370	11200	1121D
H20B	H21C	2.352		

atom	atom	distance	atom	atom
F1	distance C21 ¹	3.552(3)	F1A	C2 ²
F1A	3.362(6) C19 ³ 3.362(6)	3.482(6)	C2	F1A ⁴
C8	$C12^2$ 3.569(2)	3.562(2)	С9	C11 ²
C11	$C9^4$	3.569(2)	C12	C8 ⁴
C19	5.502(2) F1A ³ 3.552(3)	3.482(6)	C21	F1 ⁵

Table 11. Intermolecular contacts less than 3.60 Å $\,$

Symmetry Operators:

(1) -X+2,Y+1/2,-Z+1/2	(2) X+1,Y,Z
(3) -X+2,-Y,-Z+1	(4) X-1,Y,Z
(5) -X+2,Y+1/2-1,-Z+1/2	

atom	atom	distance	atom	atom
F1	distance	2 0 2 0	C 1	
LT	2 883	2.030	ΓI	Π4D-
F1	$H5B^2$	3.262	F1	H6B ¹
	3.412			-
F1	H12 ¹	2.781	F1	$H21B^3$
	2.996			
F1	H21C ³	3.201	F1	H1A ¹
F1 A	3.507	2 402	E1 A	TT A 1
FIA	H2 ⁺ 2 215	2.403	FIA	H4A ⁺
F1A	5.215 H12 ¹	3 468	F1A	H16 ⁴
1 1/1	3.253	5.100	1 111	1110
F1A	H17A ⁴	3.416	F1A	H19A ⁴
	2.704			
F1A	H20A ⁴	3.512	C1	H4B ²
	3.339			
C1	H21B ⁵	3.593	C2	H17A ⁶
C2	3.378 U164	2 1 2 0	C2	U171 6
63	3 2 7 6	5.429	63	$\Pi I / A^{\circ}$
C3	H19A ⁶	3,431	63	H19A ⁴
	3.416	0.102		
C3	H20A ⁴	3.137	C4	H19A ⁶
	3.582			
C4	H20A ⁴	3.364	C4	$H21B^4$
	3.431	0.000		114 D7
Ն4	H1A' 2 2 2 2 2	3.209	C 4	HIB'
C5	5.222 H11 ⁸	3 748	C5	H12 ⁸
05	3.210	5.240	0.5	1112
C6	H14A ⁷	3.294	C6	H21A ⁵
	3.313			
C6	H21C ³	3.314	C7	H5B ²
~-	3.123			
C7	H17A°	3.034	C8	H5B ²
CO	3.200 u121	2 104	CO	U16 4
CO	3 3 4 6	5.194	CO	пто-
C8	H17A ⁶	3.158	C8	$H18A^4$
	3.541			
C8	H18B ⁶	3.588	С9	H5B ²
	3.291			
С9	H11 ¹	3.210	С9	$H18A^4$
	3.255			

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens

С9	H18B ⁶	3.242	C10	H5B ²
C10	5.510 H18B ⁶ 3 337	3.535	C11	H5A ⁹
C11	H5B ⁹ 3.172	3.522	C11	H5B ²
C11	H6B ² 3.192	3.299	C11	H9 ¹⁰
C12	H5A ⁹ 3.441	3.334	C12	H5B ⁹
C12	H5B ² 3.177	3.082	C12	H8 ¹⁰
C12	H17A ⁶ 3.308	3.511	C13	H14B ¹⁰
C13	H21A ¹¹ 3.408	3.430	C14	H6A ²
C14	H11 ¹ 3.314	3.538	C14	H13 ¹
C14	H17B ¹ 3.206	3.527	C14	H21A ¹¹
C14	H21C ¹² 3.292	3.541	C15	H17B ¹
C15	H19B ¹¹ 3.361	3.425	C15	H20B ¹²
C15	H21A ¹¹ 3.442	3.291	C16	$H8^4$
C16	H17B ¹ 3 556	3.332	C16	H3C ⁴
C17	H8 ⁴ 3.531	3.462	C17	H14B ¹⁰

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distanco	distance	atom	atom
C17	H16 ¹⁰ 3 139	3.372	C17	H3A ⁶
C17	H3C ⁶ 3.477	3.145	C18	H9 ⁴
C18	H14B ¹⁰ 3.254	3.273	C18	H18B ⁶
C19	H15B ¹¹ 3.444	3.344	C19	H20A ¹⁰
C19	H3A ⁶ 3.579	3.381	C19	H3A ⁴
C19	H3B ⁴ 3.423	3.431	C19	H3C ⁶
C19	H3C ⁴ 3.342	3.501	C20	H4B ⁴
C20	H15A ¹² 3.195	3.336	C20	H15B ¹¹
C20	H19B ¹ 3.373	3.463	C20	H3A ⁴
C20	H3C ⁴ 3 1 3 9	3.321	C21	H4B ⁴
C21	H6A ¹³ 3 296	3.343	C21	H6B ¹⁴
C21	H13 ¹¹ 3.272	3.343	C21	H15B ¹¹
C21	H1A ¹⁴ 3.493	3.490	C21	H1B ¹⁴
H2	F1 ¹⁰ 2 403	2.838	H2	F1A ¹⁰
H2	H5A ¹⁰ 3 405	3.521	H2	H8 ¹⁰
H2	H17A ⁶ 3 499	3.250	H2	H19A ⁶
H2	H1C ¹⁰ 2 926	3.218	H2	H3B ¹⁰
H4A	F1A ¹⁰ 3 205	3.215	H4A	H5A ¹⁰
H4A	H12 ⁷ 3.038	3.565	H4A	H19A ⁶
H4A	H21B ⁶ 2 778	3.440	H4A	H1A ⁷
H4A	H1B ⁷ 3.599	2.791	H4A	H1C ⁷

H4A	H3B ¹⁰ 2.883	3.598	H4B	F1 ⁷
H4B	C1 ⁷ 3.342	3.339	H4B	C20 ⁴
H4B	C21 ⁴ 3.573	3.139	H4B	H12 ⁸
H4B	H19A ⁴ 2.784	3.429	H4B	H20A ⁴
H4B	H21B ⁴ 3.284	2.482	H4B	H21C ⁴
H4B	H1A ⁷ 2.823	2.812	H4B	H1B ⁷
H4B	H1C ⁷ 3 337	2.922	H5A	C11 ⁸
H5A	C12 ⁸ 3 521	3.334	H5A	$H2^{1}$
H5A	H4A ¹ 3.045	3.205	H5A	H6B ¹
H5A	H11 ⁸ 2 793	2.797	H5A	H12 ⁸
H5B	F1 ⁷	3.262	H5B	C7 ⁷
H5B	C8 ⁷	3.200	H5B	C9 ⁷
H5B	C10 ⁷	3.310	H5B	C11 ⁷
H5B	C11 ⁸	3.522	H5B	C12 ⁷
H5B	C12 ⁸	3.441	H5B	H11 ⁸
H5B	2.915 H12 ⁷ 2.748	3.538	H5B	H12 ⁸

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H5B	H1A ⁷	3.321	H5B	H1B ⁷
H5B	3.330 H1C ⁷	3.326	H6A	C14 ⁷
H6A	3.408 C21 ³	3.343	H6A	H11 ⁸
H6A	5.220 H14A ⁷ 2.802	2.447	H6A	H21A ⁵
H6A	2.893 H21B ⁵ 2.500	3.539	H6A	H21B ³
H6A	H21C ³	2.429	H6B	F1 ¹⁰
H6B	C11 ⁷	3.299	H6B	C21 ⁵
H6B	5.290 H5A ¹⁰	3.045	H6B	H11 ⁷
H6B	H14A ⁷	3.356	H6B	H21A ⁵
H6B	2.914 H21B ⁵	3.145	H6B	H21C ⁵
H8	3.286 C12 ¹	3.177	Н8	C16 ⁴
H8	3.442 C17 ⁴	3.462	H8	$H2^{1}$
Н8	3.405 H12 ¹	2.925	H8	H16 ⁴
H8	2.671 H17A ⁶	3.386	Н8	H17A ⁴
Н8	2.929 H18A ⁴	3.099	Н9	C11 ¹
Н9	3.192 C18 ⁴	3.477	Н9	H9 ⁴
Н9	3.414 H11 ¹	2.949	Н9	H18A ⁴
H9	2.517 H18B ¹	3.124	Н9	H18B ⁶
H11	3.325 C5 ⁹	3.248	H11	C9 ¹⁰
H11	3.210 C14 ¹⁰	3.538	H11	H5A ⁹
H11	2.797 H5B ⁹ 3.220	2.915	H11	H6A ⁹

H11	H6B ² 2 949	3.157	H11	H9 ¹⁰
H11	H14A ¹⁰	3.132	H11	H14B ¹⁰
H11	H21C ¹¹ 2 781	3.367	H12	F1 ¹⁰
H12	F1A ¹⁰ 3 210	3.468	H12	C5 ⁹
H12	C8 ¹⁰ 3 565	3.194	H12	H4A ²
H12	H4B ⁹ 2 793	3.573	H12	H5A ⁹
H12	H5B ⁹ 3 538	2.748	H12	H5B ²
H12	H8 ¹⁰ 3 138	2.925	H12	H1C ¹⁰
H13	C14 ¹⁰	3.314	H13	C21 ¹¹
H13	H14A ¹⁰	3.215	H13	H14B ¹⁰
H13	H15A ¹⁰	3.507	H13	H20B ¹¹
H13	H21A ¹¹	2.780	H13	H21C ¹¹
H14A	C6 ²	3.294	H14A	H6A ²
H14A	L.447 H6B ²	3.356	H14A	H11 ¹
H14A	5.132 H13 ¹	3.215	H14A	H20B ¹²
H14A	3.567 H21A ¹¹ 2.735	2.678	H14A	H21C ¹²

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H14B	C13 ¹ 3.531	3.308	H14B	C17 ¹
H14B	C18 ¹ 3.044	3.273	H14B	H11 ¹
H14B	H13 ¹ 2.871	2.603	H14B	$H17B^1$
H14B	H18B ¹ 3.336	2.744	H15A	C20 ¹²
H15A	H13 ¹ 3.453	3.507	H15A	H15A ¹²
H15A	H17B ¹ 3.318	2.773	H15A	H19B ¹¹
H15A	H20A ¹² 2.483	3.498	H15A	H20B ¹²
H15A	H21C ¹² 3.344	3.461	H15B	C19 ¹¹
H15B	C20 ¹¹ 3.272	3.195	H15B	C21 ¹¹
H15B	H15B ¹¹ 2.656	3.244	H15B	H19B ¹¹
H15B	H20B ¹¹ 3 547	2.715	H15B	H20B ¹²
H15B	H21A ¹¹ 3 253	2.599	H16	F1A ⁴
H16	C3 ⁴ 3.346	3.429	H16	C8 ⁴
H16	C17 ¹ 2.671	3.372	H16	$H8^4$
H16	H17A ¹ 2 588	3.332	H16	$H17B^1$
H16	H3A ⁴ 3 086	2.845	H16	H3B ⁴
H16	H3C ⁴	2.766	H17A	F1A ⁴
H17A	C2 ⁶	3.378	H17A	C3 ⁶
H17A	C7 ⁶	3.034	H17A	C8 ⁶
H17A	C12 ⁶	3.511	H17A	H2 ⁶
H17A	5.250 H8 ⁶ 2.929	3.386	H17A	H8 ⁴

H17A	H16 ¹⁰ 2.465	3.332	H17A	H3A ⁶
H17A	H3C ⁶ 3 527	2.484	H17B	C14 ¹⁰
H17B	C15 ¹⁰ 3 332	3.292	H17B	C16 ¹⁰
H17B	H14B ¹⁰	2.871	H17B	H15A ¹⁰
H17B	H16 ¹⁰	2.588	H17B	H20A ¹⁰
H17B	H3A ⁶ 2 957	2.974	H17B	H3C ⁶
H18A	C8 ⁴ 3 255	3.541	H18A	C9 ⁴
H18A	H8 ⁴ 2 517	3.099	H18A	H9 ⁴
H18A	H18B ⁶	2.862	H18B	C8 ⁶
H18B	C9 ⁶	3.242	H18B	C10 ⁶
H18B	C18 ⁶	3.254	H18B	H9 ¹⁰
H18B	H9 ⁶	3.325	H18B	H14B ¹⁰
H18B	2.744 H18A ⁶ 2.771	2.862	H18B	H18B ⁶
H19A	F1A ⁴	2.704	H19A	C3 ⁶
H19A	$C3^4$	3.416	H19A	C4 ⁶
H19A	5.562 H2 ⁶ 3.038	3.499	H19A	H4A ⁶

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
H19A	H4B ⁴	3.429	H19A	H20A ¹⁰
H19A	3.302 H3A ⁶	2.684	H19A	H3A ⁴
H19A	3.307 H3B ⁴	2.756	H19A	H3C ⁶
H19A	2.745 H3C ⁴ 2.425	3.228	H19B	C15 ¹¹
H19B	C20 ¹⁰	3.463	H19B	H15A ¹¹
H19B	H15B ¹¹	2.656	H19B	H20A ¹⁰
H19B	H20B ¹⁰	3.352	H19B	H3A ⁶
H19B	H3C ⁶	3.325	H20A	F1A ⁴
H20A	C3 ⁴	3.137	H20A	C4 ⁴
H20A	C19 ¹	3.444	H20A	$H4B^4$
H20A	H15A ¹²	3.498	H20A	H17B ¹
H20A	H19A ¹	3.302	H20A	H19B ¹
H20A	H3A ⁴	2.523	H20A	H3B ⁴
H20A	H3C ⁴	2.483	H20B	C15 ¹²
H20B	H13 ¹¹	3.587	H20B	H14A ¹²
H20B	H15A ¹²	2.483	H20B	H15B ¹¹
H20B	H15B ¹²	3.547	H20B	H19B ¹
H20B	H20B ¹²	3.338	H21A	C6 ¹⁴
H21A	C13 ¹¹	3.430	H21A	C14 ¹¹
H21A	C15 ¹¹ 2 803	3.291	H21A	H6A ¹⁴
H21A	2.095 H6B ¹⁴ 2.780	2.914	H21A	H13 ¹¹

H21A	H14A ¹¹ 2.599	2.678	H21A	H15B ¹¹
H21A	H1A ¹⁴ 3.337	3.336	H21A	H1B ¹⁴
H21B	F1 ¹³ 3.593	2.996	H21B	C1 ¹⁴
H21B	C4 ⁴ 3.440	3.431	H21B	H4A ⁶
H21B	H4B ⁴ 3.539	2.482	H21B	H6A ¹⁴
H21B	H6A ¹³ 3.145	3.509	H21B	H6B ¹⁴
H21B	H1A ¹⁴ 2.798	2.794	H21B	H1B ¹⁴
H21B	H1C ¹³ 3.201	3.197	H21C	F1 ¹³
H21C	C6 ¹³ 3.541	3.314	H21C	C14 ¹²
H21C	H4B ⁴ 2.429	3.284	H21C	H6A ¹³
H21C	H6B ¹⁴ 3.367	3.286	H21C	H11 ¹¹
H21C	H13 ¹¹ 2.735	3.084	H21C	H14A ¹²
H21C	H15A ¹² 3.239	3.461	H21C	H1C ¹³
H1A	F1 ¹⁰ 3.209	3.507	H1A	C4 ²
H1A	C21 ⁵ 2.778	3.490	H1A	H4A ²
H1A	H4B ² 3.321	2.812	H1A	H5B ²

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H1A	H21A ⁵ 2 794	3.336	H1A	H21B ⁵
H1B	C4 ² 3 493	3.222	H1B	C21 ⁵
H1B	H4A ² 2 823	2.791	H1B	H4B ²
H1B	H5B ² 3 337	3.330	H1B	H21A ⁵
H1B	H21B ⁵ 3 218	2.798	H1C	$H2^{1}$
H1C	H4A ² 2 922	3.599	H1C	H4B ²
H1C	H5B ² 3 138	3.326	H1C	H12 ¹
H1C	H21B ³ 3 239	3.197	H1C	H21C ³
H3A	C17 ⁶	3.139	НЗА	C19 ⁶
H3A	C19 ⁴	3.579	НЗА	C20 ⁴
H3A	H16 ⁴	2.845	НЗА	H17A ⁶
H3A	2.405 H17B ⁶	2.974	НЗА	H19A ⁶
H3A	H19A ⁴	3.307	НЗА	H19B ⁶
H3A	H20A ⁴	2.523	НЗВ	C19 ⁴
H3B	H2 ¹	2.926	НЗВ	H4A ¹
H3B	H16 ⁴	3.086	H3B	H19A ⁴
H3B	H20A ⁴	3.187	НЗС	C16 ⁴
H3C	C17 ⁶	3.145	НЗС	C19 ⁶
H3C	C19 ⁴	3.501	НЗС	C20 ⁴
НЗС	H16 ⁴	2.766	НЗС	H17A ⁶
НЗС	2.484 H17B ⁶ 2.743	2.957	НЗС	H19A ⁶
H3C	H19A ⁴	3.228		
-----	-------------------	-------		
	3.325			
H3C	H20A ⁴	2.483		

НЗС	H19B ⁶

Symmetry Operators:

(1) X+1,Y,Z	(2) X,-Y+1,Z
(3) -X+2,Y+1/2,-Z+1/2	(4) -X+2,-Y,-Z+1
(5) -X+1,Y+1/2,-Z+1/2	(6) -X+1,-Y,-Z+1
(7) X,-Y+1,Z+1	(8) X+1,-Y+1,Z+1
(9) X-1,-Y+1,Z	(10) X-1,Y,Z
(11) -X+1,-Y,-Z	(12) -X+2,-Y,-Z
(13) -X+2,Y+1/2-1,-Z+1/2	(14) -X+1,Y+1/2-1,-Z+1/2
(13) -X+2,Y+1/2-1,-Z+1/2	(14) -X+1,Y+1/2-1,-Z+1/

X-Ray Data Collection for 13

Data Collection

A colorless platelet crystal of C₂₁H₂₈O₂ having approximate dimensions of 0.270 x 0.060 x 0.010 mm was mounted in a loop. All measurements were made on a Rigaku XtaLAB P200 diffractometer using multi-layer mirror monochromated Cu-K α radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

a = 5.4875(6) Å α = 79.139(11)⁰ b = 9.8366(9) Å β = 84.202(15)⁰ c = 16.6611(15) Å γ = 79.462(15)⁰ V = 866.27(16) Å³

For Z = 2 and F.W. = 312.45, the calculated density is 1.198 g/cm^3 . Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P-1 (#2)

The data were collected at a temperature of $-148 \pm 1^{\circ}$ C to a maximum 2 θ value of 136.6°. Readout was performed in the 0.172 mm pixel mode.

Data Reduction

Of the 10865 reflections were collected, where 3048 were unique ($R_{int} = 0.0359$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). ¹

The linear absorption coefficient, μ , for Cu-K α radiation is 5.814 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.902 to 0.994. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques.

The crystal is a non-merohedral twin with twin law:

-1.00000 0.00000 0.00000 0.00000 -1.00000 0.00000 -0.41800 -0.59600 1.00000

Twin component #1 comprises 23.10% of the crystal.

The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement³ on F^2 was based on 3048 observed reflections and 210 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0535$

wR2 = $[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1621$

The goodness of fit⁴ was 1.15. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.27 and -0.27 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 ⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure⁹ crystallographic software package except for refinement, which was performed using SHELXL2013¹⁰.

References

(1) <u>CrystalClear</u>: Data Collection and Processing Software, Rigaku Corporation (1998-2014). Tokyo 196-8666, Japan.

(2) <u>SHELXS2013</u>: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

(3) Least Squares function minimized: (SHELXL2013)

 $\Sigma w (F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(4) Goodness of fit is defined as:

 $[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$

where: N_0 = number of observations N_V = number of variables

(5) International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2014). Tokyo 196-8666, Japan.

(10) SHELXL2013: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₂₁ H ₂₈ O ₂
Formula Weight	312.45
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.270 X 0.060 X 0.010 mm
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	a = $5.4875(6)$ Å b = $9.8366(9)$ Å c = $16.6611(15)$ Å α = $79.139(11)$ ° β = $84.202(15)$ ° γ = $79.462(15)$ ° V = $866.27(16)$ Å ³
Space Group	P-1 (#2)
Z value	2
D _{calc}	1.198 g/cm ³
F000	340.00
μ(CuKα)	5.814 cm ⁻¹

B. Intensity Measurements

Diffractometer	XtaLAB P100
Radiation	CuKα (λ = 1.54187 Å) multi-laver mirror
monochromated	
Voltage, Current	40kV, 30mA
Temperature	-148.1 ^o C
Detector Aperture	83.8 x 33.5 mm
Pixel Size	0.172 mm
20 _{max}	136.6 ⁰
No. of Reflections Measured	Total: 10865 Unique: 3048 (R _{int} = 0.0359)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.902 - 0.994)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELXS2013)	
Refinement	Full-matrix least-squares on F^2	
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$	
Least Squares Weights	w = $1/[\sigma^2(Fo^2) + (0.0736 \cdot P)^2 + 0.4931 \cdot P]$	
2Fc ²)/3	where P = (Max(Fo ² ,0) +	
$2\theta_{max}$ cutoff	136.6 ⁰	
Anomalous Dispersion	All non-hydrogen atoms	
No. Observations (All reflections)	3048	
No. Variables	210	
Reflection/Parameter Ratio	14.51	
Residuals: R1 (I>2.00σ(I))	0.0535	
Residuals: R (All reflections)	0.0570	
Residuals: wR2 (All reflections)	0.1621	
Goodness of Fit Indicator	1.145	
Max Shift/Error in Final Cycle	0.000	
Maximum peak in Final Diff. Map	0.27 e ⁻ /Å ³	
Minimum peak in Final Diff. Map	-0.27 e ⁻ /Å ³	

atom	Х	У	Z	Beq
01	1.1956(3)	0.11086(16)	1.14462(9)	2.16(3)
02	0.8481(3)	0.35967(16)	1.17825(9)	2.50(3)
C1	0.9673(4)	0.0542(2)	1.14991(12)	1.96(4)
C2	0.7518(4)	0.1154(2)	1.20194(13)	2.17(4)
C3	0.6653(4)	0.2705(2)	1.17864(13)	2.17(4)
C4	0.7558(4)	0.3513(2)	1.10177(12)	2.02(4)
C5	0.9394(4)	0.2845(2)	1.04057(12)	1.72(3)
C6	1.0575(4)	0.1350(2)	1.07279(12)	1.78(4)
C7	0.8133(4)	0.2869(2)	0.96304(12)	1.61(3)
C8	0.8852(4)	0.3653(2)	0.88886(12)	1.79(4)
C9	0.7734(4)	0.3655(2)	0.81794(12)	1.82(4)
C10	0.5860(4)	0.2862(2)	0.81836(12)	1.58(3)
C11	0.5133(4)	0.2086(2)	0.89326(12)	1.73(3)
C12	0.6235(4)	0.2090(2)	0.96444(12)	1.75(3)
C13	0.4669(4)	0.2816(2)	0.74107(12)	1.78(4)
C14	0.4029(4)	0.4261(2)	0.68751(12)	2.09(4)
C15	0.2686(4)	0.4156(2)	0.61372(12)	2.14(4)
C16	0.4164(4)	0.3132(2)	0.56131(12)	2.00(4)
C17	0.4969(5)	0.1703(2)	0.61469(13)	2.25(4)
C18	0.6293(4)	0.1811(2)	0.68944(12)	1.93(4)
C19	0.2597(5)	0.3043(2)	0.49196(13)	2.45(4)
C20	0.3851(5)	0.2185(3)	0.42768(13)	2.61(4)
C21	0.2054(5)	0.2132(3)	0.36468(15)	3.10(5)

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

atom	Х	У	Z	B _{iso}
H1	0.98832	-0.04951	1.15190	2.350
H2A	0.79796	0.09551	1.25942	2.605
H2B	0.61063	0.06657	1.19971	2.605
H3	0.49321	0.30661	1.19990	2.605
H4	0.63672	0.43530	1.07786	2.419
H5	1.07502	0.34205	1.02567	2.063
H6	1.13150	0.07811	1.02981	2.133
H8	1.01290	0.41961	0.88678	2.148
H9	0.82494	0.42054	0.76807	2.182
H11	0.38549	0.15436	0.89545	2.073
H12	0.56957	0.15586	1.01464	2.102
H13	0.30782	0.24487	0.75807	2.133
H14A	0.29577	0.49099	0.72025	2.508
H14B	0.55727	0.46462	0.66848	2.508
H15A	0.23382	0.50986	0.57939	2.565
H15B	0.10719	0.38535	0.63318	2.565
H16	0.56913	0.35112	0.53633	2.398
H17A	0.60956	0.10894	0.58114	2.704
H17B	0.34848	0.12584	0.63363	2.704
H18A	0.78796	0.21533	0.67090	2.317
H18B	0.66808	0.08687	0.72347	2.317
H19A	0.11092	0.26434	0.51684	2.946
H19B	0.20109	0.40105	0.46374	2.946
H20A	0.44875	0.12175	0.45484	3.134
H20B	0.52838	0.26048	0.39953	3.134
H21A	0.14545	0.30870	0.33674	3.724
H21B	0.06418	0.17084	0.39238	3.724
H21C	0.29102	0.15669	0.32445	3.724

Table 2. Atomic coordinates and $B_{\mbox{\scriptsize ISO}}$ involving hydrogen atoms

Table 3. Anisotropic displacement parameters

-
-
-
-
-
-
-
-
-
-
-
-
_
-
-
-
-
-
-
-
-
-

C21 0.0485(16) 0.0411(14) 0.0291(12) -0.0006(12) -0.0094(11) - 0.0113(10)

The general temperature factor expression: $\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl))$

Table 4. Bond lengths (Å)

atom	atom	distance	atom	atom
01	C1 1 440(3)	1.450(3)	01	C6
02	C3	1.447(3)	02	C4
C1	C2	1.497(3)	C1	C6
C2	C3	1.501(3)	C3	C4
C4	C5	1.513(3)	C5	C6
C5	1.313(3) C7	1.520(3)	C7	C8
C7	1.390(3) C12	1.397(3)	C8	С9
С9	1.385(3) C10	1.399(3)	C10	C11
C10	1.397(3) C13	1.513(3)	C11	C12
C13	1.386(3) C14	1.530(3)	C13	C18
C14	1.534(3) C15	1.524(3)	C15	C16
C16	1.525(3) C17	1.531(3)	C16	C19
C17	1.533(3) C18 1.521(2)	1.534(3)	C19	C20
C20	C21	1.525(4)		

atom	atom distanco	distance	atom	atom
C1	H1 0 990	1.000	C2	H2A
C2	H2B	0.990	C3	H3
C4	H4 1 000	1.000	C5	H5
C6	H6 0.950	1.000	C8	H8
С9	H9 0.950	0.950	C11	H11
C12	H12	0.950	C13	H13
C14	H14A	0.990	C14	H14B
C15	H15A	0.990	C15	H15B
C16	H16	1.000	C17	H17A
C17	H17B	0.990	C18	H18A
C18	H18B	0.990	C19	H19A
C19	0.990 H19B	0.990	C20	H20A
C20	0.990 H20B	0.990	C21	H21A
C21	0.980 H21B 0.980	0.980	C21	H21C

Table 5. Bond lengths involving hydrogens (Å)

Table 6. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom
C1	angle 01	C6	61.11(13)	С3	02	C4
01	61.06(14 C1	·) C2	117.55(19)	01	C1	C6
00	59.09(13)		01	60	<u></u>
C2	C1 115.59(1	C6 8)	121.75(17)	CI	C2	C3
02	C3	C2	116.32(19)	02	С3	C4
C2	59.21(14 C3	C4	121.75(19)	02	C4	C3
02	C4	C5	116.90(18)	C3	C4	C5
C4	122.62(1 C5	8) C6	113.85(16)	C4	C5	C7
C6	110.01(1 C5	C7	109.01(18)	01	C6	C1
01	59.80(13 C6 12255(1	C5	117.74(19)	C1	C6	C5
C5	122.33(1) C7	C8	121.0(2)	C5	C7	C12
C8	120.74(1) C7	C12	118.3(2)	C7	C8	С9
C8	121.0(2) C9 117.4(2)	C10	121.24(18)	С9	C10	C11
С9	C10 1205(2)	C13	122.02(17)	C11	C10	C13
C10	C11	C12 8)	121.5(2)	C7	C12	C11
C10	C13	C14 7)	113.28(19)	C10	C13	C18
C14	C13	C18	109.12(16)	C13	C14	C15
C14	C15	C16	113.15(18)	C15	C16	C17
C15	C16	C19	108.97(18)	C17	C16	C19
C16	C17	C18	112.8(2)	C13	C18	C17
C16	110.99(1 C19 111.4(2)	C20	116.9(2)	C19	C20	C21

atom	atom	atom	angle	atom	atom	atom
01	C1	H1	115.5	C2	C1	H1
C6	C1	H1	115.5	C1	C2	H2A
C1	108.4 C2	H2B	108.4	С3	C2	H2A
C3	108.4 C2	H2B	108.4	H2A	C2	H2B
02	107.5 C3	Н3	115.8	C2	C3	H3
C4	C3	Н3	115.8	02	C4	H4
C3	115.5 C4 115.2	H4	115.3	C5	C4	H4
C4	C5	Н5	107.9	C6	C5	H5
C7	C5	Н5	107.9	01	C6	H6
C1	C6	Н6	115.1	C5	C6	H6
C7	C8	H8	119.5	С9	C8	H8
C8	C9	Н9	119.4	C10	С9	H9
C10	C11	H11	119.3	C12	C11	H11
C7	C12	H12	119.7	C11	C12	H12
C10	C13	H13	107.4	C14	C13	H13
C18	C13	H13	107.4	C13	C14	H14A
C13	109.5 C14	H14B	109.5	C15	C14	H14A
C15	C14	H14B	109.5	H14A	C14	H14B
C14	C15	H15A	108.9	C14	C15	H15B
C16	C15	H15A	109.0	C16	C15	H15B
H15A	C15	H15B	107.8	C15	C16	H16
C17	108.3 C16 108.3	H16	108.3	C19	C16	H16

Table 7. Bond angles involving hydrogens (⁰)

C16	C17	H17A	109.0	C16	C17	H17B
	109.0					
C18	C17	H17A	109.0	C18	C17	H17B
	109.0					
H17A	C17	H17B	107.8	C13	C18	H18A
	109.4					
C13	C18	H18B	109.4	C17	C18	H18A
	109.4					
C17	C18	H18B	109.4	H18A	C18	H18B
	108.0					
C16	C19	H19A	108.1	C16	C19	H19B
	108.1					
C20	C19	H19A	108.1	C20	C19	H19B
	108.1					
H19A	C19	H19B	107.3	C19	C20	H20A
	109.4					
C19	C20	H20B	109.3	C21	C20	H20A
	109.3					
C21	C20	H20B	109.4	H20A	C20	H20B
	108.0					
C20	C21	H21A	109.5	C20	C21	H21B
	109.5					
C20	C21	H21C	109.5	H21A	C21	H21B
	109.5					
H21A	C21	H21C	109.5	H21B	C21	H21C
	109.5					

Table 8. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2 angle	atom3	atom4	angle	atom1	atom2	atom3	atom4	
C1	01 113.41	C6 (18)	C1	0.00(9)	C1	01	C6	C5	
C6 0.00(9)	01	C1	C2	-112.30(17)	C6	01	C1	C6	-
C3	02	C4	C3	-0.00(10)	C3	02	C4	C5	-
C4	02	С3	C2	112.87(19)	C4	02	C3	C4	
01	C1	C2	C3	58.3(2)	01	C1	C6	01	
01	C1	C6	C5	-105.5(2)	C2	C1	C6	01	
C2	C1	C6	C5	-0.2(3)	C6	C1	C2	С3	-
C1	C2	C3	02	-58.0(3)	C1	C2	С3	C4	
02	10.6(3) C3	C4	02	-0.00(7)	02	C3	C4	C5	
C2	104.4(2 C3	C4	02	-103.8(2)	C2	C3	C4	C5	
02	0.6(4) C4	C5	C6	58.5(2)	02	C4	C5	C7	-
C3	15) C4	C5	C6	-11.2(3)	C3	C4	C5	C7	
C4	111.5(z C5	2) C6	01	-59.1(2)	C4	C5	C6	C1	
C4	C5	C7	C8	114.92(18)	C4	C5	C7	C12	-
65.8(2) C6	C5	C7	C8	-119.59(18)	C6	C5	C7	C12	
C7	59.7(2) C5	C6	01	177.63(15)	C7	C5	C6	C1	-
112.2(2 C5	C7	C8	С9	178.81(15)	C5	C7	C12	C11	-
178.33(C8	15) C7	C12	C11	1.0(3)	C12	C7	C8	С9	-
0.5(3) C7	C8	С9	C10	-0.5(3)	C8	С9	C10	C11	
C8	1.0(3) C9	C10	C13	-178.14(16)	С9	C10	C11	C12	-
0.5(3) C9	C10 79.7(2)	C13	C14	-44.3(2)	С9	C10	C13	C18	

C10	C13	C14	136.62(17)	C11	C10	C13	C18	-
C10	C11	C12	178.64(15)	C10	C11	C12	C7	-
C13	C14	C15	-176.28(14)	C10	C13	C18	C17	
175.98	(15)							
C13	C18	C17	-57.8(2)	C18	C13	C14	C15	
58.2(2)								
C14	C15	C16	-57.0(2)	C14	C15	C16	C17	
52.6(2)								
C15	C16	C19	176.82(15)	C15	C16	C17	C18	-
C16	C19	C20	173.96(16)	C17	C16	C19	C20	-
C16	C17	C18	-173.79(16)	C16	C17	C18	C13	
55.7(2)								
C19	C20	C21	177.52(16)					
	C10 C13 175.98 C13 58.2(2) C14 52.6(2) C15 C16 C16 55.7(2) C19	C10 C13 C10 C11 C13 C14 175.98(15) C13 C18 58.2(2) C14 C15 52.6(2) C15 C16 C16 C19 C16 C17 55.7(2) C19 C20	C10 C13 C14 C10 C11 C12 C13 C14 C15 175.98(15) C17 C13 C18 C17 58.2(2) C14 C15 C16 C15 C16 C19 C10 C16 C17 C18 S5.7(2) C19 C20 C21	C10C13C14136.62(17)C10C11C12178.64(15)C13C14C15 $-176.28(14)$ 175.98(15)C13C18C17C13C18C17 $-57.8(2)$ 58.2(2)C14C15C16C14C15C16 $-57.0(2)$ 52.6(2)C16C19176.82(15)C16C19C20173.96(16)C16C17C18 $-173.79(16)$ 55.7(2)C19C20C21C19C20C21177.52(16)	C10C13C14136.62(17)C11C10C11C12178.64(15)C10C13C14C15 $-176.28(14)$ C10175.98(15)C13C18C17 $-57.8(2)$ C18C13C18C17 $-57.8(2)$ C18S8.2(2)C14C15C16 $-57.0(2)$ C14C15C16C19176.82(15)C15C16C19C20173.96(16)C17C16C17C18 $-173.79(16)$ C1655.7(2)C20C21177.52(16)	C10C13C14136.62(17)C11C10C10C11C12178.64(15)C10C11C13C14C15 $-176.28(14)$ C10C13175.98(15)C18C17 $-57.8(2)$ C18C13C13C18C17 $-57.8(2)$ C18C1358.2(2)C14C15C16 $-57.0(2)$ C14C15C15C16C19176.82(15)C15C16C16C19C20173.96(16)C17C16C16C17C18 $-173.79(16)$ C16C17 $55.7(2)$ C20C21177.52(16)C16C17	C10C13C14136.62(17)C11C10C13C10C11C12178.64(15)C10C11C12C13C14C15-176.28(14)C10C13C18175.98(15)C13C18C17-57.8(2)C18C13C1458.2(2)C14C15C16-57.0(2)C14C15C16C15C16C19176.82(15)C15C16C17C16C19C20173.96(16)C17C16C19C16C17C18-173.79(16)C16C17C18 $55.7(2)$ C20C21177.52(16)C16C17C18	C10C13C14136.62(17)C11C10C13C18C10C11C12178.64(15)C10C11C12C7C13C14C15-176.28(14)C10C13C18C17175.98(15)C13C18C17-57.8(2)C18C13C14C15C13C18C17-57.8(2)C18C13C14C1558.2(2)C14C15C16C17C18C17C14C15C16-57.0(2)C14C15C16C1752.6(2)C16C19176.82(15)C15C16C17C18C16C19C20173.96(16)C17C16C19C20C16C17C18-173.79(16)C16C17C18C1355.7(2)C19C20C21177.52(16)C16C17C18C13

atom	atom distance	distance	atom	atom
01	02 3 097(3)	2.921(2)	01	С3
01	C4 3 071(3)	3.090(2)	02	C1
02	C6 2 931(3)	3.069(3)	C1	C4
C1	C7 3 072(3)	3.576(3)	C2	C5
С3	C6	2.931(3)	C3	С7
C4	C8	3.528(3)	C4	C12
C6	C8	3.550(3)	C6	C12
C7	3.033(3) C10	2.825(3)	C8	C11
С9	2.761(3) C12	2.765(3)	С9	C14
С9	C18	3.291(3)	C11	C18
C13	3.443(3) C16	2.988(3)	C14	C17
C15	2.935(3) C18 3.167(3)	2.928(3)	C17	C20

Table 9. Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom
01	uistance	2 750	01	H2B
01	3.332	2.759	01	II2D
01	Н5	2.748	02	H2A
	2.742			
02	H2B	3.321	02	H5
	2.737			
C1	H3	3.407	C1	H5
	3.288			
C1	H12	3.192	C2	H4
	3.415			
C2	H6	3.407	C2	H12
	3.303			
C3	H1	3.403	C3	H5
	3.285			
C3	H12	3.268	C4	H2A
	3.271			
C4	H2B	3.158	C4	H6
	3.405			
C4	H12	2.986	C5	H1
~ -	3.433			
C5	H3	3.435	C5	H8
05	2.683	0.400	0.6	110.4
C5	H12	2.689	C6	HZA
00	3.271	2454	0.6	114
6	HZB	3.156	6	H4
<u>C(</u>	3.409	2 000	C7	114
CO	П12 2.625	2.890	L/	П4
67	2.023 Ц6	2 502	C7	ЦQ
67	3 266	2.373	C7	119
67	J.200 Ц11	3 260	C8	НЛ.
67	3 443	3.209	CO	114
C8	9.115 H5	2 5 5 5	C8	Н6
0	3 474	2.555	0	110
C8	H12	3 2 5 3	69	H11
00	3 2 5 0	5.200		
<u>C</u> 9	H13	3.317	<u>.</u>	H14A
	3.156			
C9	H14B	2.796	C9	H18A
	3.078			
С9	H18B	3.565	C10	H8
-	3.277		-	-
C10	H12	3.279	C10	H14A
	2.716			

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens

C10	H14B	2.769	C10	H18A
C10	2.750 H18B 3.250	2.692	C11	Н9
C11	H13 3.252	2.556	C11	H18B
C12	H4 3.330	3.194	C12	Н5
C12	H6 3.253	3.064	C12	H8
C13	H9 2.672	2.706	C13	H11
C13	H15A 2.731	3.362	C13	H15B
C13	H16 3.376	3.361	C13	H17A
C13	H17B 2.779	2.758	C14	H9
C14	H16 3.315	2.777	C14	H17B
C14	H18A 3.355	2.708	C14	H18B
C15	H13 3.353	2.665	C15	H17A
C15	H17B 3 271	2.765	C15	H18A
C15	H19A 2 597	2.688	C15	H19B
C16	H13 3.388	3.237	C16	H14A

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
C16	H14B 2 701	2.776	C16	H18A
C16	H18B	3.395	C16	H20A
C16	H20B	2.826	C17	H13
C17	H14B	3.269	C17	H15A
C17	H15B	2.757	C17	H19A
C17	H19B	3.382	C17	H20A
C17	H20B	3.521	C18	H9
C18	H11	3.536	C18	H14A
C18	H14B	2.704	C18	H15B
C18	5.294 H16	2.788	C19	H15A
C19	2.682 H15B	2.634	C19	H17A
C19	2.782 H17B	2.692	C19	H21A
C19	2.713 H21B	2.706	C19	H21C
C20	3.356 H16	2.782	C20	H17A
C20	2.886 H17B	3.376	C21	H19A
C21	2.659 H19B	2.695	H1	H2A
H1	2.525 H2B	2.319	H1	H6
H1	2.325 H12	3.495	H2A	Н3
H2B	2.526 H3	2.332	H2B	H12
Н3	3.062 H4 2.540	2.330	H4	H5
H4	2.540 H12 2.546	3.216	Н5	H6

Н5	H8 3.063	2.335	Н6	H12
H8	H9 3 012	2.319	Н9	H14A
Н9	H14B	2.255	Н9	H18A
H11	H12	2.321	H11	H13
H11	H18B	3.240	H13	H14A
H13	H14B	2.868	H13	H15A
H13	H15B 3 593	2.505	H13	H17A
H13	H17B	2.539	H13	H18A
H13	H18B	2.375	H14A	H15A
H14A	H15B	2.349	H14B	H15A
H14B	H15B	2.868	H14B	H16
H14B	H18A	2.541	H15A	H16
H15A	H19A	3.010	H15A	H19B
H15B	H16	2.865	H15B	H17B
H15B	H19A	2.455	H15B	H19B
H16	2.796 H17A 2.870	2.335	H16	H17B

Table 10. Intramolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H16	H18A 2 865	2.661	H16	H19A
H16	H19B	2.385	H16	H20A
H16	H20B 2.356	2.642	H17A	H18A
H17A	H18B 3.069	2.389	H17A	H19A
H17A	H20A 3 147	2.336	H17A	H20B
H17B	H18A 2 352	2.874	H17B	H18B
H17B	H19A	2.491	H17B	H19B
H17B	H20A	2.981	H19A	H20A
H19A	2.303 H20B	2.857	H19A	H21A
H19A	H21B	2.475	H19A	H21C
H19B	H20A	2.857	H19B	H20B
H19B	2.354 H21A 2.097	2.520	H19B	H21B
H19B	H21C	3.584	H20A	H21A
H20A	2.864 H21B	2.377	H20A	H21C
H20B	2.361 H21A	2.372	H20B	H21B
H20B	2.864 H21C	2.367		

atom	atom distance	distance	atom	atom
01	$C2^{1}$	3.299(3)	01	$C3^1$
01	3.397(3) C11 ² 3.269(3)	3.396(3)	02	C8 ³
02	$C14^4$	3.381(3)	C1	C11 ²
C2	3.594(3) 01 ⁵ 3.397(3)	3.299(3)	C3	015
C6	$C12^{1}$ 3.269(3)	3.554(3)	C8	023
C8	$C11^{1}$	3.511(3)	C11	012
C11	3.396(3) C1 ² 3.511(3)	3.594(3)	C11	C8 ⁵
C12	C6 ⁵ 3.381(3)	3.554(3)	C14	024

Table 11. Intermolecular contacts less than 3.60 Å $\,$

Symmetry Operators:

(1) X+1,Y,Z	(2) -X+2,-Y,-Z+2
(3) -X+2,-Y+1,-Z+2	(4) -X+1,-Y+1,-Z+2
(5) X-1,Y,Z	

atom	atom	distance	atom	atom
01	H2B ¹	2.475	01	$H3^{1}$
01	3.057 H11 ²	3.269	01	H12 ¹
01	2.858 H18B ²	2 713	01	H21C ³
01	3.220			
02	H3 ¹ 2 454	3.528	02	H8 ⁴
02	H9 ⁴	3.341	02	H14A ⁵
02	2.426 H21A ³	3.156	C1	H11 ⁶
C1	3.295 H13 ⁶	3.569	C1	H18B ²
C2	3.019 H11 ⁶	3.583	C2	H13 ⁶
C2	3.549 H17B ⁶	3.341	C2	H18B ⁶
C2	3.313 H21C ⁷	3.101	С3	H14A ⁵
С3	3.183 H21C ⁷	3.191	C4	H5 ⁴
C4	3.561 H8 ⁴	2.825	C4	H14A ⁵
C5	3.562 H8 ⁴	3.417	C5	H11 ¹
C5	3.507 H12 ¹	3.471	C6	H6 ²
С6	3.301 H11 ¹	3.293	C6	H12 ¹
С7	2.909 H1 ²	3.262	C7	H4 ⁵
	3.346			
C7	H6 ² 3.342	3.528	C7	H11 ¹
C8	H1 ² 3 223	3.241	C8	H4 ⁵
C8	H5 ⁴	3.493	C8	H11 ¹
C8	3.122 H13 ¹	3.237	С8	H14A ¹
С9	3.595 H1 ²	3.112	С9	H3 ⁵
С9	3.261 H4 ⁵ 3.096	3.286	С9	H13 ¹

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens

С9	H14A ¹	3.462	С9	H15B ¹
C10	5.411 H1 ² 3.482	2.989	C10	H4 ⁵
C10	H8 ⁸ 2.993	3.353	C11	H1 ²
C11	H2B ⁶ 3.561	3.557	C11	H4 ⁵
C11	H5 ⁸ 3.183	3.353	C11	H6 ⁸
C11	H6 ² 3.123	3.245	C11	H8 ⁸
C12	H1 ² 3,496	3.138	C12	H4 ⁵
C12	H5 ⁸ 3 207	3.202	C12	H6 ⁸
C12	H6 ² 3 473	2.886	C13	H2B ⁶
C13	H8 ⁸ 3.554	3.568	C13	H9 ⁸
C14	H9 ⁸ 3 549	3.322	C14	H19B ⁹
C14	H20B ⁹ 3 359	3.222	C15	H9 ⁸
C15	H16 ⁹	3.232	C15	H18A ⁸
C15	H19B ¹⁰	3.107	C15	H20B ⁹
C15	H21A ¹⁰ 3.314	3.377	C16	H15A ⁹

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
C16	H16 ⁹ 3 556	3.406	C17	H2A ⁶
C17	H2B ⁶ 3 24.9	3.572	C17	H20A ¹¹
C17	H21C ¹¹	3.220	C18	H1 ²
C18	H2B ⁶ 3 537	3.173	C18	H15B ¹
C18	H21C ¹¹ 3 365	3.320	C19	H14B ⁹
C19	H15A ¹⁰ 3 585	3.179	C19	H15A ⁹
C20	H14B ⁹ 3 246	3.280	C20	H17A ¹¹
C20	H20A ¹¹ 3 452	3.555	C21	H2A ¹²
C21	H3 ¹³ 3 571	3.095	C21	H14B ⁹
C21	H15A ¹⁰	3.493	C21	H17A ¹¹
C21	H18B ¹¹	3.468	H1	C7 ²
H1	C8 ²	3.241	H1	C9 ²
H1	C10 ²	2.989	H1	C11 ²
H1	C12 ²	3.138	H1	C18 ²
H1	H6 ² 2 702	3.235	H1	H11 ⁶
H1	H11 ² 2 854	3.458	H1	H13 ⁶
H1	H18A ²	3.327	H1	H18B ²
H2A	C17 ⁶	3.556	H2A	C21 ³
H2A	H13 ⁶	3.570	H2A	H17B ⁶
H2A	L130 H18A ²	3.538	H2A	H18B ⁶
H2A	3.343 H18B ² 3.182	3.153	H2A	H20B ⁷

H2A	H21A ³ 3.043	3.560	H2A	H21B ³
H2A	H21C ⁷ 3 208	2.881	H2A	H21C ³
H2B	01 ⁸ 3 557	2.475	H2B	C11 ⁶
H2B	C13 ⁶ 3.572	3.473	H2B	C17 ⁶
H2B	C18 ⁶ 2.917	3.173	H2B	H11 ⁶
H2B	H13 ⁶ 3.055	2.972	H2B	H17B ⁶
H2B	H18B ⁶ 2.751	2.445	H2B	H21C ⁷
Н3	01 ⁸ 3.528	3.057	Н3	028
Н3	C9 ⁵ 3.095	3.261	Н3	C21 ⁷
Н3	H9 ⁵ 3.038	3.029	Н3	H14A ⁵
Н3	H14B ⁵ 3 292	3.385	Н3	H20B ⁷
Н3	H21A ⁷ 2 587	2.822	Н3	H21C ⁷
H4	C7 ⁵	3.346	H4	C8 ⁵
H4	C9 ⁵ 3 482	3.286	H4	C10 ⁵
H4	C11 ⁵	3.561	H4	C12 ⁵
H4	H4 ⁵ 3.093	3.073	H4	H5 ⁴

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H4	H8 ⁴ 3 561	2.762	H5	C4 ⁴
Н5	C8 ⁴ 3 353	3.493	Н5	C11 ¹
Н5	C12 ¹ 3 093	3.202	H5	$H4^4$
Н5	H5 ⁴ 2.931	3.045	Н5	H8 ⁴
Н5	H11 ¹ 2.994	3.260	Н5	H12 ¹
H6	C6 ² 3.528	3.301	Н6	C7 ²
H6	C11 ¹ 3.245	3.183	H6	C11 ²
H6	C12 ¹ 2.886	3.207	H6	C12 ²
Н6	H1 ² 2 666	3.235	H6	H6 ²
H6	H11 ¹ 3 344	2.576	Н6	H11 ²
H6	H12 ¹	2.628	Н6	H12 ²
H8	02 ⁴ 2 825	2.454	H8	C4 ⁴
H8	C5 ⁴	3.417	H8	C10 ¹
H8	C11 ¹ 3 568	3.123	H8	C131
H8	H4 ⁴ 2 931	2.762	H8	H5 ⁴
H8	H11 ¹ 3 137	2.996	H8	H13 ¹
H8	H14A ¹	3.065	Н9	024
Н9	C13 ¹	3.554	Н9	C14 ¹
Н9	C15 ¹	3.359	Н9	H3 ⁵
Н9	H13 ¹ 797	2.895	Н9	H14A ¹
Н9	L.797 H15B ¹ 2.918	2.639	Н9	H21A ⁹

H11	01 ² 3 295	3.269	H11	C16
H11	$C2^{6}$	3.583	H11	C5 ⁸
	3.507			
H11	C6 ⁸	3.293	H11	C7 ⁸
	3.342			
H11	C8 ⁸	3.122	H11	$H1^{6}$
	2.702			
H11	$H1^2$	3.458	H11	H2B ⁶
	2.917			
H11	H5 ⁸	3.260	H11	H6 ⁸
	2.576			
H11	H6 ²	3.344	H11	H8 ⁸
	2.996			
H11	H12 ⁶	3.113	H12	018
	2.858			
H12	C5 ⁸	3.471	H12	C6 ⁸
	2.909			
H12	H5 ⁸	2.994	H12	H6 ⁸
	2.628			
H12	H6 ²	2.748	H12	H11 ⁶
	3.113			
H12	H12 ⁶	3.423	H13	C16
	3.569			
H13	C2 ⁶	3.549	H13	C8 ⁸
	3.237			
H13	C9 ⁸	3.096	H13	$H1^{6}$
	2.854			
H13	$H2A^{6}$	3.570	H13	H2B ⁶
	2.972			
H13	H8 ⁸	3.137	H13	H9 ⁸
	2.895			

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H13	H18A ⁸ 2.426	3.410	H14A	02 ⁵
H14A	C3 ⁵ 3 562	3.183	H14A	C4 ⁵
H14A	C8 ⁸ 3 462	3.595	H14A	C9 ⁸
H14A	H3 ⁵ 3.065	3.038	H14A	H8 ⁸
H14A	H9 ⁸ 3 086	2.797	H14A	H20B ⁹
H14A	H21A ¹⁰	2.943	H14B	C19 ⁹
H14B	C20 ⁹	3.280	H14B	C21 ⁹
H14B	H3 ⁵	3.385	H14B	$H15B^1$
H14B	H19B ⁹	2.704	H14B	H20B ⁹
H14B	2.703 H21A ⁹	2.978	H15A	C16 ⁹
H15A	3.314 C19 ¹⁰	3.179	H15A	C19 ⁹
H15A	3.585 C21 ¹⁰	3.493	H15A	H16 ⁹
H15A	2.425 H19A ¹⁰	2.969	H15A	H19B ¹⁰
H15A	2.515 H19B ⁹	3.348	H15A	H20B ⁹
H15A	2.898 H21A ¹⁰	2.909	H15A	H21B ¹⁰
H15B	3.359 C9 ⁸	3.411	H15B	C18 ⁸
H15B	3.537 H9 ⁸	2.639	H15B	H14B ⁸
H15B	3.002 H18A ⁸	2.591	H15B	H19B ¹⁰
H15B	2.803 H21A ¹⁰	3.183	H16	C15 ⁹
H16	3.232 C16 ⁹	3.406	H16	H15A ⁹
H16	2.425 H16 ⁹ 2.942	2.942	H16	H19A ¹

1117		2.042	11171	C2011
H16	H19B ⁹	2.942	HI/A	C2011
	3.246	0.400		114041
H17A	C21 ¹¹	3.133	H17A	H19A ¹
	3.373			
H17A	H20A ¹¹	2.535	H17A	H21B11
	2.979			<i>.</i>
H17A	H21C ¹¹	2.775	H17B	C26
	3.341			
H17B	H2A ⁶	2.730	H17B	H2B ⁶
	3.055			
H17B	H18A ⁸	3.074	H17B	H20A ¹¹
	3.061			
H17B	H21C ¹¹	3.108	H18A	$C15^{1}$
	3.526			
H18A	H1 ²	3.327	H18A	H2A ²
	3.538			
H18A	H13 ¹	3.410	H18A	$H15B^{1}$
	2.591			
H18A	$H17B^{1}$	3.074	H18A	$H19A^1$
	2.981			
H18B	01 ²	2.713	H18B	$C1^2$
	3.019			
H18B	C2 ⁶	3.313	H18B	$C21^{11}$
	3.468			
H18B	H1 ²	2.873	H18B	H2A ⁶
	3.343			
H18B	H2A ²	3.153	H18B	H2B ⁶
	2.445			
H18B	H21B ¹¹	3.496	H18B	H21C ¹¹
	2.630			
H19A	H15A ¹⁰	2.969	H19A	H16 ⁸
	2.942			

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H19A	H17A ⁸ 2.981	3.373	H19A	H18A ⁸
H19A	H19B ¹⁰ 3.549	3.478	H19B	C14 ⁹
H19B	C15 ¹⁰ 2.704	3.107	H19B	H14B ⁹
H19B	H15A ¹⁰ 3.348	2.515	H19B	H15A ⁹
H19B	H15B ¹⁰ 2.942	2.803	H19B	H16 ⁹
H19B	H19A ¹⁰ 2.983	3.478	H19B	H19B ¹⁰
H20A	C17 ¹¹ 3.555	3.249	H20A	C20 ¹¹
H20A	H17A ¹¹ 3.061	2.535	H20A	H17B ¹¹
H20A	H20A ¹¹ 3.524	2.576	H20A	H21B ¹
H20B	C14 ⁹ 3.525	3.222	H20B	C15 ⁹
H20B	H2A ¹³ 3.292	3.182	H20B	H3 ¹³
H20B	H14A ⁹ 2.703	3.086	H20B	H14B ⁹
H20B	H15A ⁹ 3.531	2.898	H20B	H21A ¹
H20B	H21B ¹ 3.156	2.908	H21A	0212
H21A	C15 ¹⁰ 3.560	3.377	H21A	H2A ¹²
H21A	H3 ¹³ 2.918	2.822	H21A	H9 ⁹
H21A	H14A ¹⁰ 2.978	2.943	H21A	H14B ⁹
H21A	H15A ¹⁰ 3 183	2.909	H21A	H15B ¹⁰
H21A	H20B ⁸ 3.043	3.531	H21B	H2A ¹²
H21B	H15A ¹⁰ 2 979	3.359	H21B	H17A ¹¹
H21B	H18B ¹¹ 3.524	3.496	H21B	H20A ⁸

H21B	H20B ⁸	2.908	H21C	0112
H21C	3.220 C2 ¹³	3.101	H21C	C3 ¹³
H21C	3.191 C17 ¹¹	3.220	H21C	C18 ¹¹
H21C	3.320 H2A ¹²	3.208	H21C	H2A ¹³
H21C	2.881 H2B ¹³	2.751	H21C	H3 ¹³
H21C	2.587 H17A ¹¹	2.775	H21C	H17B ¹¹
H21C	3.108 H18B ¹¹	2.630	_	

Symmetry Operators:

(1) X+1,Y,Z	(2) -X+2,-Y,-Z+2
(3) X+1,Y,Z+1	(4) -X+2,-Y+1,-Z+2
(5) -X+1,-Y+1,-Z+2	(6) -X+1,-Y,-Z+2
(7) X,Y,Z+1	(8) X-1,Y,Z
(9) -X+1,-Y+1,-Z+1	(10) -X,-Y+1,-Z+1
(11) -X+1,-Y,-Z+1	(12) X-1,Y,Z-1
(13) X,Y,Z-1	

X-Ray Data Collection for 16

Data Collection

A colorless platelet crystal of $C_{23}H_{28}F_8O_6S_2$ having approximate dimensions of 0.120 x 0.100 x 0.010 mm was mounted in a loop. All measurements were made on a Rigaku Mercury70 diffractometer using filtered Mo-K α radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

a = 10.070(3) Å	$\alpha = 94.940(7)^{0}$
b = 15.616(4) Å	$\beta = 91.272(6)^{0}$
c = 17.611(4) Å	$\gamma = 95.758(7)^{0}$
$V = 2744.0(12) Å^3$	

For Z = 4 and F.W. = 616.58, the calculated density is 1.492 g/cm^3 . Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P-1 (#2)

The data were collected at a temperature of $-100 \pm 1^{\circ}$ C to a maximum 2 θ value of 50.7°. Readout was performed in the 0.136 mm pixel mode.

Data Reduction

Of the 17265 reflections were collected, where 9191 were unique ($R_{int} = 0.0780$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). ¹

The linear absorption coefficient, μ , for Mo-K α radiation is 2.844 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.429 to 0.997. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-
squares refinement³ on F^2 was based on 9191 observed reflections and 705 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0963$$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.2772$$

The goodness of fit⁴ was 1.05. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.95 and -0.42 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 ⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure⁹ crystallographic software package except for refinement, which was performed using SHELXL2013¹⁰.

References

(1) <u>CrystalClear</u>: Data Collection and Processing Software, Rigaku Corporation (1998-2014). Tokyo 196-8666, Japan.

(2) <u>SIR2004</u>: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna R. (2005). J. Appl. Cryst. 38, 381-388.

(3) Least Squares function minimized: (SHELXL2013)

 $\Sigma w (F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(4) Goodness of fit is defined as:

 $[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where: N_0 = number of observations N_V = number of variables

(5) International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2014). Tokyo 196-8666, Japan.

(10) <u>SHELXL2013</u>: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₂₃ H ₂₈ F ₈ O ₆ S ₂
Formula Weight	616.58
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.120 X 0.100 X 0.010 mm
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	a = 10.070(3) Å b = 15.616(4) Å c = 17.611(4) Å α = 94.940(7) ° β = 91.272(6) ° γ = 95.758(7) ° V = 2744.0(12) Å ³
Space Group	P-1 (#2)
Z value	4
D _{calc}	1.492 g/cm ³
F000	1272.00
μ(ΜοΚα)	2.844 cm ⁻¹

B. Intensity Measurements

Diffractometer	Mercury70
Radiation Voltage, Current	MoKα (λ = 0.71075 Å) 50kV, 16mA
Temperature	-100.0°C
Detector Aperture	70.0 x 70.0 mm
Pixel Size	0.136 mm
20 _{max}	50.00
No. of Reflections Measured	Total: 17265 Unique: 9191 (R _{int} = 0.0780)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.429 - 0.997)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR2004)
Refinement	Full-matrix least-squares on F^2
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.1222 · P) ² + 0.0000 · P]
2Fc ²)/3	where P = (Max(Fo ² ,0) +
$2\theta_{max}$ cutoff	50.0 ⁰
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	9191
No. Variables	705
Reflection/Parameter Ratio	13.04
Residuals: R1 (I>2.00σ(I))	0.0963
Residuals: R (All reflections)	0.2105
Residuals: wR2 (All reflections)	0.2772
Goodness of Fit Indicator	1.047
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.95 e⁻/Å ³
Minimum peak in Final Diff. Map	-0.42 e ⁻ /Å ³

atom	Х	У	Z	Beq
S2	0.29877(18)	1.03566(13)	0.38005(11)	3.02(4)
S6	0.6379(2)	0.63293(17)	0.40692(15)	5.27(6)
S32	1.4594(2)	0.79914(15)	0.09867(16)	4.71(6)
S36	0.86260(18)	1.02486(13)	0.14261(11)	3.16(4)
F3	0.5997(4)	1.0534(3)	0.3423(3)	4.59(10)
F5	0.8317(4)	0.8076(3)	0.3691(3)	5.22(11)
F21	0.1429(5)	0.9307(3)	0.4536(3)	5.66(12)
F22	0.0698(4)	1.0509(3)	0.4369(3)	5.59(12)
F23	0.0673(4)	0.9538(4)	0.3432(3)	6.95(15)
F24	0.3921(6)	0.5839(4)	0.4426(4)	7.98(16)
F25	0.5140(6)	0.4823(4)	0.4182(4)	8.35(17)
F26	0.4404(7)	0.5467(5)	0.3274(4)	9.6(2)
F33	1.5257(4)	0.9992(3)	0.0861(3)	5.44(12)
F35	1.1576(5)	1.1668(3)	0.1011(3)	5.24(11)
F51	1.2432(6)	0.6943(4)	0.0728(4)	7.66(16)
F52	1.4240(5)	0.6341(3)	0.0737(3)	6.40(13)
F53	1.3415(7)	0.6845(3)	0.1783(4)	8.28(17)
F54	0.8880(6)	1.1908(4)	0.1359(4)	8.88(18)
F55	0.6951(6)	1.1375(4)	0.1626(4)	9.4(2)
F56	0.8475(7)	1.1524(4)	0.2442(4)	9.7(2)
02	0.3551(4)	0.9515(3)	0.3431(2)	2.53(9)
06	0.5880(5)	0.7012(4)	0.3554(3)	3.80(11)
021	0.3672(5)	1.0669(3)	0.4503(3)	3.65(11)
022	0.2776(5)	1.0902(3)	0.3221(3)	4.40(12)
023	0.6569(6)	0.6672(4)	0.4834(4)	6.39(15)
024	0.7374(6)	0.5894(4)	0.3682(4)	6.75(17)
032	1.3707(5)	0.8626(4)	0.1451(3)	4.59(12)
036	1.0066(5)	1.0338(3)	0.1728(3)	3.90(11)
051	1.4607(7)	0.8122(5)	0.0223(4)	8.0(2)
052	1.5738(6)	0.7972(5)	0.1452(5)	9.4(2)
053	0.8523(5)	1.0155(3)	0.0625(3)	4.11(11)
054	0.7844(6)	0.9699(4)	0.1869(3)	5.40(14)
C1	0.4656(6)	0.8241(5)	0.3593(4)	2.85(15)
C2	0.4800(6)	0.9228(5)	0.3731(4)	2.83(15)
C3	0.5939(7)	0.9638(5)	0.3296(4)	3.30(16)
C4	0.7221(7)	0.9331(6)	0.3552(4)	3.93(19)
C5	0.7144(7)	0.8373(6)	0.3407(5)	3.77(18)

Table 1. Atomic coordinates and $\mathrm{B}_{iso}/\mathrm{B}_{eq}$

C60.5985(7)0.7934(5)0.3805(4)3.2C70.3519(6)0.7844(4)0.4044(4)2.3C80.3553(7)0.7946(5)0.4839(4)3.4C90.2565(7)0.7563(5)0.5250(4)3.1C100.1453(7)0.7087(5)0.4900(4)2.7C110.1395(7)0.7006(5)0.4121(4)2.8C120.2415(6)0.7372(4)0.3679(4)2.5C130.0367(7)0.6650(5)0.5365(4)3.2	20(16) 32(13) 43(16) 16(15) 71(14) 38(15) 59(14) 29(15) 18(18) 08(18) 72(17)
C70.3519(6)0.7844(4)0.4044(4)2.3C80.3553(7)0.7946(5)0.4839(4)3.4C90.2565(7)0.7563(5)0.5250(4)3.1C100.1453(7)0.7087(5)0.4900(4)2.7C110.1395(7)0.7006(5)0.4121(4)2.8C120.2415(6)0.7372(4)0.3679(4)2.5C130.0367(7)0.6650(5)0.5365(4)3.2	32(13) 43(16) 16(15) 71(14) 38(15) 59(14) 29(15) 18(18) 08(18) 72(17)
C80.3553(7)0.7946(5)0.4839(4)3.4C90.2565(7)0.7563(5)0.5250(4)3.1C100.1453(7)0.7087(5)0.4900(4)2.7C110.1395(7)0.7006(5)0.4121(4)2.8C120.2415(6)0.7372(4)0.3679(4)2.5C130.0367(7)0.6650(5)0.5365(4)3.2	43(16) 16(15) 71(14) 38(15) 59(14) 29(15) 18(18) 08(18) 72(17)
C90.2565(7)0.7563(5)0.5250(4)3.1C100.1453(7)0.7087(5)0.4900(4)2.7C110.1395(7)0.7006(5)0.4121(4)2.8C120.2415(6)0.7372(4)0.3679(4)2.5C130.0367(7)0.6650(5)0.5365(4)3.2	16(15) 71(14) 38(15) 59(14) 29(15) 18(18) 18(18) 72(17)
C100.1453(7)0.7087(5)0.4900(4)2.7C110.1395(7)0.7006(5)0.4121(4)2.8C120.2415(6)0.7372(4)0.3679(4)2.5C130.0367(7)0.6650(5)0.5365(4)3.2	71(14) 38(15) 59(14) 29(15) 18(18) 38(18) 72(17)
C110.1395(7)0.7006(5)0.4121(4)2.8C120.2415(6)0.7372(4)0.3679(4)2.5C130.0367(7)0.6650(5)0.5365(4)3.2	38(15) 59(14) 29(15) 18(18))8(18) 72(17)
C120.2415(6)0.7372(4)0.3679(4)2.5C130.0367(7)0.6650(5)0.5365(4)3.2	59(14) 29(15) 18(18))8(18) 72(17)
C13 0.0367(7) 0.6650(5) 0.5365(4) 3.2	29(15) 18(18))8(18) 72(17)
	18(18))8(18) 72(17)
C14 -0.0211(8) 0.7297(5) 0.5940(5) 4.1)8(18) 72(17)
C15 -0.1176(7) 0.6839(5) 0.6487(4) 4.0	72(17)
C16 -0.0542(7) 0.6151(5) 0.6882(4) 3.7	
C17 -0.0044(8) 0.5501(5) 0.6309(4) 4.1	14(17)
C18 0.0937(8) 0.5931(5) 0.5771(4) 3.8	34(17)
C19 -0.1446(8) 0.5701(6) 0.7455(4) 5.3	3(2)
C20 -0.1747(9) 0.6287(6) 0.8164(5) 6.0)(2)
C21 -0.2516(9) 0.5788(7) 0.8735(5) 6.8	3(3)
C22 0.1332(8) 0.9876(6) 0.4043(6) 4.3	30(19)
C23 0.4863(11) 0.5578(7) 0.3968(7) 6.1	1(2)
C31 1.1820(7) 0.9420(5) 0.1487(4) 3.4	43(16)
C32 1.3140(6) 0.9323(5) 0.1086(4) 2.9	99(15)
C33 1.4077(7) 1.0132(6) 0.1194(5) 4.2	28(18)
C34 1.3472(7) 1.0873(5) 0.0927(4) 3.6	59(17)
C35 1.2162(7) 1.1010(5) 0.1300(5) 3.5	56(16)
C36 1.1226(7) 1.0209(5) 0.1231(4) 2.6	50(14)
C37 1.0852(7) 0.8601(5) 0.1381(5) 3.7	73(17)
C38 1.0240(8) 0.8299(5) 0.0677(5) 4.1	13(18)
C39 0.9384(8) 0.7539(5) 0.0604(5) 3.8	30(17)
C40 0.9131(7) 0.7049(5) 0.1206(4) 3.2	29(16)
C41 0.9781(8) 0.7367(5) 0.1915(5) 3.8	31(17)
C42 1.0622(7) 0.8109(5) 0.1974(5) 3.5	51(16)
C43 0.8268(8) 0.6188(5) 0.1114(5) 4.0)0(18)
C44 0.9139(9) 0.5453(5) 0.1078(6) 5.7	7(2)
C45 0.8285(10) 0.4574(6) 0.1038(7) 8.0)(3)
C46 0.7326(9) 0.4494(5) 0.1651(7) 7.0)(3)
C47 0.6443(8) 0.5215(5) 0.1672(6) 5.4	4(2)
C48 0.7273(7) 0.6090(5) 0.1761(5) 4.3	37(19)
C490.6462(13)0.3621(7)0.1676(7)10	.7(4)

Table 1. Atomic coordinates and $B_{\mbox{iso}}/B_{\mbox{eq}}$ (continued)

atom	Х	У	Z	Beq
C50	0.5896(14)	0.3507(9)	0.2476(7)	10.9(4)
C51	0.5090(18)	0.2680(10)	0.2626(11)	16.6(5)
C52	1.3602(10)	0.6978(6)	0.1055(6)	5.1(2)
C53	0.8224(10)	1.1322(6)	0.1722(7)	5.4(2)

 $B_{eq} = 8/3 \ \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

atom	Х	У	Z	B _{iso}
H1	0.44580	0.80763	0.30374	3.414
H2	0.49238	0.94107	0.42886	3.400
H3	0.57812	0.94652	0.27386	3.961
H4A	0.79696	0.96011	0.32709	4.715
H4B	0.73873	0.95016	0.41027	4.715
H5	0.70446	0.82064	0.28461	4.527
H6	0.61449	0.80231	0.43700	3.841
H8	0.42819	0.82899	0.51000	4.116
H9	0.26428	0.76249	0.57908	3.798
H11	0.06340	0.66899	0.38665	3.458
H12	0.23464	0.72961	0.31384	3.109
H13	-0.03711	0.63808	0.50063	3.947
H14A	-0.06957	0.76994	0.56603	5.019
H14B	0.05294	0.76406	0.62420	5.019
H15A	-0.14581	0.72744	0.68765	4.895
H15B	-0.19841	0.65702	0.61941	4.895
H16	0.02577	0.64469	0.71791	4.460
H17A	-0.08111	0.51875	0.60075	4.974
H17B	0.04042	0.50737	0.65797	4.974
H18A	0.11941	0.54853	0.53824	4.608
H18B	0.17557	0.61761	0.60662	4.608
H19A	-0.23012	0.54698	0.71908	6.415
H19B	-0.10130	0.52048	0.76233	6.415
H20A	-0.08968	0.65650	0.84054	7.209
H20B	-0.22711	0.67493	0.80063	7.209
H21A	-0.19351	0.54076	0.89658	8.207
H21B	-0.32861	0.54399	0.84779	8.207
H21C	-0.28254	0.61920	0.91334	8.207
H31	1.20372	0.95360	0.20457	4.117
H32	1.29636	0.91505	0.05296	3.593
H33	1.42688	1.02590	0.17545	5.139
H34A	1.33192	1.07802	0.03677	4.424
H34B	1.41014	1.14007	0.10379	4.424
H35	1.23581	1.11759	0.18550	4.276
H36	1.08955	1.00848	0.06887	3.118
H38	1.04086	0.86143	0.02455	4.950
H39	0.89615	0.73523	0.01219	4.565

Table 2. Atomic coordinates and $B_{\mbox{\scriptsize ISO}}$ involving hydrogen atoms

atom	Х	У	Z	Beq
H41	0.96269	0.70576	0.23513	4.576
H42	1.10668	0.82921	0.24506	4.209
H43	0.77463	0.61537	0.06204	4.803
H44A	0.97419	0.55145	0.15356	6.829
H44B	0.96975	0.54775	0.06233	6.829
H45A	0.77886	0.44806	0.05411	9.619
H45B	0.88866	0.41119	0.10571	9.619
H46	0.78688	0.45838	0.21390	8.418
H47A	0.58344	0.51690	0.21040	6.490
H47B	0.58911	0.51653	0.11951	6.490
H48A	0.77702	0.61559	0.22572	5.247
H48B	0.66708	0.65535	0.17608	5.247
H49A	0.70101	0.31438	0.15331	12.894
H49B	0.57125	0.35862	0.12979	12.894
H50A	0.66613	0.35951	0.28469	13.061
H50B	0.53340	0.39829	0.25966	13.061
H51A	0.56922	0.22530	0.27495	19.918
H51B	0.45420	0.24588	0.21711	19.918
H51C	0.45095	0.27891	0.30557	19.918

Table 2. Atomic coordinates and B_{iSO} involving hydrogens/B_{eq} (continued)

Table 3. Anisotropic displacement parameters

atom	U11 U23	U22	U33	U ₁₂	U13	
S2	0.0403(11)	0.0461(14)	0.0282(12)	0.0017(9)	0.0032(9)	
S6	0.0707(16)	0.0781(19)	0.0573(18)	0.0275(14)	-0.0088(13)	
S32	0.0469(13)	0.0588(17)	0.0770(19)	0.0149(11)	0.0076(13)	
S36	0.0435(12) 0.0044(10)	0.0494(14)	0.0268(12)	0.0005(10)	0.0040(9)	
F3	0.052(3) 0.016(3)	0.062(4)	0.059(3)	-0.010(2)	0.012(2)	
F5	0.032(2) 0.026(3)	0.108(4)	0.064(3)	0.020(2)	0.004(2)	
F21	0.067(3)	0.065(4)	0.088(4)	0.005(3)	0.040(3)	
F22	0.064(3)	0.069(4)	0.083(4)	0.019(3)	0.034(3)	
F23 0.038(4)	0.035(3)	0.137(5)	0.080(4)	-0.008(3)	-0.006(3)	-
F24	0.090(4) 0.036(4)	0.081(4)	0.139(6)	0.014(3)	0.017(4)	
F25	0.145(6) 0.017(4)	0.062(4)	0.118(5)	0.033(4)	0.026(4)	
F26	0.147(6) 0.020(4)	0.120(6)	0.088(5)	-0.037(5)	-0.036(4)	
F33 0.000(3)	0.036(3)	0.072(4)	0.094(4)	-0.007(2)	0.003(3)	-
F35	0.075(3) 0.015(3)	0.048(3)	0.080(4)	0.015(3)	0.008(3)	
F51 0.028(4)	0.065(4)	0.081(4)	0.138(6)	0.010(3)	-0.014(4)	-
F52 0.009(3)	0.082(4)	0.061(4)	0.099(4)	0.017(3)	0.007(3)	-
F53	0.179(6) 0.017(3)	0.061(4)	0.077(5)	0.014(4)	0.031(4)	
F54	0.092(4) 0.008(4)	0.053(4)	0.196(7)	0.020(3)	0.042(5)	
F55 0.058(4)	0.062(4)	0.078(5)	0.208(7)	0.020(3)	-0.002(4)	-
F56 0.053(4)	0.156(6)	0.110(6)	0.097(5)	0.050(5)	-0.019(4)	-
02	0.031(3) 0.002(2)	0.045(3)	0.021(3)	0.009(2)	0.002(2)	
06	0.051(3) 0.017(3)	0.060(4)	0.039(3)	0.023(3)	-0.002(3)	

021	0.047(3)	0.058(4)	0.030(3)	0.002(3)	0.000(3) -
0.007(3)	0.076(4)	0.057(4)	0.040(3)	0 020(3)	0.006(3)
022	0.070(4)	0.037(4)	0.040(3)	0.020(3)	0.000(3)
023	0.091(5)	0.105(6)	0.053(4)	0.030(4)	-0.023(3)
	0.023(4)				
024	0.079(4)	0.099(5)	0.090(5)	0.060(4)	0.009(4)
	0.013(4)				
032	0.060(3)	0.059(4)	0.058(4)	0.019(3)	-0.011(3)
0.0 (0.010(3)	0.054(4)	0.005(0)	0.040(0)	0.000(0)
036	0.058(3)	0.054(4)	0.037(3)	0.012(3)	0.000(3)
054	0.002(3)	0.005(0)	0.000(())		
051	0.130(6)	0.097(6)	0.082(6)	0.025(5)	0.046(5)
	0.014(4)				
052	0.071(5)	0.076(6)	0.207(9)	0.020(4)	-0.058(5)
	0.003(5)				
053	0.057(3)	0.061(4)	0.038(4)	0.009(3)	0.001(3)
	0.000(3)				
054	0.087(4)	0.068(4)	0.049(4)	-0.007(3)	0.017(3)
	0.014(3)				
C1	0.033(4)	0.049(6)	0.025(4)	-0.002(4)	0.001(3)
	0.003(4)				
C2	0.021(4)	0.060(6)	0.027(4)	0.005(4)	-0.001(3)
	0.003(4)				
C3	0.036(4)	0.062(6)	0.027(5)	-0.001(4)	0.005(4)
	0.008(4)				
C4	0.027(4)	0.101(8)	0.019(4)	-0.004(4)	0.000(3)
	0.007(4)				
C5	0.026(4)	0.082(7)	0.039(5)	0.015(4)	0.002(4)
	0.014(5)				

Table 3. Anisotro	pic dis	placement	parameters	[continued])
-------------------	---------	-----------	------------	-------------	---

atom	U11 U23	U22	U33	U12	U13	
C6	0.038(4)	0.062(6)	0.023(4)	0.004(4)	-0.002(3)	
C7	0.036(4) 0.005(3)	0.031(5)	0.022(4)	0.004(3)	0.002(3)	
C8 0.006(4)	0.039(4)	0.049(6)	0.037(5)	-0.015(4)	-0.006(4)	-
C9	0.040(4) 0.005(4)	0.048(5)	0.030(5)	-0.009(4)	0.010(4)	
C10	0.035(4) 0.006(4)	0.038(5)	0.030(5)	0.002(4)	0.001(4)	
C11 0.000(4)	0.037(4)	0.047(5)	0.023(5)	-0.001(4)	-0.011(3)	-
C12	0.033(4) 0.006(4)	0.036(5)	0.030(4)	0.003(3)	-0.007(3)	
C13	0.039(4)	0.046(5)	0.040(5)	-0.003(4)	-0.002(4)	
C14	0.058(5)	0.044(6)	0.061(6)	0.011(4)	0.020(5)	
C15	0.047(5)	0.064(6)	0.045(5)	0.009(4)	0.017(4)	
C16	0.043(4)	0.053(6)	0.043(5)	-0.007(4)	-0.011(4)	
C17	0.068(5)	0.045(6)	0.043(5)	-0.006(4)	-0.009(4)	
C18	0.056(5) 0.004(4)	0.044(5)	0.045(5)	0.002(4)	0.013(4)	
C19	0.064(6)	0.089(8)	0.042(6)	-0.032(5)	0.006(5)	
C20	0.069(6)	0.096(8)	0.055(6)	-0.030(6)	0.007(5)	
C21	0.088(7)	0.129(10)	0.040(6)	-0.024(7)	0.014(5)	
C22 0.011(6)	0.041(5)	0.068(7)	0.053(6)	0.011(5)	0.013(5)	-
C23	0.088(8) 0.019(7)	0.061(8)	0.086(9)	0.015(6)	0.013(7)	
C31	0.060(5) 0.007(4)	0.036(5)	0.035(5)	0.009(4)	-0.008(4)	
C32	0.036(4) 0.010(4)	0.048(5)	0.030(5)	0.004(4)	-0.013(3)	
C33	0.034(5)	0.063(6)	0.065(6)	-0.004(4)	-0.012(4)	
C34	0.039(4) 0.001(4)	0.052(6)	0.046(5)	-0.007(4)	0.000(4)	

C35	0.059(5) 0.019(4)	0.034(5)	0.045(5)	0.003(4)	-0.017(4)	
C36	0.043(4) 0.005(3)	0.043(5)	0.014(4)	0.008(4)	0.014(3)	
C37	0.045(5)	0.039(5)	0.055(6)	0.000(4)	-0.015(4) -	
0.004(5)						
C38	0.057(5) 0.021(5)	0.048(6)	0.054(6)	0.006(5)	0.005(5)	
C39	0.059(5) 0.015(4)	0.050(6)	0.036(5)	-0.004(4)	-0.012(4)	
C40	0.040(4) 0.008(4)	0.050(6)	0.037(5)	0.008(4)	-0.001(4)	
C41	0.064(5) 0.008(4)	0.042(6)	0.038(5)	-0.000(4)	0.001(4)	
C42	0.046(5) 0.011(4)	0.044(6)	0.042(5)	0.000(4)	-0.012(4)	
C43	0.062(5) 0.006(4)	0.040(6)	0.046(5)	-0.013(4)	-0.008(4)	
C44 0.015(5)	0.066(6)	0.046(6)	0.101(8)	-0.002(5)	0.030(5) -	
C45	0.068(6)	0.040(7)	0.189(13)	-0.009(5)	0.029(8) -	
0.022(7)						
C46	0.051(5) 0.040(7)	0.030(6)	0.190(12)	-0.002(4)	0.011(7)	
C47	0.050(5) 0.028(5)	0.041(6)	0.117(8)	-0.001(4)	0.003(5)	
C48	0.048(5)	0.044(6)	0.080(7)	0.016(4)	0.019(5)	
C49	0.136(5) 0.0123(11)	0.135(5)	0.137(5)	0.0145(11)	0.0039(11)	

atom	U ₁₁	U22	U33	U12	U13	
CEO	U23	0 1 2 7 (5)	0 120(5)	0.0122(11)	0.0050(11)	
620	0.138(5)	0.137(5)	0.138(5)	0.0133(11)	0.0050(11)	
C51	0.210(7)	0.210(7)	0.210(7)	0.0216(9)	0.0066(6)	
	0.0187(8)					
C52	0.067(7)	0.058(7)	0.071(8)	0.020(5)	0.003(6)	-
0.003(6)						
C53	0.064(7)	0.047(7)	0.093(9)	0.004(5)	0.017(6)	-
0.011(6)						

The general temperature factor expression: $\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table 4. Fragment Analysis

fragment:	1				
	S(2)	S(6)	F(3)	F(5)	F(21)
	F(22)	F(23)	F(24)	F(25)	F(26)
	0(2)	0(6)	0(21)	0(22)	0(23)
	0(24)	C(1)	C(2)	C(3)	C(4)
	C(5)	C(6)	C(7)	C(8)	C(9)
	C(10)	C(11)	C(12)	C(13)	C(14)
	C(15)	C(16)	C(17)	C(18)	C(19)
	C(20)	C(21)	C(22)	C(23)	
fragment:	2				
	S(32)	S(36)	F(33)	F(35)	F(51)
	F(52)	F(53)	F(54)	F(55)	F(56)
	0(32)	0(36)	0(51)	0(52)	0(53)
	0(54)	C(31)	C(32)	C(33)	C(34)
	C(35)	C(36)	C(37)	C(38)	C(39)
	C(40)	C(41)	C(42)	C(43)	C(44)
	C(45)	C(46)	C(47)	C(48)	C(49)
	C(50)	C(51)	C(52)	C(53)	

Table 5. Bond lengths (Å)

atom	atom distance	distance	atom	atom
S2	02 1 427(E)	1.579(5)	S2	021
S2	1.427(3) 022 1.834(8)	1.411(6)	S2	C22
S6	1.031(0) 06 1.407(7)	1.570(6)	S6	023
S6	024	1.420(7)	S6	C23
S32	032	1.586(6)	S32	051
S32	052	1.403(8)	S32	C52
S36	036	1.522(5)	S36	053
S36	054	1.405(6)	S36	C53
F3	C3 1 408(9)	1.393(10)	F5	C5
F21	C22	1.303(12)	F22	C22
F23	C22 1.331(13)	1.295(10)	F24	C23
F25	C23	1.322(13)	F26	C23
F33	C33 1.364(9)	1.366(9)	F35	C35
F51	C52 1.328(11)	1.294(11)	F52	C52
F53	C52 1.296(12)	1.329(12)	F54	C53
F55	C53 1.294(13)	1.301(12)	F56	C53
02	C2 1.462(10)	1.478(8)	06	C6
032	C32 1 495(8)	1.467(10)	036	C36
C1	C2 1 515(10)	1.531(10)	C1	C6
C1	C7 1 513(10)	1.521(9)	C2	С3
C3	C4 1 490(13)	1.495(11)	C4	C5
C5	C6 1.394(10)	1.510(10)	C7	C8

C7	C12	1.384(9)	C8	С9
С9	1.363(10) C10 1.367(10)	1.381(9)	C10	C11
C10	C13 1.407(10)	1.522(10)	C11	C12
C13	C14 1.533(11)	1.533(11)	C13	C18
C14	C15 1.514(12)	1.551(11)	C15	C16
C16	C17 1.541(11)	1.500(11)	C16	C19
C17	C18 1.537(12)	1.531(11)	C19	C20
C20	C21 1.534(10)	1.506(13)	C31	C32
C31	C36 1.523(10)	1.521(11)	C31	C37
C32	C33 1.468(12)	1.496(10)	C33	C34
C34	C35 1.484(10)	1.513(11)	C35	C36
C37	C38 1.360(12)	1.395(12)	C37	C42
C38	C39	1.389(11)	C39	C40
C40	C41 1 521(10)	1.423(11)	C40	C43
C41	C42 1.511(12)	1.359(11)	C43	C44

atom	atom distanco	distance	atom	atom
C43	C48	1.542(11)	C44	C45
C45	C46	1.470(16)	C46	C47
C46	1.502(12) C49	1.546(14)	C47	C48
C49	1.521(11) C50 1.50(2)	1.548(18)	C50	C51

Table 5. Bond lengths (Å) (continued)

atom	atom distance	distance	atom	atom
C1	H1	1.000	C2	H2
60	1.000	1 0 0 0		
C3	H3 0.000	1.000	C4	H4A
C4	0.990 H4B	0 990	65	Н5
01	1.000	01770	00	110
C6	H6	1.000	C8	H8
	0.950			
С9	H9	0.950	C11	H11
	0.950			
C12	H12	0.950	C13	H13
	1.000			
C14	H14A	0.990	C14	H14B
	0.990			
C15	H15A	0.990	C15	H15B
010	0.990	1 000	047	
C16	H16	1.000	C1/	H1/A
C17	0.990 U17D	0.000	C10	U10 Л
CI/		0.990	C10	птон
C18	0.990 H19R	0.000	C10	Н10 Л
010	0 990	0.770	CI	ШЛ
C19	H19R	0 990	C20	H20A
	0.990		020	112011
C20	H20B	0.990	C21	H21A
	0.980			
C21	H21B	0.980	C21	H21C
	0.980			
C31	H31	1.000	C32	H32
	1.000			
C33	H33	1.000	C34	H34A
	0.990			
C34	H34B	0.990	C35	H35
60 (1.000	1.000	220	
636	H36	1.000	C38	H38
C20	0.950	0.050	C 4 1	11/1
639	H39 0.050	0.950	C41	П41
CA2	0.930 HA2	0.950	C43	H1/3
672	1 000	0.750	CTJ	1175
C44	H44A	0 990	C44	H44B
~ * *	0.990			
C45	H45A	0.990	C45	H45B
	0.990			

Table 6. Bond lengths involving hydrogens (Å)

C46	H46	1.000	C47	H47A
	0.990			
C47	H47B	0.990	C48	H48A
	0.990			
C48	H48B	0.990	C49	H49A
	0.990			
C49	H49B	0.990	C50	H50A
	0.990			
C50	H50B	0.990	C51	H51A
	0.980			
C51	H51B	0.980	C51	H51C
	0.980			

Table 7. Bond angles (0)

atom	atom angle	atom	angle	atom	atom	atom
02	S2 108 6(3)	021	111.7(3)	02	S2	022
02	S2	C22	98.7(4)	021	S2	022
021	S2	C22	106.7(4)	022	S2	C22
06	S6	023	111.3(4)	06	S6	024
06	S6 121 6(4)	C23	96.5(4)	023	S6	024
023	S6 105 6(5)	C23	109.7(5)	024	S6	C23
032	S32	051	112.0(4)	032	S32	052
032	S32 124 7(5)	C52	100.0(4)	051	S32	052
051	S32	C52	106.2(5)	052	S32	C52
036	S36	053	112.8(3)	036	S36	054
036	S36 121 5(3)	C53	98.6(4)	053	S36	054
053	S36 105 5(4)	C53	106.7(5)	054	S36	C53
S2	100.5(1) 02 122.2(4)	C2	120.8(4)	S6	06	C6
S32	032 123 2(4)	C32	120.8(5)	S36	036	C36
C2	C1 110 9(5)	C6	107.6(5)	C2	C1	C7
C6	C1 106 3(5)	C7	112.2(6)	02	C2	C1
02	C2	C3	107.5(6)	C1	C2	С3
F3	C3 110.4(6)	C2	109.4(6)	F3	С3	C4
C2	C3	C4	109.5(7)	С3	C4	C5
F5	C5	C4	109.8(6)	F5	C5	С6
C4	C5	C6	111.5(6)	06	C6	C1
06	C6 113.1(7)	C5	107.8(6)	C1	C6	C5

C1	C7	C8	121.1(6)	C1	C7	C12
C8	121.0(6) C7	C12	117.9(6)	C7	C8	С9
C8	121.5(6) C9	C10	121.7(7)	С9	C10	C11
С9	117.0(6) C10 121.7(6)	C13	121.2(6)	C11	C10	C13
C10	C11 119 1(6)	C12	122.7(6)	C7	C12	C11
C10	C13	C14	111.9(6)	C10	C13	C18
C14	C13	C18	110.9(6)	C13	C14	C15
C14	C15	C16	112.3(6)	C15	C16	C17
C15	C16 110.9(7)	C19	114.2(6)	C17	C16	C19
C16	C17 113.3(6)	C18	111.6(6)	C13	C18	C17
C16	C19 111.7(8)	C20	114.5(7)	C19	C20	C21
S2	C22 107.0(6)	F21	111.0(6)	S2	C22	F22
S2	C22	F23	110.2(6)	F21	C22	F22
F21	C22	F23	111.3(8)	F22	C22	F23
S6	C23 108.7(8)	F24	111.4(7)	S6	C23	F25

atom	atom	atom	angle	atom	atom	atom
S6	C23	F26	111.9(8)	F24	C23	F25
F24	C23	F26	109.7(9)	F25	C23	F26
C32	C31	C36	109.1(6)	C32	C31	C37
C36	C31	C37	113.1(6)	032	C32	C31
032	C32	C33	110.0(6)	C31	C32	C33
F33	C33 113 5(7)	C32	109.4(6)	F33	C33	C34
C32	C33 112.5(7)	C34	111.7(6)	C33	C34	C35
F35	C35	C34	111.6(6)	F35	C35	C36
C34	C35 105.9(5)	C36	111.8(6)	036	C36	C31
036	C36 114.3(6)	C35	109.1(5)	C31	C36	C35
C31	C37 119.9(7)	C38	122.4(8)	C31	C37	C42
C38	C37 120.4(8)	C42	117.7(7)	C37	C38	C39
C38	C39 116.4(7)	C40	122.0(7)	C39	C40	C41
C39	C40 121.5(7)	C43	122.0(7)	C41	C40	C43
C40	C41 122.8(7)	C42	120.7(8)	C37	C42	C41
C40	C43 112.3(6)	C44	110.1(6)	C40	C43	C48
C44	C43 111.0(7)	C48	109.8(7)	C43	C44	C45
C44	C45 110.5(9)	C46	114.2(8)	C45	C46	C47
C45	C46 109.7(8)	C49	117.9(9)	C47	C46	C49
C46	C47 111.7(7)	C48	110.8(7)	C43	C48	C47
C46	C49 120.1(11	C50	112.1(10)	C49	C50	C51
S32	C52 109.2(6)	F51	113.1(7)	S32	C52	F52

Table 7. Bond angles (⁰) (continued)

S32	C52	F53	110.2(6)	F51	C52	F52
	108.8(7)					
F51	C52	F53	107.0(8)	F52	C52	F53
	108.5(8)					
S36	C53	F54	112.7(8)	S36	C53	F55
	110.6(6)					
S36	C53	F56	111.9(8)	F54	C53	F55
	109.0(9)					
F54	C53	F56	107.2(8)	F55	C53	F56
	105.2(9)					

atom	atom	atom	angle	atom	atom	atom
C2	C1	H1	108.7	C6	C1	H1
C7	108.7 C1	H1	108.7	02	C2	H2
C1	C2	H2	110.4	C3	C2	H2
F3	C3	Н3	109.2	C2	C3	H3
C4	109.2 C3	H3	109.2	C3	C4	H4A
C3	109.7 C4	H4B	109.7	C5	C4	H4A
C5	109.7 C4	H4B	109.7	H4A	C4	H4B
F5	108.2 C5	H5	109.4	C4	C5	H5
C6	109.4 C5	H5	109.4	06	C6	H6
C1	109.9 C6	H6	109.9	C5	C6	H6
C7	109.9 C8	H8	119.2	С9	C8	H8
C8	C9	H9	119.1	C10	С9	H9
C10	C11	H11	118.6	C12	C11	H11
C7	C12	H12	120.5	C11	C12	H12
C10	120.5 C13	H13	108.3	C14	C13	H13
C18	108.3 C13	H13	108.3	C13	C14	H14A
C13	109.2 C14	H14B	109.2	C15	C14	H14A
C15	109.2 C14	H14B	109.2	H14A	C14	H14B
C14	C15	H15A	109.1	C14	C15	H15B
C16	C15	H15A	109.1	C16	C15	H15B
H15A	109.1 C15	H15B	107.9	C15	C16	H16
C17	106.9 C16 106.9	H16	106.9	C19	C16	H16

Table 8. Bond angles involving hydrogens (⁰)

C16	C17	H17A	109.3	C16	C17	H17B
C18	109.3 C17 109.3	H17A	109.3	C18	C17	H17B
H17A	C17	H17B	108.0	C13	C18	H18A
C13	C18	H18B	108.9	C17	C18	H18A
C17	C18	H18B	108.9	H18A	C18	H18B
C16	C19	H19A	108.6	C16	C19	H19B
C20	C19	H19A	108.6	C20	C19	H19B
H19A	C19	H19B	107.6	C19	C20	H20A
C19	C20	H20B	109.3	C21	C20	H20A
C21	C20	H20B	109.3	H20A	C20	H20B
C20	C21	H21A	109.5	C20	C21	H21B
C20	C21	H21C	109.5	H21A	C21	H21B
H21A	C21	H21C	109.5	H21B	C21	H21C
C32	C31	H31	107.2	C36	C31	H31
C37	C31 110.1	H31	107.2	032	C32	H32

atom	atom	atom	angle	atom	atom	atom
C31	C32	H32	110.1	C33	C32	H32
F33	C33	H33	107.3	C32	C33	H33
C34	C33	H33	107.3	C33	C34	H34A
C33	C34	H34B	109.1	C35	C34	H34A
C35	C34 107.8	H34B	109.1	H34A	C34	H34B
F35	C35 107.7	H35	107.7	C34	C35	H35
C36	C35 109.1	H35	107.7	036	C36	H36
C31	C36 109.1	H36	109.1	C35	C36	H36
C37	C38 119.8	H38	119.8	C39	C38	H38
C38	C39 119.0	H39	119.0	C40	C39	H39
C40	C41 119.7	H41	119.7	C42	C41	H41
C37	C42 118.6	H42	118.6	C41	C42	H42
C40	C43 108.2	H43	108.2	C44	C43	H43
C48	C43 109.4	H43	108.2	C43	C44	H44A
C43	C44 109.4	H44B	109.4	C45	C44	H44A
C45	C44 108.0	H44B	109.4	H44A	C44	H44B
C44	C45 108.7	H45A	108.7	C44	C45	H45B
C46	C45 108.7	H45A	108.7	C46	C45	H45B
H45A	C45	H45B	107.6	C45	C46	H46
C47	C46	H46	106.0	C49	C46	H46
C46	C47	H47A	109.5	C46	C47	H47B
C48	C47 109.5	H47A	109.5	C48	C47	H47B

Table 8. Bond angles involving hydrogens (⁰) (continued)

H47A	C47	H47B	108.1	C43	C48	H48A
	109.3			- · -		
C43	C48	H48B	109.3	C47	C48	H48A
	109.3					
C47	C48	H48B	109.3	H48A	C48	H48B
	107.9					
C46	C49	H49A	109.2	C46	C49	H49B
	109.2					
C50	C49	H49A	109.2	C50	C49	H49B
	109.2					
H49A	C49	H49B	107.9	C49	C50	H50A
	107.3					
C49	C50	H50B	107.3	C51	C50	H50A
	107.3					
C51	C50	H50B	107.3	H50A	C50	H50B
001	106.9	11002	207.0		000	11002
C50	C51	H51A	109.5	C50	C51	H51B
000	109.5		10710	000	001	11012
C50	C51	H51C	109 5	H51A	C51	H51B
050	1095	nord	109.5	110111	001	morb
	107.5 CE1		100 F		CE1	
1131A		11310	109.5	1131D	631	11210
	109.2					

Table 9. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2 angle	atom3	atom4	angle	atom1	atom2	atom3	atom4	
021	S2	02	C2	-10.9(4)	022	S2	02	C2	
02	S2	C22	F21	62.7(6)	02	S2	C22	F22	-
179.9(5) 						~ ~		
02	S2	C22	F23	-61.0(6)	C22	S2	02	C2	-
122.8(4	-)								
021	S2 64.2(6)	C22	F21	-53.2(7)	021	S2	C22	F22	
021	S2	C22	F23	-176.9(5)	022	S2	C22	F21	
022	c7	,, ())	F77	-67 5(6)	022	\$2	C22	F73	
022	52	622	ΓLL	-07.3(0)	022	32	622	FZ3	
	51.4(7)	0.6	0.6		0.04		0.6	0.6	
023	S6	06	C6	16.3(5)	024	S6	06	C6	-
120.6(4	ł)								
06	S6	C23	F24	-80.0(8)	06	S6	C23	F25	
	163.2(7	7)							
06	S6) (23	F26	43 3(8)	C23	56	06	6	
00	120 4 (5	0 <u>2</u> 5	120	43.3(0)	625	50	00	60	
000	130.4(3) ())	FO 4		000	0.0	C 22	FOR	
023	56	C23	F24	35.5(9)	023	56	C23	FZ5	-
81.3(8)									
023	S6	C23	F26	158.7(7)	024	S6	C23	F24	
	168.1(7	7)							
024	S6	C23	F25	51.3(8)	024	S6	C23	F26	-
68 7(8)									
00.7(0)	C 22	022	c^{22}	70(5)	052	522	022	c_{22}	
051	332	032	632	-7.0(5)	052	332	052	632	
	131.1(5) 							
032	S32	C52	F51	63.1(7)	032	\$32	C52	F52	-
175.7(6	5)								
032	S32	C52	F53	-56.7(7)	C52	S32	032	C32	-
119.1(5	5)								
051	, S32	C52	F51	-53.5(8)	051	S32	C52	F52	
001	677(7)	002	101	00.0(0)	001	002	001	102	
051	07.7(7)	CED		172 2(()	052	C 22	CE0		
051	332	U52	F53	-1/3.2(6)	052	532	C52	F51	
	172.0(7	/)							
052	S32	C52	F52	-66.7(7)	052	S32	C52	F53	
	52.3(7)								
053	S36	036	C36	-8.5(5)	054	S36	036	C36	
	1296(4	1)		Ċ					
036	536	-) C53	F54	673(7)	036	\$36	C53	655	_
	330 M	633	1.24	07.3(7)	050	330	699	1.22	-
1/0.5(/	J					00.0	0.00	00 (
036	536	653	F56	-53.6(7)	653	536	036	L36	-
120.7(5)								

053	S36 72.5(8)	C53	F54	-49.7(8)	053	S36	C53	F55	
053	S36 179.8(6	C53	F56	-170.6(6)	054	S36	C53	F54	
054	S36 59.0(7)	Ć53	F55	-58.0(8)	054	S36	C53	F56	
S2	02	C2	C1	149.1(3)	S2	02	C2	С3	-
91.0(5)									
S6	06	C6	C1	-135.5(4)	S6	06	C6	C5	
ເວງ	103.1(.	, , ,	C21	1401(4)	ເວງ	022	c_{22}	C22	
332 01 E(E)	032	L3Z	C31	148.1(4)	552	032	L3Z	633	-
91.5(5)	0.27	COC	001		co (0.2.6	CDC	60F	
536	036	L36	C31	-115.1(5)	536	036	L36	635	
	121.5(5)							
C2	C1	C6	06	-171.3(5)	C2	C1	C6	C5	-
53.3(7)									
C6	C1	C2	02	173.2(5)	C6	C1	C2	C3	
	56.1(7)								
C2	C1	C7	C8	-62.7(8)	C2	C1	C7	C12	
-	117.1(6	5)			-	-	-	-	
C7	C1	(2	02	-63 8(6)	C7	C1	C2	C3	
07	179.20	5)	02	00.0(0)	07	UI	02	00	
6	17 J.2(.	7) 77	CQ	576(8)	6	C1	67	C12	
122 5(.) .)	C7	CO	37.0(0)	CO	61	67	612	-
122.5(0)j	06	0.0		07	C1	00	CF	
L/		L6	06	66.5(6)	L/	CI	L6	Հ5	-
175.6(5	5)								
02	C2	C3	F3	61.8(6)	02	C2	C3	C4	-
177.1(4	-)								
C1	C2	С3	F3	178.1(5)	C1	C2	C3	C4	-
60.8(7)									
F3	СЗ	C4	C5	-179.7(5)	C2	СЗ	C4	C5	
	59.8(7)								
		,							

Table 9. Torsion ang	les (⁰) (continued)
----------------------	----------------------------------

atom1	atom2 angle	atom3	atom4	angle	atom1	atom2	atom3	atom4	
C3 57 5(7)	C4	C5	F5	-176.3(5)	С3	C4	C5	C6	-
F5	C5	C6	06	-67.0(7)	F5	C5	C6	C1	
C4	C5	C6	06	172.8(5)	C4	C5	C6	C1	
C1	C7	C8	С9	-177.3(6)	C1	C7	C12	C11	
C8	C7	C12	C11	-1.0(10)	C12	C7	C8	С9	
C7	C8	С9	C10	-2.9(11)	C8	С9	C10	C11	
C8	C9	C10	C13	179.0(6)	С9	C10	C11	C12	
C9	C10	C13	C14	56.6(9)	С9	C10	C13	C18	-
C11	C10	C13	C14	-125.4(7)	C11	C10	C13	C18	
C13	C10	C11	C12	-177.1(6)	C10	C11	C12	C7	-
C10	C13	C14	C15	-172.3(5)	C10	C13	C18	C17	
C14	C13	C18	C17	51.3(7)	C18	C13	C14	C15	-
50.1(7) C13	C14	C15	C16	53.6(8)	C14	C15	C16	C17	-
C14	C15	C16	C19	177.8(5)	C15	C16	C17	C18	
C15	C16	C19	C20	-67.2(8)	C17	C16	C19	C20	
C19	C16	C17	C18	-175.9(5)	C16	C17	C18	C13	-
C16	C19	C20	C21	-174.2(6)	C32	C31	C36	036	-
C32	C31	C36	C35	-51.5(7)	C36	C31	C32	032	
C36	C31	C32	C33	53.4(7)	C32	C31	C37	C38	-
C32	C31	C37	C42	107.4(7)	C37	C31	C32	032	-
C37	C31	C32	C33	179.9(6)	C36	C31	C37	C38	
C36	C31 62.1(7)	C37	C42	-128.3(7)	C37	C31	C36	036	

C37	C31 61.2(8)	C36	C35	-177.8(5)	032	C32	C33	F33	
032	C32	, C33	C34	-172.4(5)	C31	C32	C33	F33	
C31	C32	C33	C34	-56.9(8)	F33	C33	C34	C35	
C32	C33	C34	C35	55.4(8)	C33	C34	C35	F35	-
176.3(6	5)								
C33	C34	C35	C36	-52.3(8)	F35	C35	C36	036	-
65.7(7)									
F35	C35	C36	C31	176.0(5)	C34	C35	C36	036	
C34	169.5(: C35	c36	C31	51,2(8)	C31	C37	C38	C39	
001	178.7(6)	001	011-(0)	001		000	007	
C31	C37	C42	C41	-179.3(6)	C38	C37	C42	C41	-
3.1(11)									
C42	C37	C38	C39	2.6(11)	C37	C38	C39	C40	-
1.5(12)									
C38	C39	C40	C41	0.7(11)	C38	C39	C40	C43	-
175.8(7)								
C39	C40	C41	C42	-1.1(11)	C39	C40	C43	C44	
	101.4(8)							
C39	C40	C43	C48	-135.9(7)	C41	C40	C43	C44	-
75.0(8)									
C41	C40	C43	C48	47.7(9)	C43	C40	C41	C42	
	175.4(6)							
C40	C41	C42	C37	2.4(12)	C40	C43	C44	C45	
	176.3(6)							
C40	C43	C48	C47	-178.5(6)	C44	C43	C48	C47	-
55.6(8)									

Table 9. Torsion angles (⁰) (continued)

atom1	atom2 angle	atom3	atom4	angle	atom1	atom2	atom3	atom4	
C48	C43	C44	C45	52.1(8)	C43	C44	C45	C46	-
53.9(11	.)								
C44	C45	C46	C47	55.1(11)	C44	C45	C46	C49	-
177.6(7	')								
C45	C46	C47	C48	-56.3(10)	C45	C46	C49	C50	
	159.4(9))							
C47	C46	C49	C50	-73.0(12)	C49	C46	C47	C48	
	172.0(8	3)							
C46	C47	C48	C43	57.6(10)	C46	C49	C50	C51	-
176.8(9)								

atom	atom distance	distance	atom	atom
S2	F3	3.107(5)	S2	С3
S6	3.391(7) F5	3.316(5)	S6	C5
S32	F33	3.156(5)	S32	C33
S36	C31	3.588(8)	S36	C37
F3	02 3.062(6)	2.796(6)	F3	021
F3	022 022	3.367(7)	F5	06
F5	023	3.478(8)	F5	024
F21	02	2.936(6)	F21	021
F21	C7 2.949(7)	3.332(9)	F21	C8
F21	C9 3 581(9)	3.385(9)	F21	C10
F21	C12	3.504(9)	F22	021
F22	022	2.998(7)	F23	02
F23	022 3 081(8)	2.903(7)	F24	06
F24	023	2.894(8)	F24	C7
F24	C8 3 372(9)	3.367(10)	F24	С9
F24	C10 3 335(9)	3.385(9)	F24	C11
F24	C12 3 200(8)	3.308(10)	F25	023
F25	024	2.867(9)	F26	06
F26	024	3.054(9)	F33	032
F33	051 3 481(9)	3.039(8)	F33	052
F35	F54	2.851(8)	F35	036
F51	2.030(7) 032 2.922(9)	2.974(7)	F51	051

Table 10. Intramolecular contacts less than 3.60 Å

F51	C37	3.308(10)	F51	C38
F51	3.213(10) C39 2.464(0)	3.303(10)	F51	C40
F51	C41 3 407(10)	3.507(10)	F51	C42
F52	051 2.990(8)	2.989(9)	F52	052
F53	032 2.885(9)	2.878(8)	F53	052
F54	036 2.909(8)	2.948(8)	F54	053
F55	053 2.915(9)	3.064(8)	F55	054
F56	036	2.803(9)	F56	054
02	C7 3.493(8)	2.906(8)	02	C12
06	C7 3.598(8)	2.933(8)	06	C12
021	C2 3.563(9)	2.874(9)	021	C3
023	C6 3.598(11)	2.885(11)	024	C6
032	C37 3.303(9)	2.871(9)	032	C42
036	C37 3 565(10)	2.920(10)	036	C38
051	C32 3.538(11)	2.858(10)	051	C33
atom	atom	distance	atom	atom
------	------------------	-----------	------	------
053	C36	2.892(8)	053	C38
C1	3.528(10) C4	2.952(10)	C2	C5
	2.872(10)			
C2	C8 3 568(0)	3.110(10)	C2	C12
С3	C6 3 084(10)	2.884(12)	C6	C8
C7	C10 2.719(9)	2.819(10)	C8	C11
С9	C12 3 077(11)	2.755(10)	С9	C14
С9	C18	3.107(10)	C11	C18
C13	C16	2.985(11)	C14	C17
C15	C18 3 194(12)	2.924(11)	C15	C20
C31	C34 2 903(11)	2.931(11)	C32	C35
C32	C38 3 492(10)	3.221(10)	C32	C42
C33	C36 3 114(10)	2.888(10)	C36	C38
C37	C40 2 746(12)	2.824(10)	C38	C41
C39	C42	2.729(11)	C39	C44
C41	C44	3.215(11)	C41	C48
C43	C46 2 932(12)	2.960(12)	C44	C47
C45	C48 3.132(16)	2.879(13)	C47	C50

Table 10. Intramolecular contacts less than 3.60 Å (continued)

atom	atom	distance	atom	atom
CD	distance	2 7 2 0	6.6	
52	HZ 2 6 9 7	2.728	56	H6
522	2.087 H22	2 722	\$36	Н36
332	2 677		330	1150
F3	H2	2.592	F3	H4A
	2.584			
F3	H4B	2.589	F5	H4A
	2.608			
F5	H4B	2.555	F5	H6
	2.513			
F21	H2	3.546	F21	H8
50.4	3.581	0.050	500	
F24	H18A	3.278	F33	H32
F22	2.569	2 502	E22	11240
гээ	П34А 2 580	2.302	F33	П34D
F35	2.309 H34A	2 567	F35	H34R
155	2 618	2.507	155	11540
F35	H36	2.510	F51	H32
100	3.483	2.010		
F51	H44B	3.391	F53	H42
	3.580			
02	H1	2.556	02	H3
	2.584			
02	H12	3.544	06	H1
	2.514			
06	H5	2.537	021	H2
022	2.447	2 402	022	110
023	H0 2 505	2.402	023	ПО
032	U31	2 500	032	н33
052	2 564	2.500	052	1155
032	H42	3.245	036	H31
	2.528			
036	H35	2.532	051	H32
	2.456			
053	H36	2.404	053	H38
	3.247			
C1	H3	2.708	C1	H4B
	3.278	0.550	24	
C1	H5	2.770	L 1	Н8
C1	2.685 U12	2 (02	<u>()</u>	11/
CT.	1112 2 2 1 0	2.075	L Δ	п4А
	2.210			

Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens

C2	H4B	2.656	C2	Н5
	3.246			
C2	H6	2.730	C2	H8
	2.957			
СЗ	H1	2.725	C3	H5
	2.664			
СЗ	H6	3.300	C4	H1
	3.300			
C4	H2	2.686	C4	H6
	2.748			
C5	H1	2.752	C5	H2
	3.238			
C5	H3	2.632	C6	H2
	2.716			
C6	H3	3.184	C6	H4A
	3.334			
C6	H4B	2.704	C6	H8
	2.932			
C7	H2	2.696	C7	H6
	2.676			
C7	H9	3.255	C7	H11
	3.255			
C8	H1	3.338	C8	H2
	2.808			
C8	H6	2.749	C8	H12
	3.247			
С9	H11	3.203	С9	H13
	3.323			
С9	H14A	3.401	С9	H14B
	2.728			

atom	atom distance	distance	atom	atom
С9	H18A 2.767	3.425	С9	H18B
C10	H8 3.284	3.245	C10	H12
C10	H14A 2.665	2.777	C10	H14B
C10	H18A 2.626	2.701	C10	H18B
C11	H9 2.566	3.204	C11	H13
C11	H18A 2.566	3.384	C12	H1
C12	H8 2.675	3.238	C13	H9
C13	H11 3 398	2.664	C13	H15A
C13	H15B 3 241	2.807	C13	H16
C13	H17A	2.805	C13	H17B
C14	H9 2 707	2.890	C14	H16
C14	H17A	3.302	C14	H18A
C14	H18B 2 804	2.789	C15	H13
C15	H17A	2.707	C15	H17B
C15	H18B	3.304	C15	H19A
C15	H19B	3.390	C15	H20A
C15	H20B	2.925	C16	H13
C16	H14A 2 802	3.385	C16	H14B
C16	H18A 2 750	3.349	C16	H18B
C16	H20A	2.744	C16	H20B
C17	H13 3.347	2.804	C17	H14B

Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

C17	H15A	3.328	C17	H15B
	2.710			
C17	H19A	2.780	C17	H19B
	2.591			
C18	H9	3.003	C18	H14A
	3.371			
C18	H14B	2.800	C18	H15B
	3.281			-
C18	H16	2 667	C19	H15A
010	2 7 4 1	,		
C19	H15R	2 772	C19	H17A
017	2 716	2.772	017	111/11
C19	2.710 H17R	2 654	C19	Н21А
617	1117D 2 704	2.034		11217
C10	2.704 U21D	2 6 2 0	C10	U21C
C19		2.039	619	пиц
C20	3.333	2.052	C20	
C20	H15A	2.853	C20	HI2R
60 0	3.540	2 (07	604	
C20	H16	2.697	C21	H19A
	2.740			
C21	H19B	2.656	C31	H33
	2.686			
C31	H34A	3.300	C31	H35
	2.759			
C31	H38	2.723	C31	H42
	2.619			
C32	H34A	2.690	C32	H34B
	3.301			
C32	H35	3.265	C32	H36
	2.762			
C32	H38	3.147	C32	H42
	3.597			

Table 11. Intramolecular	[•] contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
C33	H31 2 709	2.707	C33	H35
C33	H36 3 249	3.298	C34	H31
C34	H32 2 765	2.715	C34	H36
C35	H31 3.281	2.741	C35	H32
C35	H33 2.765	2.666	C36	H32
C36	H33 2.747	3.172	C36	H34A
C36	H34B 2.944	3.322	C36	H38
C37	H32 2 707	2.739	C37	H36
C37	H39 3 234	3.266	C37	H41
C38	H31 2 953	3.335	C38	H32
C38	H36	2.799	C38	H42
C39	H41	3.240	C39	H43
C39	H44B	3.269	C40	H38
C40	H42	3.269	C40	H44A
C40	H44B	2.698	C40	H48A
C40	H48B	2.747	C41	H39
C41	H43	3.356	C41	H44A
C41	H44B	3.560	C41	H48A
C41	H48B	3.257	C42	H31
C42	H38	3.218	C43	H39
C43	H41 2.759	2.730	C43	H45A

C43	H45B 3 210	3.355	C43	H46
C43	H47A 2 755	3.386	C43	H47B
C44	H39 3.207	3.552	C44	H41
C44	H46 3.270	2.676	C44	H47B
C44	H48A 3.349	2.731	C44	H48B
C45	H43 3.293	2.735	C45	H47A
C45	H47B 3.221	2.678	C45	H48A
C45	H49A 2 945	2.685	C45	H49B
C46	H43 2 793	3.289	C46	H44A
C46	H44B 2 710	3.358	C46	H48A
C46	H48B	3.338	C46	H50A
C46	H50B	2.736	C47	H43
C47	H44A	3.325	C47	H45A
C47	H45B	3.294	C47	H49A
C47	H49B	2.601	C47	H50A
C47	H50B 2.808	2.791	C48	H41

Table 11. Intramolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
C48	H44A	2.753	C48	H44B
C48	3.354 H45A 2.621	3.253	C48	H46
C49	2.621 H45A 2.761	2.794	C49	H45B
C49	H47A	2.612	C49	H47B
C49	2.734 H51A 2.727	3.027	C49	H51B
C49	H51C	3.420	C50	H46
C50	H47A	2.737	C50	H47B
C51	H49A	2.845	C51	H49B
H1	H2	2.896	H1	H3
H1	H5	2.624	H1	H6
H1	H12	2.361	H2	H3
H2	H4A 2 501	3.586	H2	H4B
H2	H6 2 402	2.609	H2	H8
Н3	H4A	2.358	Н3	H4B
Н3	H5	2.465	H4A	H5
H4B	H5	2.857	H4B	H6
Н5	H6	2.880	Н6	H8
H8	H9	2.290	Н9	H14A
Н9	H14B	2.290	Н9	H18A
Н9	H18B	2.440	H11	H12
H11	2.344 H13 3.463	2.334	H11	H18A

H13	H14A	2.327	H13	H14B
H13	2.872 H15B 2.686	2.691	H13	H17A
H13	2.000 H18A 2.870	2.331	H13	H18B
H14A	H15A 2.357	2.415	H14A	H15B
H14B	H15A 2.885	2.358	H14B	H15B
H14B	H16 2.704	2.592	H14B	H18B
H15A	H16 2.963	2.338	H15A	H19A
H15A	H20A 2.350	3.061	H15A	H20B
H15B	H16 2.564	2.848	H15B	H17A
H15B	H19A 3.202	2.563	H15B	H20B
H16	H17A 2.327	2.839	H16	H17B
H16	H18A 2 532	3.571	H16	H18B
H16	H19A 2 412	2.861	H16	H19B
H16	H20A	2.477	H16	H20B
H17A	H18A	2.346	H17A	H18B
H17A	H19A 2.855	2.627	H17A	H19B

Table 11. Intramolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H17B	H18A	2.387	H17B	H18B
H17B	2.342 H19A 2.250	3.052	H17B	H19B
H19A	2.359 H20A 2.355	2.872	H19A	H20B
H19A	H21A 2 497	3.150	H19A	H21B
H19A	H21C 2.421	3.576	H19B	H20A
H19B	H20B 2.565	2.872	H19B	H21A
H19B	H21B 3.585	2.805	H19B	H21C
H20A	H21A 2 845	2.304	H20A	H21B
H20A	H21C	2.402	H20B	H21A
H20B	H21B	2.414	H20B	H21C
H31	H32	2.882	H31	H33
H31	H35	2.600	H31	H36
H31	2.863 H42	2.264	H32	H33
H32	2.855 H34A	2.575	H32	H36
H32	2.000 H38	2.648	H33	H34A
H33	2.817 H34B	2.289	H33	H35
H34A	H35	2.852	H34A	H36
H34B	2.663 H35	2.313	H35	H36
H36	2.837 H38	2.360	H38	H39
H39	2.322 H43	2.375	H39	H44B
H41	3.279 H42 2.711	2.285	H41	H44A

H41	H48A	2.219	H41	H48B
	3.133			
H43	H44A	2.858	H43	H44B
	2.322			
H43	H45A	2.609	H43	H47B
	2.583			
H43	H48A	2.882	H43	H48B
	2 369			
ΗΛΛΔ	H454	2 875	ΗΛΛΔ	H45B
1177/1	2 250	2.075	1177/1	11450
11444	2.330	3 5 7 9		11404
H44A	H46	2.570	H44A	H48A
	2.618			
H44B	H45A	2.343	H44B	H45B
	2.399			
H44B	H46	3.579	H45A	H46
	2.804			
H45A	H47A	3.572	H45A	H47B
	2.533			
H45A	H49A	2,896	H45A	H49B
111011	2 821	21070	11 1011	11170
H45B	H16	2 285	H458	H47B
II4JD	2 5 0 1	2.205	II4JD	1147D
	3.301	2 505		11400
H45B	H49A	2.505	H45B	H49B
	3.266			
H46	H47A	2.327	H46	H47B
	2.834			
H46	H48A	2.458	H46	H48B
	3.524			
H46	H49A	2.470	H46	H49B
	2.849			
H46	H50A	2.332	H46	H50B
	2 791			1000
	<u></u>			

atom	atom distance	distance	atom	atom
H47A	H48A 2.373	2.356	H47A	H48B
H47A	H49A 2 733	3.560	H47A	H49B
H47A	H50A 2 132	3.060	H47A	H50B
H47B	H48A 2.358	2.869	H47B	H48B
H47B	H49A 2 477	3.549	H47B	H49B
H47B	H50B	3.233	H49A	H50A
H49A	H50B	2.870	H49A	H51A
H49A	H51B	2.895	H49B	H50A
H49B	H50B	2.367	H49B	H51A
H49B	H51B	2.643	H50A	H51A
H50A	2.212 H51B	2.808	H50A	H51C
H50B	2.446 H51A 2.479	2.796	H50B	H51B
H50B	H51C	2.190		

Table 11. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
S36	F33 ¹ 3 389(8)	3.489(5)	F3	F56
F3	054	3.571(7)	F5	F23 ²
F21	$F22^{3}$	2.932(7)	F22	F21 ³
F22	$F22^{3}$	3.122(7)	F22	C14 ³
F22	$C22^{3}$	3.557(10)	F23	$F5^1$
F23	036^{1}	3.414(8)	F23	$C4^1$
F23	$C42^{1}$	3.250(10)	F24	F25 ⁴
F25	F24 ⁴	2.916(9)	F25	F25 ⁴
F25	2.913(9) 023^4 2.271(14)	3.382(9)	F25	C23 ⁴
F26	$C19^5$	3.491(10)	F26	C47
F33	$S_{36^{2}}^{(12)}$	3.489(5)	F33	F33 ⁶
F33	$F55^{2}$	2.837(7)	F33	053 ²
F33	054^2	3.214(7)	F35	C20 ⁷
F35	$C38^8$	3.462(10)	F35	C39 ⁸
F52	$C47^2$	3.441(11)	F52	C48 ²
F53	$C12^2$	3.563(9)	F55	F33 ¹
F55	$C33^{1}$	3.353(9)	F55	C49 ⁹
F55	$C51^9$	3.326(18)	F56	F3
F56	$C14^7$	3.578(10)	021	C2 ⁷
021	C4 ⁷ 3 526(8)	3.560(9)	021	C6 ⁷
021	$C8^7$	3.470(8)	022	C35 ¹
023	5.447 (10) F25 ⁴ 3.424(11)	3.382(9)	024	C48

Table 12. Intermolecular contacts less than 3.60 Å

036	F23 ²	3.414(8)	051	C34 ⁶
	3.228(11)			_
052	054 ²	3.279(9)	052	$C48^2$
	3.532(11)			
053	F33 ¹	3.311(6)	053	C34 ⁸
	3.528(9)			
053	C36 ⁸	3.289(8)	054	F3
	3.571(7)			
054	F33 ¹	3.214(7)	054	052 ¹
	3.279(9)			
054	C3	3.197(9)	054	C4
	3.132(9)			
054	C5	3.589(10)	C2	0217
	3.423(8)			
C3	054	3.197(9)	C4	F23 ²
	3.472(8)			
C4	0217	3.560(9)	C4	054
	3.132(9)			
C5	054	3.589(10)	C6	021 ⁷
	3.526(8)			
C8	0217	3.470(8)	C12	F53 ¹
	3.563(9)			
C14	F22 ³	3.594(10)	C14	F56 ⁷
	3.578(10)			
C19	F26 ⁵	3.491(10)	C20	F35 ⁷
	3.380(10)			
C22	F22 ³	3.557(10)	C23	F25 ⁴
	3.371(14)			
C33	F55 ²	3.353(9)	C34	051 ⁶
	3.228(11)			

atom	atom distance	distance	atom	atom
C34	053^8	3.528(9)	C35	022 ²
C36	3.447(10) 053 ⁸	3.289(8)	C38	F35 ⁸
C39	3.462(10) F35 ⁸	3.358(10)	C42	F23 ²
C47	3.250(10) F26	3.543(12)	C47	F52 ¹
C48	3.441(11) F52 ¹	3.585(9)	C48	024
C48	3.424(11)	3 532(11)	C49	F5510
054	3.584(13)	0.004(10)	647	155
C51	F5510	3.326(18)		

Table 12. Intermolecular contacts less than 3.60 Å (continued)

Symmetry Operators:

(2) X+1,Y,Z
(4) -X+1,-Y+1,-Z+1
(6) -X+3,-Y+2,-Z
(8) -X+2,-Y+2,-Z
(10) X,Y-1,Z

atom	atom	distance	atom	atom
CD	distance	0.004	6.6	11404
52	H31 ⁺ 2 E12	3.324	56	H48A
\$32	5.515 H48R ²	3 552	\$36	H4A
552	3.541	5.552	550	11 171
F3	H8 ³	3.087	F3	H9 ³
	3.241			
F3	H33 ¹	3.355	F3	$H51A^4$
	3.067			
F5	H11 ²	3.365	F5	H41
RE	3.123	2 5 7 2	E21	11403
ГЭ	П42 З 048	5.575	FZ1	Π4D°
F22	1.040 H4A ¹	3,436	F22	$H4B^{1}$
	3.544	01100		mib
F22	H4B ³	3.279	F22	H14A ⁵
	2.802			
F22	H14B ⁵	3.496	F23	$H4A^{1}$
200	2.743		722	
F23	H4B ¹	3.535	F23	$H31^{1}$
E72	2.828 U421	2 5 5 7	E21	U171 6
F23	3 411	2.337	124	$\Pi I / A^{*}$
F25	H50A	3.395	F25	H50B
	3.000			
F25	H51C	3.589	F26	H19A ⁶
	2.528			
F26	H21B ⁶	3.401	F26	H47A
FO (2.577	0.550	500	1102
F26	H50B	2.772	F33	H3 ²
F33	5.517 H32 ⁷	3 359	F33	H3447
155	2.869	5.557	155	115411
F35	H20A ³	3.011	F35	H20B ³
	2.909			
F35	H21C ³	3.484	F35	H38 ⁸
	2.922			
F35	H39 ⁸	2.694	F51	H45A ⁹
551	3.002 445 B9	2 5 9 /	552	U71 A 10
FJI	3 486	5.504	1.72	IIZIA
F52	H21B ¹⁰	3.280	F52	H43 ²
	3.581			_
F52	H45A ⁹	3.108	F52	$H47A^2$
	3.592			

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens

F52	H47B ²	2.756	F52	H48B ²
F52	2.982 H40B ⁹	3 507	F53	Ц1 2
FJZ	2.906	3.397	1.22	111
F53	H12 ²	2.708	F53	H21B ¹⁰
F53	3.547 н48в ²	3 356	F54	H16 ³
155	3.506	5.550	154	mio
F54	H20A ³ 2.997	2.967	F54	H38 ⁸
F54	H45B ⁴	3.527	F54	H49A ⁴
655	2.831 н221	3 088	FSS	H31B1
1.22	3.034	5.000	1.22	1134D
F55	H49A ⁴	2.776	F55	$H51A^4$
	2.719			
F55	$H51B^4$	3.212	F56	H4A
	3.448			
F56	H9 ³	3.531	F56	H14B ³
	2.682	0 500		114 62
F56	H15A ³	3.508	F56	H16 ³
	3.302	0 500		
F56	H49A ⁺	3.532	F56	H51A ⁺
02	3.169 11211	2052	02	11221
02	П31 ⁻ 2 2 2 2	2.852	02	П331
02	3.332 U121	2 2 1 2	06	U/Q/
02	2 288	5.542	00	II40A
06	5.200 H48R	3 3 1 1	021	H2 ³
00	2.547	0.011	021	112

Table 13. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distanco	distance	atom	atom
021	H4B ³	2.721	021	H6 ³
021	2.711 H8 ³ 2.276	2.539	022	H15A ⁵
022	H31 ¹	2.871	022	$H33^1$
022	H35 ¹ 3 595	2.513	022	H51A ⁴
022	H51B ⁴ 3 309	3.541	022	H51C ⁴
023	H13 ² 3 288	3.171	023	H14A ²
023	H15B ² 3 390	2.800	024	H11 ²
024	H13 ²	3.207	024	H17B ¹⁰
024	H18A ¹⁰	3.250	024	H18B ¹⁰
024	H46	3.336	024	H47A
024	H48A	2.610	032	H1 ²
032	H3 ²	3.155	051	H34A ⁷
051	H34B ⁷	2.720	051	H49B ⁹
052	H1 ² 3 104	3.099	052	H3 ²
052	H5 ²	2.738	052	H48B ²
053	H32 ⁸	2.850	053	H34A ⁸
053	H36 ⁸ 2 714	2.407	053	H38 ⁸
054	H3 2 487	2.623	054	H4A
054	H5	3.068	C3	H33 ¹
C11	H17A ⁶	3.405	C11	$H41^1$
C12	3.303 H41 ¹ 3.064	3.581	C12	H42 ¹

C15	H51C ⁶ 3 506	3.561	C16	H46 ¹⁰
C17	H11 ⁶ 3.360	3.399	C17	H18A ⁶
C17	$H46^{10}$ 3.445	3.484	C18	H17A ⁶
C18	H18A ⁶ 3.375	3.421	C18	H50A ¹⁰
C19	H44A ¹⁰ 3.302	3.287	C20	H45B ¹⁰
C21	H39 ¹¹ 3.320	3.497	C21	H43 ¹¹
C21	H47B ⁶ 3.458	3.581	C21	H49B ⁶
C22	H4A ¹ 3.505	3.592	C22	H4B ³
C22	H42 ¹ 3.441	3.563	C23	H19A ⁶
C23	H47A 3.393	3.471	C23	H50B
C33	H3 ² 3.243	3.474	C34	H51B ¹²
C35	H20B ³ 3.372	3.595	C35	H51B ¹²
C41	H5 3.343	3.544	C41	H12 ²
C42	H12 ² 3.232	3.093	C44	H19B ¹⁰
C44	H21A ¹⁰ 3.494	3.239	C44	H44B ⁹
C45	H19B ¹⁰ 3.488	3.551	C45	H20A ¹⁰

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom
C45	H44B ⁹	3.598	C47	H21B ⁶
C50	3.238 H18B ¹⁰	3.421	C51	H20B ⁶
C51	3.260 H34B ¹³ 2.594	3.365	C51	H35 ¹³
C52	H48B ² 3 247	3.452	C53	H49A ⁴
C53	H51A ⁴	3.520	H1	F53 ¹
H1	032 ¹ 3 099	3.093	H1	0521
H2	021 ³ 2 970	2.547	H2	H2 ³
Н3	F33 ¹	3.517	Н3	0321
Н3	052 ¹ 2.623	3.104	Н3	054
Н3	C33 ¹	3.474	Н3	H33 ¹
H4A	S36	3.541	H4A	F22 ²
H4A	F23 ²	2.743	H4A	F56
H4A	054	2.487	H4A	C22 ²
H4B	F21 ³	3.048	H4B	F22 ²
H4B	5.544 F22 ³ 2.525	3.279	H4B	F23 ²
H4B	021 ³	2.721	H4B	C22 ³
Н5	052 ¹	2.738	Н5	054
Н5	C41	3.544	Н5	H41
Н5	5.592 H48A	3.434	Н5	H48B
H6	021 ³	2.711	H8	F3 ³
H8	3.087 021 ³ 3.241	2.539	Н9	F3 ³

Н9	F56 ³ 3 295	3.531	Н9	H50A ¹⁰
Н9	H51A ¹⁰	3.019	H11	F5 ¹
H11	024 ¹ 3 399	3.390	H11	C17 ⁶
H11	H17A ⁶ 2.882	2.982	H11	H17B ⁶
H11	H41 ¹ 2.708	2.956	H12	F53 ¹
H12	C41 ¹ 3.093	3.343	H12	C42 ¹
H12	H41 ¹ 2.491	3.016	H12	H42 ¹
H13	023 ¹ 3.207	3.171	H13	0241
H13	H17A ⁶ 3.442	3.245	H13	H17B ⁶
H13	H18A ⁶ 2.802	2.966	H14A	F22 ⁵
H14A	023 ¹ 3 496	3.288	H14B	F22 ⁵
H14B	F56 ³	2.682	H15A	F56 ³
H15A	022 ⁵ 3 357	3.276	H15A	H35 ³
H15A	H51C ⁶	3.070	H15B	023 ¹
H15B	H51C ⁶	3.106	H16	F54 ³
H16	F56 ³ 3.413	3.302	H16	H45B ¹⁰

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
H16	H46 ¹⁰ 3 499	2.904	H16	H49A ¹⁰
H16	H50A ¹⁰	3.111	H17A	F24 ⁶
H17A	C11 ⁶	3.405	H17A	C18 ⁶
H17A	H11 ⁶ 3 245	2.982	H17A	H13 ⁶
H17A	H18A ⁶ 2 847	2.584	H17B	02410
H17B	H11 ⁶ 3 442	2.882	H17B	H13 ⁶
H17B	H44A ¹⁰ 2 799	3.522	H17B	H46 ¹⁰
H17B	H48A ¹⁰	3.533	H17B	H50A ¹⁰
H18A	024^{10}	3.250	H18A	C17 ⁶
H18A	C18 ⁶	3.421	H18A	H13 ⁶
H18A	H17A ⁶	2.584	H18A	H18A ⁶
H18B	024^{10} 3 421	3.495	H18B	C50 ¹⁰
H18B	H46 ¹⁰ 2 442	3.496	H18B	H50A ¹⁰
H19A	F26 ⁶	2.528	H19A	C23 ⁶
H19A	H50B ⁶	3.274	H19B	C44 ¹⁰
H19B	C45 ¹⁰ 2 363	3.551	H19B	H44A ¹⁰
H19B	H45B ¹⁰	3.165	H19B	H46 ¹⁰
H20A	F35 ³ 2 967	3.011	H20A	F54 ³
H20A	C45 ¹⁰	3.488	H20A	H39 ¹¹
H20A	H44A ¹⁰ 2 575	3.566	H20A	H45B ¹⁰
H20B	F35 ³ 3.595	2.909	H20B	C35 ³

C51 ⁶	3.260	H20B	H35 ³
3.238			
H50B ⁶	3.299	H20B	H51B ⁶
2.731			
H51C ⁶	3.077	H21A	F52 ¹⁰
3.486			
$C44^{10}$	3.239	H21A	H39 ¹¹
3.534			
H43 ¹¹	3.080	H21A	$H44A^{10}$
2.870			
$H44B^{11}$	3.306	H21A	$H44B^{10}$
2.870			10
H45A ¹¹	3.243	H21A	H45B ¹⁰
3.088			
F26 ⁶	3.401	H21B	F52 ¹⁰
3.280			
F53 ¹⁰	3.547	H21B	C47°
3.238	0.505		
H47A°	2.787	H21B	H47B°
2./8/	2 0 2 1	11010	
H49B°	3.021	HZIB	H20R _o
3.023 E2E3	2 4 0 4	11210	112011
F35°	3.484	HZIC	П3911
2.000 U1211	2676	U21C	U17D 6
2 5 7 1	2.070	11210	1147D
5.571 НЛОВ6	3 049	Н21	S 2 ²
3 3 2 4	5.047	1151	52
$F23^2$	2 828	H31	02^{2}
2.852	2.020	1101	02
022^{2}	2.871	H32	F33 ⁷
3.359			
	C51 6 3.238 H50B 6 2.731 H51C 6 3.486 C44 10 3.534 H43 11 2.870 H44B 11 2.870 H45A 11 3.088 F26 6 3.280 F53 10 3.238 H47A 6 2.787 H49B 6 3.023 F35 3 2.866 H43 11 3.571 H49B 6 3.324 F23 2 2.852 O22 2 3.359	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} {\rm C51}^6 & 3.260 & {\rm H20B} \\ 3.238 \\ {\rm H50B}^6 & 3.299 & {\rm H20B} \\ 2.731 & & & \\ {\rm H51C}^6 & 3.077 & {\rm H21A} \\ 3.486 & & & \\ {\rm C44}^{10} & 3.239 & {\rm H21A} \\ 3.534 & & & \\ {\rm H43}^{11} & 3.080 & {\rm H21A} \\ 2.870 & & & \\ {\rm H44B}^{11} & 3.306 & {\rm H21A} \\ 2.870 & & & \\ {\rm H45A}^{11} & 3.243 & {\rm H21A} \\ 3.088 & & & \\ {\rm F26}^6 & 3.401 & {\rm H21B} \\ 3.280 & & & \\ {\rm F53}^{10} & 3.547 & {\rm H21B} \\ 3.238 & & & \\ {\rm H47A}^6 & 2.787 & {\rm H21B} \\ 3.023 & & & \\ {\rm F35}^3 & 3.484 & {\rm H21C} \\ 2.866 & & & \\ {\rm H43}^{11} & 2.676 & {\rm H21C} \\ 3.571 & & & \\ {\rm H49B}^6 & 3.049 & {\rm H31} \\ 3.324 & & \\ {\rm F23}^2 & 2.828 & {\rm H31} \\ 2.852 & & \\ {\rm O22}^2 & 2.871 & {\rm H32} \\ 3.359 & & \\ \end{array}$

Table 13. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom	distance	atom	atom
H32	053 ⁸ 3.355	2.850	H33	F3 ²
H33	F55 ² 3.332	3.088	H33	02 ²
H33	022 ² 3.423	3.157	H33	C3 ²
H33	H3 ² 3.588	2.737	H33	H51A ¹²
H33	H51B ¹² 2.869	3.433	H34A	F33 ⁷
H34A	051 ⁷ 2.740	2.841	H34A	053 ⁸
H34B	F55 ² 2.720	3.034	H34B	0517
H34B	C51 ¹² 3.477	3.365	H34B	H51A ¹²
H34B	H51B ¹² 2.513	2.481	H35	022 ²
H35	C51 ¹² 3.357	3.594	H35	H15A ³
H35	H20B ³ 2.834	3.238	H35	H51B ¹²
H36	053 ⁸ 2.968	2.407	H36	H36 ⁸
H36	H38 ⁸ 2.922	3.094	H38	F35 ⁸
H38	F54 ⁸ 2.714	2.997	H38	053 ⁸
H38	H36 ⁸ 2.694	3.094	H39	F35 ⁸
H39	C21 ¹⁴ 3.176	3.497	H39	H20A ¹⁴
H39	H21A ¹⁴ 2.866	3.534	H39	H21C ¹⁴
H41	F5 3 565	3.123	H41	C11 ²
H41	C12 ² 3 392	3.581	H41	Н5
H41	H11 ² 3 016	2.956	H41	H12 ²
H42	F5 2.557	3.573	H42	F23 ²

H42	02^{2}	3.342	H42	C12 ²
H42	3.064 C22 ² 2.491	3.563	H42	H12 ²
H43	F52 ¹ 3.320	3.581	H43	C21 ¹⁴
H43	H21A ¹⁴ 2.676	3.080	H43	H21C ¹⁴
H44A	C19 ¹⁰ 3.522	3.287	H44A	H17B ¹⁰
H44A	H19B ¹⁰ 3.566	2.363	H44A	H20A ¹⁰
H44A	H21A ¹⁰ 3.494	2.870	H44B	C44 ⁹
H44B	C45 ⁹ 3.306	3.598	H44B	H21A ¹⁴
H44B	H21A ¹⁰ 2.663	2.870	H44B	H44B ⁹
H44B	H45A ⁹ 3.396	3.292	H44B	H45B ⁹
H45A	F51 ⁹ 3.108	3.002	H45A	F52 ⁹
H45A	H21A ¹⁴ 3.292	3.243	H45A	H44B ⁹
H45B	F51 ⁹ 3.527	3.584	H45B	F54 ¹⁵
H45B	C20 ¹⁰ 3.413	3.302	H45B	H16 ¹⁰
H45B	H19B ¹⁰ 2.575	3.165	H45B	H20A ¹⁰
H45B	H21A ¹⁰ 3.396	3.088	H45B	H44B ⁹

Table 13. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
H46	024	3.336	H46	C16 ¹⁰
H46	C17 ¹⁰ 2.904	3.484	H46	H16 ¹⁰
H46	H17B ¹⁰ 3.496	2.799	H46	H18B ¹⁰
H46	H19B ¹⁰ 2.577	3.165	H47A	F26
H47A	F52 ¹ 3.214	3.592	H47A	024
H47A	C23 2.787	3.471	H47A	H21B ⁶
H47B	F52 ¹ 3.581	2.756	H47B	C21 ⁶
H47B	H21B ⁶ 3.571	2.787	H47B	H21C ⁶
H48A	S6 3 288	3.513	H48A	06
H48A	024	2.610	H48A	H5
H48A	H17B ¹⁰ 3 552	3.533	H48B	S32 ¹
H48B	F52 ¹	2.982	H48B	F53 ¹
H48B	06	3.311	H48B	0521
H48B	$C52^{1}$	3.452	H48B	H5
H49A	F54 ¹⁵	2.831	H49A	F55 ¹⁵
H49A	F56 ¹⁵	3.532	H49A	C53 ¹⁵
H49A	H16 ¹⁰ 3 597	3.499	H49B	F52 ⁹
H49B	051 ⁹ 3 458	3.599	H49B	C21 ⁶
H49B	H21B ⁶ 3 049	3.021	H49B	H21C ⁶
H50A	F25	3.395	H50A	C18 ¹⁰
H50A	H9 ¹⁰ 3.111	3.295	H50A	H16 ¹⁰

H50A	H17B ¹⁰ 2.442	3.514	H50A	H18B ¹⁰
H50B	F25 2.772	3.000	H50B	F26
H50B	C23 3.274	3.393	H50B	H19A ⁶
H50B	H20B ⁶ 3.023	3.299	H50B	H21B ⁶
H51A	F3 ¹⁵ 2.719	3.067	H51A	F55 ¹⁵
H51A	F56 ¹⁵ 3.595	3.169	H51A	02215
H51A	C53 ¹⁵ 3.019	3.520	H51A	H9 ¹⁰
H51A	H33 ¹³ 3.477	3.588	H51A	H34B ¹³
H51B	F55 ¹⁵ 3.541	3.212	H51B	022 ¹⁵
H51B	C34 ¹³ 3.372	3.243	H51B	C35 ¹³
H51B	H20B ⁶ 3.433	2.731	H51B	H33 ¹³
H51B	H34B ¹³ 2 834	2.481	H51B	H35 ¹³
H51C	F25 3 309	3.589	H51C	02215
H51C	C15 ⁶	3.561	H51C	H15A ⁶
H51C	H15B ⁶ 3.077	3.106	H51C	H20B ⁶

Symmetry Operators:

(2) X+1,Y,Z
(4) X,Y+1,Z
(6) -X,-Y+1,-Z+1
(8) -X+2,-Y+2,-Z
(10) -X+1,-Y+1,-Z+1
(12) X+1,Y+1,Z
(14) X+1,Y,Z-1

X-Ray Data Collection for 17

Data Collection

A colorless platelet crystal of $C_{23}H_{28}F_8O_6S_2$ having approximate dimensions of 0.300 x 0.060 x 0.020 mm was mounted in a loop. All measurements were made on a Rigaku Mercury70 diffractometer using multi-layer mirror monochromated Mo-K α radiation.

Cell constants and an orientation matrix for data collection corresponded to a C-centered monoclinic cell with dimensions:

a = 44.560(17) Å b = 5.5896(15) Å β = 124.357(7)^o c = 26.277(10) Å V = 5403(3) Å³

For Z = 8 and F.W. = 616.58, the calculated density is 1.516 g/cm^3 . Based on the reflection conditions of:

hkl: h+k = 2n h0l: l = 2n

packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

The data were collected at a temperature of $-100 \pm 1^{\circ}$ C to a maximum 2 θ value of 50.7°. Readout was performed in the 0.068 mm pixel mode.

Data Reduction

Of the 16828 reflections were collected, where 4913 were unique ($R_{int} = 0.0799$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). ¹

The linear absorption coefficient, μ , for Mo-K α radiation is 2.889 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.608 to 0.994. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement³ on F² was based on 4913 observed reflections and 353 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0648$

wR2 = $[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1673$

The goodness of fit⁴ was 1.07. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.36 and -0.39 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 ⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure⁹ crystallographic software package except for refinement, which was performed using SHELXL2013¹⁰.

References

(1) <u>CrystalClear</u>: Data Collection and Processing Software, Rigaku Corporation (1998-2014). Tokyo 196-8666, Japan.

(2) <u>SIR2004</u>: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna R. (2005). J. Appl. Cryst. 38, 381-388.

(3) Least Squares function minimized: (SHELXL2013)

 $\Sigma w (F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(4) Goodness of fit is defined as:

$$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$$

where: N_0 = number of observations N_V = number of variables

(5) International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2014). Tokyo 196-8666, Japan.

(10) SHELXL2013: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₂₃ H ₂₈ F ₈ O ₆ S ₂
Formula Weight	616.58
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.300 X 0.060 X 0.020 mm
Crystal System	monoclinic
Lattice Type	C-centered
Lattice Parameters	a = 44.560(17) Å b = 5.5896(15) Å c = 26.277(10) Å β = 124.357(7) ^o V = 5403(3) Å ³
Space Group	C2/c (#15)
Z value	8
D _{calc}	1.516 g/cm ³
F000	2544.00
μ(ΜοΚα)	2.889 cm ⁻¹

B. Intensity Measurements

Diffractometer	Mercury70
Radiation	MoKα (λ = 0.71075 Å) multi-layer mirror
monochromated	2
Voltage, Current	50kV, 16mA
Temperature	-100.0°C
Detector Aperture	70.0 x 70.0 mm
Pixel Size	0.068 mm
20 _{max}	50.70
No. of Reflections Measured	Total: 16828 Unique: 4913 (R _{int} = 0.0799)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.608 - 0.994)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR2004)
Refinement	Full-matrix least-squares on F^2
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.0469 · P) ² + 6.6592 · P]
2Fc ²)/3	where $P = (Max(Fo^2, 0) +$
$2\theta_{max}$ cutoff	50.7 ⁰
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	4913
No. Variables	353
Reflection/Parameter Ratio	13.92
Residuals: R1 (I>2.00σ(I))	0.0648
Residuals: R (All reflections)	0.1467
Residuals: wR2 (All reflections)	0.1673
Goodness of Fit Indicator	1.067
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.36 e⁻/Å ³
Minimum peak in Final Diff. Map	-0.39 e ⁻ /Å ³

atom	Х	У	Z	Beq
S1	0.16515(3)	1.2015(2)	1.10124(6)	3.65(3)
S2	0.19661(3)	1.0852(2)	0.85371(5)	3.65(3)
F1	0.14676(7)	0.6096(4)	0.96489(11)	4.10(6)
F2	0.24468(6)	0.9942(4)	0.99777(11)	3.68(5)
F3	0.22951(10)	1.3582(9)	1.18092(16)	9.82(13)
F4	0.22240(12)	0.9814(9)	1.18620(16)	11.75(16)
F5	0.20102(10)	1.2348(7)	1.21953(14)	8.31(10)
F6	0.14933(9)	1.4096(6)	0.78193(13)	6.70(8)
F7	0.13171(9)	1.0514(6)	0.75427(13)	7.13(9)
F8	0.17074(9)	1.2013(6)	0.74182(13)	6.48(8)
01	0.17904(8)	1.1401(5)	1.06003(13)	3.25(6)
02	0.15449(10)	1.4447(5)	1.09055(16)	5.28(8)
03	0.14240(9)	1.0199(6)	1.09887(16)	5.28(8)
04	0.17957(7)	1.1479(5)	0.89027(12)	3.16(6)
05	0.19915(9)	0.8329(6)	0.84947(14)	4.48(7)
06	0.22632(8)	1.2384(7)	0.87230(15)	5.18(8)
C1	0.18051(12)	0.8869(7)	1.04272(19)	3.11(9)
C2	0.14633(12)	0.8526(7)	0.9783(2)	3.31(9)
C3	0.14526(11)	1.0067(7)	0.92942(18)	2.74(8)
C4	0.18069(11)	0.9735(7)	0.93341(19)	3.03(9)
C5	0.21339(11)	1.0285(8)	0.99770(19)	3.18(9)
C6	0.21484(11)	0.8642(8)	1.04489(19)	3.26(9)
C7	0.11140(11)	0.9671(7)	0.86565(19)	2.90(9)
C8	0.08374(12)	1.1342(8)	0.8400(2)	3.32(9)
C9	0.05235(12)	1.1020(8)	0.7817(2)	3.41(9)
C10	0.04744(11)	0.9030(8)	0.74637(19)	2.94(8)
C11	0.07530(11)	0.7348(8)	0.7725(2)	3.48(9)
C12	0.10664(12)	0.7646(8)	0.8308(2)	3.43(9)
C13	0.01371(12)	0.8766(8)	0.68115(19)	3.26(9)
C14	-0.00467(12)	0.6354(9)	0.6689(2)	4.15(10)
C15	-0.03800(12)	0.6142(9)	0.6034(2)	4.33(11)
C16	-0.02976(12)	0.6565(9)	0.5564(2)	4.14(11)
C17	-0.01169(14)	0.9018(10)	0.5681(2)	5.31(12)
C18	0.02207(13)	0.9296(10)	0.6339(2)	4.78(11)
C19	-0.06299(13)	0.6238(11)	0.4902(2)	5.46(13)
C20	-0.05600(15)	0.6106(14)	0.4425(2)	7.76(18)
C21	-0.08867(14)	0.5554(12)	0.3786(2)	6.85(16)

Table 1. Atomic coordinates and $\mathrm{B}_{iso}/\mathrm{B}_{eq}$

Table 1. Atomic coordinates and ${\rm B}_{iso}/{\rm B}_{eq}$ (continued)

atom	Х	У	Z	B _{eq}
C22	0.20744(19)	1.1884(14)	1.1774(3)	6.34(15)
C23	0.15954(14)	1.1925(9)	0.7786(2)	4.23(11)

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

atom	Х	У	Z	B _{iso}
H1	0.18080	0.77280	1.07230	3.732
H2	0.12441	0.88622	0.97871	3.976
H3	0.14470	1.17714	0.94043	3.292
H4	0.18230	0.80687	0.92127	3.634
H5	0.21224	1.19863	1.00825	3.815
H6A	0.21780	0.69659	1.03626	3.912
H6B	0.23602	0.90628	1.08660	3.912
H8	0.08631	1.27365	0.86284	3.984
H9	0.03370	1.21932	0.76560	4.093
H11	0.07273	0.59558	0.74956	4.174
H12	0.12511	0.64589	0.84738	4.112
H13	-0.00411	1.00004	0.67580	3.912
H14A	-0.01187	0.61126	0.69790	4.978
H14B	0.01283	0.50789	0.67647	4.978
H15A	-0.04852	0.45223	0.59726	5.191
H15B	-0.05644	0.73150	0.59710	5.191
H16	-0.01142	0.53397	0.56349	4.968
H17A	-0.00470	0.92566	0.53871	6.376
H17B	-0.02949	1.02770	0.56007	6.376
H18A	0.04126	0.81919	0.64017	5.740
H18B	0.03143	1.09504	0.63982	5.740
H19A	-0.07562	0.47529	0.48854	6.553
H19B	-0.07986	0.75862	0.48031	6.553
H20A	-0.03737	0.48604	0.45421	9.310
H20B	-0.04565	0.76537	0.44114	9.310
H21A	-0.10839	0.66656	0.36807	8.224
H21B	-0.09667	0.39098	0.37738	8.224
H21C	-0.08217	0.57286	0.34883	8.224

Table 2. Atomic coordinates and $B_{\mbox{\scriptsize ISO}}$ involving hydrogen atoms
Table 3. Anisotropic displacement parameters

atom	U11 U22	U22	U33	U12	U13	
S1	0.0496(8)	0.0469(7)	0.0483(8)	-0.0051(6)	0.0312(7)	-
0.0030(6) S2	0.0397(8)	0.0590(8)	0.0399(7)	-0.0014(6)	0.0224(6)	-
0.0037(6) F1	0.0680(19)	0.0367(14)	0.0505(16)	-0.0094(13)	0.0330(15)	-
0.0060(12 F2) 0.0355(15)	0.0533(16)	0.0518(16)	-0.0003(12)	0.0250(13)	-
0.0023(13 F3) 0.081(3)	0.213(5)	0.078(3)	-0.062(3)	0.044(2)	-
0.068(3) F4	0.154(4)	0.184(5)	0.054(2)	0.102(4)	0.026(2)	
F5	0.021(3) 0.126(3)	0.151(3)	0.051(2)	-0.023(3)	0.057(2)	-
0.026(2) F6	0.108(3)	0.071(2)	0.067(2)	0.031(2)	0.044(2)	
F7	0.0144(17) 0.062(2)	0.108(3)	0.056(2)	-0.025(2)	0.0065(17)	
F8	0.0088(19) 0.084(2)	0.121(3)	0.0522(19)	0.017(2)	0.0451(19)	
01	0.0146(18) 0.050(2)	0.0376(17)	0.0401(18)	-0.0022(15)	0.0282(16)	-
0.0007(14	·)					
02	0.095(3)	0.0414(19)	0.090(3)	0.0115(19)	0.068(2)	
03 0.0142(19	0.080(3)	0.059(2)	0.090(3)	-0.0274(19)	0.065(2)	-
04	0.0428(18)	0.0443(18)	0.0419(18)	-0.0005(14)	0.0292(16)	
05 0.0008(16	0.066(2)	0.058(2)	0.047(2)	0.0161(18)	0.0322(19)	-
06	0.048(2)	0.103(3)	0.054(2)	-0.030(2)	0.0330(19)	-
C1 = 0.000(2)	0.045(3)	0.035(2)	0.036(3)	-0.000(2)	0.021(2)	-
C2 0.008(2)	0.041(3)	0.040(3)	0.047(3)	-0.005(2)	0.026(3)	-
C3 = 0.001(2)	0.037(3)	0.032(2)	0.036(3)	-0.001(2)	0.021(2)	-
C4	0.041(3) 0.004(2)	0.037(3)	0.038(3)	-0.000(2)	0.023(2)	
C5 0.002(2)	0.033(3)	0.046(3)	0.043(3)	-0.002(2)	0.022(2)	-
C6	0.040(3) 0.002(2)	0.044(3)	0.036(3)	0.000(2)	0.019(2)	

C7	0.039(3)	0.037(3)	0.034(3)	-0.001(2)	0.020(2)	-
0.002(2)						
C8	0.047(3)	0.037(3)	0.044(3)	-0.001(2)	0.028(3)	-
0.004(2)						
С9	0.038(3)	0.044(3)	0.041(3)	0.002(2)	0.018(3)	-
0.001(2)						
C10	0.033(3)	0.046(3)	0.036(3)	-0.001(2)	0.022(2)	
	0.000(2)					
C11	0.035(3)	0.044(3)	0.045(3)	-0.001(2)	0.018(3)	-
0.010(2)						
C12	0.037(3)	0.044(3)	0.043(3)	0.007(2)	0.019(3)	
	0.001(2)					
C13	0.035(3)	0.049(3)	0.035(3)	0.003(2)	0.017(2)	
	0.002(2)					
C14	0.045(3)	0.071(3)	0.036(3)	-0.014(3)	0.020(3)	-
0.007(2)						
C15	0.042(3)	0.072(3)	0.039(3)	-0.010(3)	0.015(3)	
	0.000(3)					
C16	0.033(3)	0.075(4)	0.038(3)	0.008(3)	0.013(3)	-
0.006(3)						
C17	0.064(4)	0.096(4)	0.036(3)	-0.002(3)	0.025(3)	
	0.011(3)					
C18	0.058(4)	0.079(4)	0.042(3)	-0.015(3)	0.027(3)	
	0.002(3)					
C19	0.047(3)	0.104(5)	0.044(3)	0.009(3)	0.018(3)	-
0.006(3)						
C20	0.066(4)	0.183(7)	0.040(3)	0.005(4)	0.026(3)	-
0.009(4)						
C21	0.058(4)	0.151(6)	0.040(3)	0.001(4)	0.020(3)	-
0.016(4)						

 Table 3. Anisotropic displacement parameters (continued)

atom	U11	U22	U33	U12	U13	
C22	023 0.081(5)	0.104(5)	0.048(4)	-0.009(4)	0.032(4)	-
C23 0.003(3)	0.057(4)	0.057(3)	0.042(3)	-0.005(3)	0.026(3)	-

The general temperature factor expression: $\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl))$

Table 4. Bond lengths (Å)

atom	atom distance	distance	atom	atom
S1	01	1.559(5)	S1	02
S1	03	1.411(4)	S1	C22
S2	04	1.564(4)	S2	05
S2	1.424(3) 06	1.412(4)	S2	C23
F1	1.010(4) C2	1.406(5)	F2	C5
F3	C22	1.332(10)	F4	C22
F5	1.209(9) C22 1.216(7)	1.315(10)	F6	C23
F7	1.310(7) C23	1.294(6)	F8	C23
01	1.313(9) C1	1.499(5)	04	C4
C1	1.474(0) C2	1.520(5)	C1	С6
C2	1.504(8) C3 1.522(9)	1.525(7)	C3	C4
C3	1.555(6) C7	1.510(5)	C4	C5
C5	1.514(5) C6 1.281(6)	1.515(7)	C7	C8
C7	C12	1.394(7)	C8	С9
С9	C10	1.386(7)	C10	C11
C10	C13	1.520(5)	C11	C12
C13	C14	1.515(7)	C13	C18
C14	C15	1.516(5)	C15	C16
C16	C17	1.531(8)	C16	C19
C17	C18	1.531(5)	C19	C20
C20	C21	1.508(6)		

atom	atom distance	distance	atom	atom
C1	H1	1.000	C2	H2
C3	H3	1.000	C4	H4
C5	H5	1.000	C6	H6A
C6	H6B	0.990	C8	H8
С9	H9	0.950	C11	H11
C12	H12	0.950	C13	H13
C14	H14A	0.990	C14	H14B
C15	0.990 H15A	0.990	C15	H15B
C16	0.990 H16	1.000	C17	H17A
C17	0.990 H17B	0.990	C18	H18A
C18	0.990 H18B	0.990	C19	H19A
C19	0.990 H19B	0.990	C20	H20A
C20	0.990 H20B	0.990	C21	H21A
C21	0.980 H21B 0.980	0.980	C21	H21C

Table 5. Bond lengths involving hydrogens (Å)

Table 6. Bond angles (0)

atom	atom angle	atom	angle	atom	atom	atom
01	S1	02	107.1(3)	01	S1	03
01	S1	C22	100.7(3)	02	S1	03
02	122.0(3) S1	C22	106.3(3)	03	S1	C22
04	107.0(3) S2	05	110.9(2)	04	S2	06
04	109.7(2) S2	C23	97.7(3)	05	S2	06
05	121.8(2) S2	C23	107.8(2)	06	S2	C23
S1	106.0(2) 01	C1	121.4(3)	S2	04	C4
01	120.4(3) C1	C2	105.6(3)	01	C1	C6
C2	106.6(4) C1	C6	113.0(5)	F1	C2	C1
F1	104.7(3) C2	C3	109.4(4)	C1	C2	C3
C2	113.7(4) C3	C4	109.4(3)	C2	С3	C7
C4	112.9(4) C3	C7	113.8(4)	04	C4	С3
04	106.3(3) C4	C5	108.5(3)	С3	C4	C5
F2	110.9(4) C5	C4	107.6(4)	F2	C5	С6
C4	109.4(3) C5	C6	111.1(4)	C1	C6	C5
C3	110.2(3) C7	C8	120.0(4)	С3	C7	C12
C8	122.3(4) C7	C12	117.8(3)	C7	C8	С9
C8	121.2(4) C9	C10	121.7(4)	С9	C10	C11
С9	116.9(3) C10	C13	121.0(4)	C11	C10	C13
C10	122.0(4) C11	C12	121.8(4)	C7	C12	C11
C10	120.7(4) C13	C14	113.5(4)	C10	C13	C18
C14	111.2(4) C13 112.2(4)	C18	110.7(4)	C13	C14	C15
	(-)					

C14	C15 108.9(5)	C16	112.7(5)	C15	C16	C17
C15	C16 113.3(4)	C19	112.9(5)	C17	C16	C19
C16	C17 111.6(5)	C18	112.8(4)	C13	C18	C17
C16	C19 115.3(6)	C20	116.4(5)	C19	C20	C21
S1	C22	F3	108.2(5)	S1	C22	F4
S1	C22	F5	109.6(5)	F3	C22	F4
F3	C22	F5	107.7(6)	F4	C22	F5
S2	C23	F6	111.6(3)	S2	C23	F7
S2	C23	F8	108.7(4)	F6	C23	F7
F6	C23 108.4(4)	F8	107.6(5)	F7	C23	F8

atom	atom	atom	angle	atom	atom	atom
01	C1	H1	110.5	C2	C1	H1
C6	C1	H1	110.5	F1	C2	H2
C1	C2	H2	109.6	С3	C2	H2
C2	C3	Н3	106.8	C4	C3	H3
C7	C3	Н3	106.8	04	C4	H4
C3	C4	H4	110.3	C5	C4	H4
F2	C5	Н5	109.6	C4	C5	H5
C6	109.6 C5	Н5	109.6	C1	C6	H6A
C1	109.6 C6	H6B	109.6	C5	C6	H6A
C5	109.6 C6	H6B	109.6	H6A	C6	H6B
C7	108.2 C8	H8	119.4	С9	C8	H8
C8	119.4 C9	Н9	119.2	C10	С9	H9
C10	119.2 C11	H11	119.1	C12	C11	H11
C7	119.1 C12	H12	119.7	C11	C12	H12
C10	119.7 C13	H13	107.0	C14	C13	H13
C18	107.0 C13	H13	107.1	C13	C14	H14A
C13	109.2 C14	H14B	109.2	C15	C14	H14A
C15	109.2 C14	H14B	109.2	H14A	C14	H14B
C14	107.9 C15	H15A	109.1	C14	C15	H15B
C16	109.1 C15	H15A	109.1	C16	C15	H15B
H15A	109.0 C15	H15B	107.8	C15	C16	H16
C17	107.1 C16 107.1	H16	107.1	C19	C16	H16

Table 7. Bond angles involving hydrogens (⁰)

C16	C17	H17A	109.0	C16	C17	H17B
	109.0					
C18	C17	H17A	109.0	C18	C17	H17B
	109.0					
H17A	C17	H17B	107.8	C13	C18	H18A
	109.3					
C13	C18	H18B	109.3	C17	C18	H18A
	109.3					
C17	C18	H18B	109.3	H18A	C18	H18B
	108.0					
C16	C19	H19A	108.2	C16	C19	H19B
	108.2					
C20	C19	H19A	108.2	C20	C19	H19B
	108.2					
H19A	C19	H19B	107.4	C19	C20	H20A
	108.4					
C19	C20	H20B	108.4	C21	C20	H20A
	108.4					
C21	C20	H20B	108.4	H20A	C20	H20B
	107.5					
C20	C21	H21A	109.5	C20	C21	H21B
	109.5					
C20	C21	H21C	109.5	H21A	C21	H21B
	109.5					
H21A	C21	H21C	109.5	H21B	C21	H21C
	109.4					

Table 8. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2 angle	atom3	atom4	angle	atom1	atom2	atom3	atom4	
02 22.9(2)	S1	01	C1	-158.83(19)	03	S1	01	C1	-
01 56.8(6)	S1	C22	F3	63.2(5)	01	S1	C22	F4	-
01	S1 90.3(3)	C22	F5	-179.5(4)	C22	S1	01	C1	
02	S1	C22	F3	-48.3(6)	02	S1	C22	F4	-
02	, S1 170.0(1	C22	F5	69.0(5)	03	S1	C22	F3	
03	S1	C22	F4	59.8(7)	03	S1	C22	F5	-
02.0(5)	S2	04	C4	22.2(2)	06	S2	04	C4	-
115.2(2 04	S2	C23	F6	49.1(5)	04	S2	C23	F7	-
72.9(4) 04	S2	C23	F8	167.7(3)	C23	S2	04	C4	
05	134.7(2 S2	2) C23	F6	164.1(4)	05	S2	C23	F7	
05	42.1(5) S2	C23	F8	-77.3(4)	06	S2	C23	F6	-
64.0(5) 06	S2	C23	F7	174.0(4)	06	S2	C23	F8	
S1	54.6(4) 01	C1	C2	98.4(3)	S1	01	C1	C6	-
141.2(2	2)								
S2	04 95.3(3)	C4	C3	-145.4(2)	S2	04	C4	C5	
01	C1 65 1(6)	C2	F1	-175.5(4)	01	C1	C2	С3	
01	C1 52 8(4)	C6	C5	-62.8(4)	C2	C1	C6	C5	
C6	C1	C2	F1	68.3(5)	C6	C1	C2	C3	-
F1	C2	C3	C4	-65.4(4)	F1	C2	C3	C7	
C1	02.4(5) C2	C3	C4	51.2(5)	C1	C2	C3	C7	
C2	C3	c4	04	-173.4(3)	C2	C3	C4	C5	-
55.7(4) C2 75.7(6)	С3	C7	C8	104.0(5)	C2	C3	C7	C12	-

C4	C3 49.8(6)	C7	C8	-130.5(4)	C4	C3	C7	C12	
C7	C3	C4	04	59.3(4)	C7	C3	C4	C5	
04	C4	C5	F2	-63.6(4)	04	C4	C5	C6	
С3	C4 60 3(4)	C5	F2	180.0(3)	C3	C4	C5	C6	
F2 57 8(5)	C5	C6	C1	-176.4(3)	C4	C5	C6	C1	-
C3	C7	C8	С9	-179.8(5)	C3	C7	C12	C11	-
C8 0 1(8)	с7	C12	C11	0.5(8)	C12	C7	C8	С9	-
C7	C8 0 9(9)	С9	C10	-0.7(9)	C8	С9	C10	C11	
C8 0 5(8)	C9	C10	C13	-176.7(5)	С9	C10	C11	C12	-
C9	C10	C13	C14	-130.8(5)	С9	C10	C13	C18	
C11	C10	C13	C14	51.6(7)	C11	C10	C13	C18	-
C13	C10	C11	C12	177.2(5)	C10	C11	C12	C7	-
C10	C13	C14	C15	-179.6(4)	C10	C13	C18	C17	
C14	C13	C18	C17	52.5(5)	C18	C13	C14	C15	-
55.7(5) C13	C14	C15	C16	56.9(6)	C14	C15	C16	C17	-
C14	C15 55.0(6)	C16	C19	177.3(4)	C15	C16	C17	C18	

Table 8. Torsion angles (⁰) (continued)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4
C15	C16	C19	C20	-167.2(4)	C17	C16	C19	C20
C19	68.3(6) C16	C17	C18	-178.5(5)	C16	C17	C18	C13 -
54.4(6) C16	C19	C20	C21	174.5(5)				

atom	atom distance	distance	atom	atom
S1	C2 3 166(3)	3.447(5)	S2	F2
S2	C5	3.432(6)	F1	C4
F1	C5	3.486(6)	F1	C6
F1	C7 C7	2.939(5)	F1	C12
F2	04	2.808(3)	F2	05
F2	06	3.218(5)	F3	01
F3	02	2.844(5)	F4	01
F4	03	2.964(5)	F4	C1
F4	C6 3.038(5)	3.594(8)	F5	02
F5	03 2 780(4)	2.995(4)	F6	04
F6	2.700(4) 06 3.001(4)	3.022(4)	F7	04
F7	05	2.880(4)	F7	C7
F7	C11 3 226(7)	3.322(7)	F7	C12
F8	05	3.131(5)	F8	06
01	C3 3 496(7)	2.961(5)	01	C4
01	C5 2 905(8)	2.871(8)	03	C1
03	C2 2 907(6)	3.401(8)	04	C7
04	C12 2 865(8)	3.444(5)	05	C4
06	C4 2 917(8)	3.548(7)	C1	C4
C1	C22 2 905(8)	3.467(9)	C2	C5
C2	C8 3 264(7)	3.467(5)	C2	C12
C3	C6 3.079(5)	2.973(5)	C4	C12

Table 9. Intramolecular contacts less than 3.60 Å

C7	C10 2.743(7)	2.827(5)	C8	C11
С9	C12 3.454(7)	2.748(6)	С9	C18
C11	C14 3.213(6)	3.077(5)	C11	C18
C13	C16 2.898(8)	2.974(6)	C14	C17
C15	C18 3.176(8)	2.914(8)	C17	C20

atom	atom	distance	atom	atom
C1		2 721	C1	U 2
51	3.189	2.721	51	ΠΖ
S2	H4	2.694	F1	H1
	2.503			
F1	Н3	3.228	F1	H4
	2.662			
F1	H6A	2.660	F1	H12
	2.673			
F2	H4	2.561	F2	H6A
	2.568			
F2	H6B	2.618	F4	H1
	2.737			
F4	H6B	3.031	F7	H12
	3.467			
01	H2	2.576	01	H3
	2.614			
01	H5	2.534	01	H6A
	3.277			
01	H6B	2.577	03	H1
	2.583			
03	H2	2.883	04	H3
	2.548		- ·	
04	H5	2.592	04	H12
. -	3.456	2.207	~ -	
05	H4	2.397	05	H12
01	3.432	2.750	01	114
CI	H3	2.750	CI	H4
C1	3.208	2 702	CO	114
CI	ПЭ 2756	2.702	62	П4
C2	2.750 UC	2 2 2 2	C2	ЧСЛ
62	2 784	5.222	62	IIUA
C2	2.704 H6R	3 365	C2	ня
62	3 569	5.505	62	110
C2	H12	3 2 2 4	63	H1
02	3 406		00	
C3	H5	2,715	63	H6A
00	3.330			
C3	H8	2.646	С3	H12
	2.709			
C4	H2	3.364	C4	H6A
	2.718			
C4	H6B	3.350	C4	H12
	2.877			

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens

C5	H1 2660	3.348	C5	H3
C6	2.009 H2 3.268	3.372	C6	H3
C6	H4 2 724	2.728	C7	H2
С7	H4 3.258	2.776	C7	Н9
C7	H11 3.321	3.264	C8	H2
C8	H3 3.238	2.511	C8	H12
С9	H11 2.549	3.228	С9	H13
С9	H18B 3.267	3.295	C10	H8
C10	H12 2.733	3.274	C10	H14A
C10	H14B 2.686	2.726	C10	H18A
C10	H18B 3.229	2.692	C11	H9
C11	H13 3 288	3.321	C11	H14A
C11	H14B 2 942	2.792	C11	H18A
C11	H18B	3.512	C12	H2
C12	H3 2.833	3.313	C12	H4

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
C12	H8 2.675	3.238	C13	H9
C13	H11 3.358	2.698	C13	H15A
C13	H15B 3.252	2.741	C13	H16
C13	H17A 2 762	3.360	C13	H17B
C14	H11 2.672	2.861	C14	H16
C14	H17B 2.748	3.261	C14	H18A
C14	H18B 2.704	3.340	C15	H13
C15	H17A 2 696	3.311	C15	H17B
C15	H18A 2 609	3.296	C15	H19A
C15	H19B	2.789	C16	H13
C16	H14A 2 736	3.343	C16	H14B
C16	H18A 3 391	2.797	C16	H18B
C16	H20A 2 762	2.685	C16	H20B
C17	H13 3 263	2.712	C17	H14B
C17	H15A 2 680	3.320	C17	H15B
C17	H19A 2 698	3.383	C17	H19B
C17	H20A 2 880	3.434	C17	H20B
C18	H9 3 174	3.584	C18	H11
C18	H14A 2 738	3.340	C18	H14B
C18	H15B 2 725	3.253	C18	H16
C19	H15A 2.722	2.683	C19	H15B

C19	Н17Δ	2 735	C19	H17R
017	2 757	2.755	017	III/D
C19	H21A	2.669	C19	H21B
UI)	2.778		017	11210
C19	H21C	3.322	C20	H16
	2.667			
C20	H17A	2.863	C20	H17B
	3.502			
C21	H19A	2.644	C21	H19B
	2.721			
C22	H1	3.277	H1	H2
	2.406			
H1	H6A	2.358	H1	H6B
	2.389			
H2	H3	2.345	H2	H8
	3.318			
H3	H4	2.880	H3	H5
	2.489			
H3	H8	2.287	H4	H5
	2.891			
H4	H6A	2.572	H4	H12
	2.343			
H5	H6A	2.876	H5	H6B
	2.360			
H8	H9	2.314	H9	H13
	2.328	2.222		
H9	HI8B	3.323	H11	H12
114.4	2.316	2 207	1144	114 4 D
HII	H14A	3.207	HII	H14B
1111	2.295	2 (01	1110	111 / /
нш	H18A	2.091	н13	H14A
	2.325			

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
H13	H14B 3.597	2.850	H13	H15A
H13	H15B 2.582	2.554	H13	H17B
H13	H18A 2.318	2.850	H13	H18B
H14A	H15A 2.340	2.361	H14A	H15B
H14A	H16 2.341	3.569	H14B	H15A
H14B	H15B 2.526	2.859	H14B	H16
H14B	H18A 2.321	2.628	H15A	H16
H15A	H17B 2.396	3.599	H15A	H19A
H15A	H19B 2 833	3.079	H15B	H16
H15B	H17A 2 539	3.583	H15B	H17B
H15B	H19A 2 630	2.858	H15B	H19B
H16	H17A 2 862	2.351	H16	H17B
H16	H18A 2 411	2.603	H16	H19A
H16	H19B 2 430	2.852	H16	H20A
H16	H20B 2 344	2.967	H17A	H18A
H17A	H18B	2.392	H17A	H19B
H17A	H20A 2 329	3.072	H17A	H20B
H17B	H18A 2 341	2.870	H17B	H18B
H17B	H19A 2 526	3.596	H17B	H19B
H17B	H20B	3.146	H19A	H20A
H19A	H20B 2.842	2.800	H19A	H21A

H19A	H21B	2.558	H19A	H21C
H19B	3.557 H20A	2.800	H19B	H20B
	2.271			
H19B	H21A	2.519	H19B	H21B
	3.132			
H19B	H21C	3.553	H20A	H21A
	2.841			
H20A	H21B	2.306	H20A	H21C
	2.377			
H20B	H21A	2.398	H20B	H21B
	2.838			
H20B	H21C	2.288		

atom	atom distance	distance	atom	atom
F1	01^{1}	3.338(4)	F1	021
F1	$C3^{1}$	3.487(5)	F2	$F2^2$
F2	2.762(3) F2 ³	2.890(3)	F2	043
F2	3.584(3) 06^{3}	3.253(5)	F2	C5 ²
F2	3.434(5) C5 ³	3.221(5)	F2	C6 ²
F3	3.287(6) F4 ⁴	3.508(7)	F3	F4 ⁵
F3	2.969(5) F5 ⁵	3.423(5)	F3	06 ³
F4	3.038(7) F3 ¹	3.508(7)	F4	F3 ⁶
F4	2.969(5) F5 ⁶	3.184(5)	F4	F8 ⁷
F4	3.504(8) C22 ⁶	3.557(7)	F5	F3 ⁶
F5	3.423(5) F4 ⁵	3.184(5)	F5	F8 ⁷
F5	2.999(6) 05 ⁷	3.483(6)	F6	054
F6	3.038(4) C12 ⁴	3.459(7)	F6	C21 ⁸
F8	3.503(5) F4 ⁹	3.504(8)	F8	F5 ⁹
F8	2.999(6) 03 ⁹	3.447(5)	F8	C21 ⁸
01	3.489(5) F1 ⁴	3.338(4)	01	06 ³
02	3.598(5) F1 ⁴	3.254(6)	02	034
02	3.288(5) C1 ⁴	3.268(7)	02	C2 ⁴
02	3.580(7) C19 ¹⁰	3.516(6)	02	C21 ¹⁰
03	3.511(9) F8 ⁷	3.447(5)	03	02 ¹
04	3.288(5) F2 ³	3.584(3)	05	F5 ⁹
05	3.483(6) F6 ¹	3 038(4)	05	061
05	3.471(5)	5.030(7)	05	00

Table 11. Intermolecular contacts less than 3.60 Å

05	C6 ² 3 253(5)	3.406(5)	06	F2 ³
06	$F3^{3}$	3.038(7)	06	01 ³
06	05^4	3.471(5)	06	C5 ³
06	$C6^3$	3.179(5)	C1	021
C2	02^{1}	3.580(7)	С3	F1 ⁴
C5	5.487(5) F2 ²	3.434(5)	С5	F2 ³
C5	3.221(5) 06^{3}	3.198(5)	C6	F2 ²
C6	3.287(6) 05^2 3.170(5)	3.406(5)	C6	06 ³
C12	3.179(5) F6 ¹	3.459(7)	C19	0211
C21	3.516(6) F6 ⁸	3.503(5)	C21	F8 ⁸
C21	3.489(5) 02 ¹¹ 3.557(7)	3.511(9)	C22	F4 ⁵

Symmetry Operators:

(1) X,Y-1,Z	(2) -X+1,-Y+2,-Z+2
(3) -X+1,-Y+3,-Z+2	(4) X,Y+1,Z
(5) -X+1/2,Y+1/2,-Z+1/2+2	(6) -X+1/2,Y+1/2-1,-Z+1/2+2
(7) X,-Y+2,Z+1	(8) -X,-Y+2,-Z+1
(9) X,-Y+2,Z	(10) -X,Y+1,-Z+1/2+1
(11) -X,Y-1,-Z+1/2+1	

atom	atom	distance	atom	atom
C1	uistance	2 1 1 1	C1	U2 1 D 2
51	3 561	5.444	51	1121D
S2	H6A ³	3 597	F1	H3 ⁴
52	2.489			110
F1	H5 ⁴	3.367	F1	$H8^4$
	3.134			
F1	H15B ⁵	3.452	F2	H4 ³
	3.183			
F2	H5 ⁶	2.646	F2	H6A ³
	2.534			
F2	H6B ³	3.580	F3	$H1^1$
P (3.352	2 1 0 0	F (11101
F6	H11 ⁺	3.190	FO	HIZ
F6	2.822 H21A7	3 306	F6	H21C7
10	3 0 2 7	5.500	10	11210
F7	H21A ⁷	3 182	F7	H21C ⁷
17	3.142	0.102	17	11210
F8	H21A ⁷	2.747	F8	H21C ⁷
	3.498			
01	$H1^1$	3.548	02	$H1^1$
	2.367			
02	H2 ¹	3.475	02	H19A ²
	2.908	0.050	0.0	1104.42
02	H19B ²	3.258	02	H21A ²
02	3.076	2115	02	111012
02	П21D ⁻ 2 501	5.145	03	П19А-
03	H19R ⁵	2 772	03	H21A ⁵
05	2.905		05	112111
03	$H21B^2$	3.206	04	H12 ¹
	3.438			
05	H6A ³	3.193	05	H6B ³
	2.734			
06	H5 ⁶	2.788	06	H6A ³
	3.336		22	
06	H6B ⁶	2.425	C2	H15B ⁵
67	3.387	2.276	CO	11111
L7		3.370	Lð	HII ¹
C8	5.551 H121	3 349	C8	H132
0	3 414	JJJJ	00	1113
C8	$H15A^2$	3.355	C8	H15B ⁵
-	3.397		-	-

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens

С9	H9 ⁵ 3 165	3.361	С9	H11 ¹
С9	H13 ⁵	2.983	С9	H14A ⁵
С9	H14A ² 3 225	3.568	С9	$H14B^{1}$
C10	H13 ⁵ 3 152	3.558	C10	H14A ⁵
C11	H8 ⁴ 3 375	3.348	C11	H9 ⁴
C11	H14A ⁵ 3 149	3.399	C12	$H8^4$
C13	H14A ⁵	3.550	C13	$H14B^1$
C14	H9 ⁴	3.145	C14	H9 ⁸
C14	H13 ⁴ 3 147	3.556	C14	H14A ⁵
C15	H2 ⁵ 3 347	3.524	C15	H8 ⁸
C15	H17B ⁴	3.560	C16	H17B ⁴
C16	H20A ⁹	3.256	C17	H16 ¹
C17	H17A ⁷	3.413	C17	H20A ⁹
C17	H20B ⁷	3.278	C18	$H14B^1$
C18	5.520 H20B ⁷ 3.582	3.199	C19	H2 ⁵

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom	distance	atom	atom
C20	H16 ⁹	3.199	C20	H17A ⁷
C20	3.573 H18A ⁹ 2.254	3.539	C20	H18B ⁷
C20	H20A ⁹ 3 204	3.496	C21	H18A ⁹
C21	H18B ⁷ 3.279	3.457	C23	H21A ⁷
C23	H21C ⁷ 3.444	3.433	H1	S1 ⁴
H1	F3 ⁴ 3.548	3.352	H1	014
H1	02 ⁴ 3.475	2.367	H2	024
H2	C15 ⁵ 3.582	3.524	H2	C19 ⁵
H2	H15B ⁵ 3 585	2.661	H2	H19A ⁵
H2	H19B ⁵ 2 489	2.832	Н3	F1 ¹
Н3	H12 ¹ 3 183	3.346	H4	F2 ³
Н5	5.105 F1 ¹ 2.646	3.367	Н5	F2 ⁶
Н5	2.040 06 ⁶ 2.854	2.788	H5	H6A ¹
H6A	$S2^{3}$	3.597	H6A	F2 ³
H6A	05 ³	3.193	H6A	063
H6A	H5 ⁴ 3 580	2.854	H6B	F2 ³
H6B	05^{3}	2.734	H6B	066
Н8	F1 ¹	3.134	H8	C11 ¹
Н8	C12 ¹	3.149	H8	C15 ²
H8	H11 ¹	3.230	Н8	H12 ¹
H8	L.077 H13 ⁵ 3.337	3.548	H8	H14A ²

H8	H15A ² 3.318	2.631	Н8	H15B ²
Н9	C9 ⁵ 3.375	3.361	Н9	C11 ¹
Н9	C14 ¹ 3.544	3.145	Н9	C14 ²
Н9	H9 ⁵ 2.907	2.629	Н9	H11 ¹
Н9	H13 ⁵ 2.830	2.811	Н9	H14A ¹
Н9	H14A ² 2.548	2.778	Н9	H14B ¹
Н9	H14B ² 3 526	3.575	Н9	H15A ²
H11	F6 ⁴ 3 351	3.190	H11	C8 ⁴
H11	C9 ⁴ 3 230	3.165	H11	H8 ⁴
H11	H9 ⁴ 2 996	2.907	H11	H21C ⁹
H12	F6 ⁴	2.822	H12	04 ⁴
H12	C8 ⁴ 3 346	3.349	H12	H3 ⁴
H12	H8 ⁴	2.877	H13	C8 ⁵
H13	C9 ⁵	2.983	H13	C10 ⁵
H13	C14 ¹	3.556	H13	H8 ⁵
H13	H9 ⁵ 3.515	2.811	H13	H14A ¹

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H13	H14B ¹ 3 155	2.935	H13	H15A ¹
H14A	C9 ⁸	3.568	H14A	C9 ⁵
H14A	C10 ⁵	3.152	H14A	C11 ⁵
H14A	C13 ⁵ 3.147	3.550	H14A	C14 ⁵
H14A	H8 ⁸ 2.830	3.337	H14A	H9 ⁴
H14A	H9 ⁸ 3.515	2.778	H14A	H13 ⁴
H14A	H14A ⁵ 3.375	2.312	H14A	H14B ⁵
H14B	C9 ⁴ 3 530	3.225	H14B	C13 ⁴
H14B	C18 ⁴ 2 548	3.520	H14B	H9 ⁴
H14B	H9 ⁸ 2 935	3.575	H14B	H13 ⁴
H14B	H14A ⁵	3.375	H14B	H18B ⁴
H14B	H21C ⁹	3.537	H15A	C8 ⁸
H15A	H8 ⁸ 3 526	2.631	H15A	H9 ⁸
H15A	H13 ⁴ 2 871	3.155	H15A	H17B ⁴
H15B	F1 ⁵	3.452	H15B	C2 ⁵
H15B	C7 ⁵ 3 397	3.376	H15B	C8 ⁵
H15B	H2 ⁵ 3 318	2.661	H15B	H8 ⁸
H16	C17 ⁴	3.536	H16	C20 ⁹
H16	H17A ⁴	3.506	H16	H17B ⁴
H16	H18B ⁴	3.060	H16	H20A ⁹
H16	H20B ⁹ 3.495	3.103	H16	H21C ⁹

H17A	C17 ⁷ 3 573	3.413	H17A	C20 ⁷
H17A	H16 ¹ 2 443	3.506	H17A	H17A ⁷
H17A	H20A ⁹	2.907	H17A	H20B ⁷
H17B	C15 ¹ 3 516	3.560	H17B	C16 ¹
H17B	H15A ¹	2.871	H17B	H16 ¹
H17B	H19A ¹	3.108	H17B	H20B ⁷
H18A	C20 ⁹	3.539	H18A	C21 ⁹
H18A	H20A ⁹	2.934	H18A	H20B ⁷
H18A	5.255 H21B ⁹ 2.750	2.996	H18A	H21C ⁹
H18B	C20 ⁷	3.354	H18B	C21 ⁷
H18B	5.457 H14B ¹	2.800	H18B	H16 ¹
H18B	3.060 H20A ⁷	3.521	H18B	H20B ⁷
H18B	2.657 H21C ⁷	2.808	H19A	028
H19A	2.908 03 ⁸	3.591	H19A	H2 ⁵
H19A	3.585 H17B ⁴	3.108	H19B	028
H19B	3.258 03 ⁵ 2.832	2.772	H19B	H2 ⁵

Table 12. Intermolecular	contacts less t	than 3.60 Å	A involving I	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H20A	C16 ⁹ 3.356	3.256	H20A	C17 ⁹
H20A	C20 ⁹ 2.469	3.496	H20A	H16 ⁹
H20A	H17A ⁹ 2.934	2.907	H20A	H18A ⁹
H20A	H18B ⁷ 2.804	3.521	H20A	H20A ⁹
H20A	H20B ⁹ 3.278	3.426	H20B	C17 ⁷
H20B	C18 ⁷ 3.103	3.199	H20B	H16 ⁹
H20B	H17A ⁷ 3.559	2.637	H20B	H17B ⁷
H20B	H18A ⁷ 2.657	3.235	H20B	H18B ⁷
H20B	H20A ⁹ 3 306	3.426	H21A	F6 ⁷
H21A	F7 ⁷ 2 747	3.182	H21A	F8 ⁷
H21A	02 ⁸ 2 905	3.076	H21A	035
H21A	C23 ⁷ 3 561	3.279	H21B	S1 ⁸
H21B	02 ⁸ 3 206	3.145	H21B	038
H21B	H18A ⁹	2.996	H21C	F6 ⁷
H21C	F7 ⁷	3.142	H21C	F8 ⁷
H21C	C23 ⁷	3.433	H21C	H11 ⁹
H21C	H14B ⁹	3.537	H21C	H16 ⁹
H21C	5.495 H18A ⁹ 2.808	2.759	H21C	H18B ⁷

Symmetry Operators:

(1) X,Y+1,Z	(2) -X,Y+1,-Z+1/2+1
(3) -X+1,-Y+2,-Z+2	(4) X,Y-1,Z
(5) -X,Y,-Z+1/2+1	(6) -X+1,-Y+3,-Z+2

(7) -X,-Y+2,-Z+1 (9) -X,-Y+1,-Z+1

(8) -X,Y-1,-Z+1/2+1

X-Ray data Collection for **19**

Data Collection

A colorless prism crystal of $C_{22}H_{27}F_5O_3S$ having approximate dimensions of 0.240 x 0.120 x 0.020 mm was mounted in a loop. All measurements were made on a Rigaku XtaLAB P200 diffractometer using multi-layer mirror monochromated Mo-K α radiation.

Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

a = 5.4268(8) Å α = 78.369(6)^o b = 10.7827(15) Å β = 82.270(7)^o c = 19.506(3) Å γ = 79.893(6)^o V = 1094.8(3) Å³

For Z = 2 and F.W. = 466.51, the calculated density is 1.415 g/cm^3 . Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P-1 (#2)

The data were collected at a temperature of $-180 \pm 1^{\circ}$ C to a maximum 2 θ value of 50.7°. Readout was performed in the 0.172 mm pixel mode.

Data Reduction

Of the 21593 reflections were collected, where 3957 were unique ($R_{int} = 0.0699$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). ¹

The linear absorption coefficient, μ , for Mo-K α radiation is 2.111 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.422 to 0.996. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement³ on F² was based on 3957 observed reflections and 281

variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

R1 =
$$\Sigma$$
 ||Fo| - |Fc|| / Σ |Fo| = 0.0434
wR2 = [Σ (w (Fo² - Fc²)²)/ Σ w(Fo²)²]^{1/2} = 0.1317

The goodness of fit⁴ was 1.06. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.68 and -0.41 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 ⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure⁹ crystallographic software package except for refinement, which was performed using SHELXL2013¹⁰.

References

(1) <u>CrystalClear</u>: Data Collection and Processing Software, Rigaku Corporation (1998-2014). Tokyo 196-8666, Japan.

- (2) <u>SHELXS2013</u>: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- (3) Least Squares function minimized: (SHELXL2013)

 $\Sigma w (F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(4) Goodness of fit is defined as:

 $[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$

where: N_0 = number of observations N_V = number of variables

(5) International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2014). Tokyo 196-8666, Japan.

(10) <u>SHELXL2013</u>: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₂₂ H ₂₇ F ₅ O ₃ S
Formula Weight	466.51
Crystal Color, Habit	colorless, prism
Crystal Dimensions	0.240 X 0.120 X 0.020 mm
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	a = $5.4268(8)$ Å b = $10.7827(15)$ Å c = $19.506(3)$ Å α = $78.369(6)$ ° β = $82.270(7)$ ° γ = $79.893(6)$ ° V = $1094.8(3)$ Å ³
Space Group	P-1 (#2)
Z value	2
D _{calc}	1.415 g/cm ³
F000	488.00
μ(ΜοΚα)	2.111 cm ⁻¹

B. Intensity Measurements

Diffractometer	XtaLAB P200
Radiation	MoKα (λ = 0.71075 Å) multi-laver mirror
monochromated	
Voltage, Current	45kV, 66mA
Temperature	-180.0°C
Detector Aperture	83.8 x 70.0 mm
Pixel Size	0.172 mm
20 _{max}	50.7 ⁰
No. of Reflections Measured	Total: 21593 Unique: 3957 (R _{int} = 0.0699)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.422 - 0.996)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELXS2013)		
Refinement	Full-matrix least-squares on F^2		
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$		
Least Squares Weights	w = $1/[\sigma^2(Fo^2) + (0.0907 \cdot P)^2 + 0.0000 \cdot P]$		
2Fc ²)/3	where P = (Max(Fo ² ,0) +		
$2\theta_{max}$ cutoff	50.7 ⁰		
Anomalous Dispersion	All non-hydrogen atoms		
No. Observations (All reflections)	3957		
No. Variables	281		
Reflection/Parameter Ratio	14.08		
Residuals: R1 (I>2.00σ(I))	0.0434		
Residuals: R (All reflections)	0.0495		
Residuals: wR2 (All reflections)	0.1317		
Goodness of Fit Indicator	1.061		
Max Shift/Error in Final Cycle	0.000		
Maximum peak in Final Diff. Map	0.68 e⁻/Å ³		
Minimum peak in Final Diff. Map	-0.41 e ⁻ /Å ³		
Х	У	Z	Beq
-------------	--	--	--
0.72761(8)	0.52670(4)	0.30353(2)	1.749(13)
0.77118(18)	0.51679(9)	0.46836(5)	1.97(2)
0.35914(18)	0.17278(10)	0.49833(5)	2.00(2)
1.0725(2)	0.45405(11)	0.20625(6)	3.22(3)
0.7520(2)	0.58614(12)	0.16812(6)	3.26(3)
0.7203(3)	0.38732(13)	0.20859(6)	3.68(3)
0.8409(2)	0.39452(11)	0.34633(6)	1.65(2)
0.4603(2)	0.54452(12)	0.31381(7)	2.14(3)
0.8649(3)	0.62508(12)	0.30734(7)	2.41(3)
0.7183(3)	0.34504(16)	0.41711(9)	1.55(3)
0.8499(3)	0.38446(16)	0.47079(9)	1.66(3)
0.7873(3)	0.31480(17)	0.54385(9)	1.82(3)
0.6864(3)	0.20803(17)	0.55671(9)	1.86(3)
0.6257(3)	0.14810(17)	0.49955(9)	1.72(3)
0.7484(3)	0.19956(16)	0.42576(9)	1.55(3)
0.6423(3)	0.15118(16)	0.36975(9)	1.55(3)
0.7544(3)	0.03473(16)	0.35036(9)	1.65(3)
0.6532(3)	-0.01673(16)	0.30252(9)	1.67(3)
0.4350(3)	0.04633(16)	0.27227(9)	1.56(3)
0.3245(3)	0.16309(17)	0.29195(9)	1.78(3)
0.4258(3)	0.21485(16)	0.33916(9)	1.76(3)
0.3176(3)	-0.00191(16)	0.21861(9)	1.64(3)
0.4125(3)	0.05691(17)	0.14320(9)	1.82(3)
0.2828(3)	0.01419(17)	0.08901(9)	1.87(3)
0.3219(3)	-0.13229(17)	0.09652(9)	1.72(3)
0.2274(3)	-0.19087(17)	0.17186(9)	1.86(3)
0.3538(3)	-0.14855(17)	0.22692(9)	1.87(3)
0.1974(3)	-0.17344(18)	0.04088(9)	1.98(3)
0.2877(4)	-0.31148(19)	0.03039(11)	2.57(4)
0.1683(4)	-0.3456(2)	-0.02824(11)	3.15(4)
0.8252(4)	0.48475(19)	0.21588(10)	2.40(4)
	x 0.72761(8) 0.77118(18) 0.35914(18) 1.0725(2) 0.7520(2) 0.7520(2) 0.7203(3) 0.8409(2) 0.4603(2) 0.8649(3) 0.7183(3) 0.8499(3) 0.7873(3) 0.6864(3) 0.6257(3) 0.7484(3) 0.6257(3) 0.7544(3) 0.6423(3) 0.7544(3) 0.6532(3) 0.7544(3) 0.6532(3) 0.4350(3) 0.3245(3) 0.3245(3) 0.3245(3) 0.3245(3) 0.3275(3) 0.3219(3) 0.2274(3) 0.3538(3) 0.1974(3) 0.2877(4) 0.1683(4) 0.8252(4)	xy0.72761(8)0.52670(4)0.77118(18)0.51679(9)0.35914(18)0.17278(10)1.0725(2)0.45405(11)0.7520(2)0.58614(12)0.7203(3)0.38732(13)0.8409(2)0.39452(11)0.4603(2)0.54452(12)0.8649(3)0.62508(12)0.7183(3)0.34504(16)0.7873(3)0.31480(17)0.6864(3)0.20803(17)0.6257(3)0.14810(17)0.6257(3)0.14810(17)0.7484(3)0.19956(16)0.6423(3)0.15118(16)0.7544(3)0.03473(16)0.4350(3)0.04633(16)0.3245(3)0.16309(17)0.4258(3)0.21485(16)0.3176(3)-0.00191(16)0.4125(3)0.05691(17)0.2274(3)-0.13229(17)0.2274(3)-0.17344(18)0.2877(4)-0.31148(19)0.1683(4)-0.3456(2)0.8252(4)0.48475(19)	xyz0.72761(8)0.52670(4)0.30353(2)0.77118(18)0.51679(9)0.46836(5)0.35914(18)0.17278(10)0.49833(5)1.0725(2)0.45405(11)0.20625(6)0.7520(2)0.58614(12)0.16812(6)0.7203(3)0.38732(13)0.20859(6)0.8409(2)0.39452(11)0.34633(6)0.4603(2)0.54452(12)0.31381(7)0.8649(3)0.62508(12)0.30734(7)0.7183(3)0.34504(16)0.41711(9)0.8499(3)0.38446(16)0.47079(9)0.7873(3)0.31480(17)0.54385(9)0.6664(3)0.20803(17)0.55671(9)0.6257(3)0.14810(17)0.49955(9)0.7484(3)0.19956(16)0.42576(9)0.6423(3)0.15118(16)0.36975(9)0.7544(3)0.03473(16)0.3252(9)0.4350(3)0.04633(16)0.27227(9)0.3245(3)0.16309(17)0.29195(9)0.4258(3)0.21485(16)0.33916(9)0.3176(3)-0.00191(16)0.21861(9)0.3176(3)-0.014320(7)0.14320(9)0.3219(3)-0.13229(17)0.09652(9)0.3219(3)-0.13229(17)0.02692(9)0.1974(3)-0.17344(18)0.04088(9)0.2877(4)-0.31148(19)0.03039(11)0.1683(4)-0.3456(2)-0.02824(11)0.8252(4)0.48475(19)0.21588(10)

Table 1. Atomic coordinates and $\mathrm{B}_{iso}/\mathrm{B}_{eq}$

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

atom	Х	У	Z	B _{iso}
H1	0.53579	0.38219	0.42115	1.860
H2	1.03600	0.36814	0.45806	1.996
H3	0.82109	0.34838	0.58246	2.188
H4	0.65129	0.16791	0.60424	2.227
H5	0.68035	0.05342	0.51104	2.069
H6	0.93248	0.16566	0.42408	1.855
H8	0.90253	-0.01016	0.37022	1.977
H9	0.73353	-0.09600	0.29018	1.999
H11	0.17586	0.20800	0.27233	2.137
H12	0.34696	0.29478	0.35093	2.114
H13	0.13240	0.02833	0.22504	1.968
H14A	0.37927	0.15151	0.13729	2.189
H14B	0.59662	0.03041	0.13514	2.189
H15A	0.35031	0.05205	0.04113	2.240
H15B	0.10034	0.04661	0.09485	2.240
H16	0.50687	-0.16265	0.08923	2.058
H17A	0.04305	-0.16487	0.17963	2.233
H17B	0.26134	-0.28546	0.17769	2.233
H18A	0.53600	-0.18216	0.22230	2.239
H18B	0.28202	-0.18529	0.27454	2.239
H19A	0.22864	-0.11534	-0.00457	2.373
H19B	0.01338	-0.16272	0.05414	2.373
H20A	0.47285	-0.32407	0.01927	3.085
H20B	0.24765	-0.37044	0.07488	3.085
H21A	0.20773	-0.28780	-0.07251	3.784
H21B	-0.01462	-0.33681	-0.01664	3.784
H21C	0.23475	-0.43423	-0.03331	3.784

Table 2. Atomic coordinates and $B_{\mbox{\scriptsize ISO}}$ involving hydrogen atoms

Table 3. Anisotropic displacement parameters

atom	U11 U22	U22	U33	U12	U13	
S1	0.0245(3)	0.0181(3)	0.0226(3)	-0.00300(18)	-0.00269(17)	-
0.00092(1	۵) ۵ 0294(۳)	0.01(2(5)	0.0222(6)	0.0041(4)	0.0062(4)	
ГI 0 0066(<i>1</i>)	0.0264(5)	0.0103(5)	0.0322(0)	-0.0041(4)	-0.0063(4)	-
0.0000(4) F2	0 0219(5)	0.0275(6)	0.0270(6)	-0.0073(4)	-0.0018(4)	_
0.0029(4)	0.0217(3)	0.0275(0)	0.0270(0)	-0.0073(4)	-0.0010(4)	-
0.0027(4) F3	0 0398(7)	0.0386(7)	0 0333(7)	0.0053(5)	0.0085(5)	
15	0.0370(7)	0.0300(7)	0.0333(7)	0.0033(3)	0.0003(3)	
FA	0.0000(3)	0 0397(7)	0.0241(6)	0.0058(6)	-0.0033(5)	
14	0.0300(7)	0.0397(7)	0.0241(0)	0.0030(0)	-0.0033(3)	
RE	0.0045(5)	0.0425(0)	0.0206(7)	0.0210(7)	0.0004(6)	
	0.0716(9)	0.0435(6)	0.0306(7)	-0.0210(7)	-0.0004(0)	-
0.0134(6)	0.0225(()	0.0105(()	0.0207(()	0.002((5)		
01	0.0225(6)	0.0185(6)	0.0207(6)	-0.0036(5)	-0.0007(5)	-
0.0021(5)						
02	0.0252(7)	0.0251(7)	0.0283(7)	-0.0007(5)	-0.0032(5)	-
0.0011(5)						
03	0.0355(7)	0.0193(7)	0.0371(8)	-0.0091(6)	-0.0054(6)	-
0.0004(6)						
C1	0.0201(8)	0.0192(9)	0.0192(8)	-0.0051(7)	-0.0006(7)	-
0.0014(7)						
C2	0.0208(8)	0.0158(8)	0.0279(9)	-0.0031(7)	-0.0030(7)	-
0.0063(7)						
C3	0.0243(9)	0.0238(9)	0.0221(9)	-0.0019(7)	-0.0045(7)	-
0.0064(7)						
C4	0.0251(9)	0.0248(9)	0.0202(9)	-0.0045(7)	-0.0023(7)	-
0.0025(7)						
C5	0.0205(8)	0.0193(9)	0.0253(9)	-0.0043(7)	-0.0041(7)	-
0.0008(7)						
C6	0.0205(8)	0.0174(9)	0.0216(9)	-0.0035(7)	-0.0039(7)	-
0.0037(7)						
C7	0.0214(8)	0.0189(8)	0.0193(8)	-0.0076(7)	0.0001(6)	_
0.0022(7)		010107(0)	010170(0)	010070(7)	010001(0)	
C8	0 0204(8)	0.0207(9)	0 0207(9)	-0.0038(7)	-0.0023(7)	_
0.0012(7)	0.0201(0)	0.0207(5)	0.0207())	0.0000(7)	0.0023(7)	
C9	0.0225(8)	0.0185(9)	0.0226(9)	-0.0046(7)	0.0004(7)	_
0.0050(7)	0.0223(0)	0.0103(7)	0.0220(7)	-0.00+0(7)	0.0004(7)	
0.0030(7)	0.0221(0)	0.0100(0)	0 0101(0)	0.007E(7)	0.0004(6)	
0.0000(7)	0.0221(0)	0.0109(9)	0.0101(0)	-0.0075(7)	0.0004(0)	-
0.0006(7)	0.0212(0)	0.0211(0)	0.0240(0)	0.002((7)	0.0040(7)	
	0.0212(8)	0.0211(9)	0.0248(9)	-0.0026(7)	-0.0049(7)	-
0.0018(7)						
	0.0235(9)	0.0168(8)	0.0271(9)	-0.0034(7)	-0.0025(7)	-
0.0050(7)						
C13	0.0217(8)	0.0205(9)	0.0205(9)	-0.0050(7)	-0.0021(7)	-
0.0033(7)						

C14	0.0283(9)	0.0195(9)	0.0223(9)	-0.0073(7)	-0.0039(7)	-
0.0016(7)						
C15	0.0286(9)	0.0220(9)	0.0212(9)	-0.0069(7)	-0.0053(7)	-
0.0017(7)						
C16	0.0225(8)	0.0227(9)	0.0209(9)	-0.0050(7)	-0.0025(7)	-
0.0045(7)						
C17	0.0280(9)	0.0203(9)	0.0236(9)	-0.0072(7)	-0.0035(7)	-
0.0034(7)						
C18	0.0307(9)	0.0198(9)	0.0212(9)	-0.0069(7)	-0.0044(7)	-
0.0016(7)						
C19	0.0269(9)	0.0268(10)	0.0226(9)	-0.0067(7)	-0.0032(7)	-
0.0046(8)						
C20	0.0412(11)	0.0293(10)	0.0299(10)	-0.0057(9)	-0.0067(8)	-
0.0095(8)						
C21	0.0564(14)	0.0333(12)	0.0365(12)	-0.0133(10)	-0.0084(10)	-
0.0133(9)						
C22	0.0369(10)	0.0259(10)	0.0245(10)	-0.0012(8)	-0.0001(8)	-
0.0010(8)						

The general temperature factor expression: $\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl))$

Table 4. Bond lengths (Å)

atom	atom distance	distance	atom	atom
S1	01	1.5675(11)	S1	02
S1	1.4210(13) 03 1.842(2)	1.4177(16)	S1	C22
F1	C2	1.4089(19)	F2	С5
F3	C22	1.322(2)	F4	C22
F5	C22	1.319(3)	01	C1
C1	C2	1.508(3)	C1	C6
C2	1.325(2) C3	1.496(2)	C3	C4
C4	1.525(5) C5	1.495(3)	C5	C6
C6	1.541(2) C7	1.517(3)	C7	C8
C7	1.397(2) C12	1.396(2)	C8	С9
С9	C10	1.399(2)	C10	C11
C10	1.400(2) C13	1.512(3)	C11	C12
C13	1.303(3) C14	1.538(2)	C13	C18
C14	1.557(5) C15	1.528(3)	C15	C16
C16	1.550(5) C17	1.536(2)	C16	C19
C17	1.526(3) C18	1.529(3)	C19	C20
C20	1.529(3) C21	1.522(3)		

atom	atom distance	distance	atom	atom
C1	H1 1 000	1.000	C2	H2
C3	H3	0.950	C4	H4
C5	0.950 H5 1.000	1.000	C6	H6
C8	H8 0.950	0.950	С9	H9
C11	H11	0.950	C12	H12
C13	H13	1.000	C14	H14A
C14	0.990 H14B	0.990	C15	H15A
C15	0.990 H15B	0.990	C16	H16
C17	1.000 H17A	0.990	C17	H17B
C18	0.990 H18A	0.990	C18	H18B
C19	0.990 H19A	0.990	C19	H19B
C20	0.990 H20A	0.990	C20	H20B
C21	0.990 H21A	0.980	C21	H21B
C21	H21C	0.980		

Table 5. Bond lengths involving hydrogens (Å)

Table 6. Bond angles (0)

atom	atom angle	atom	angle	atom	atom	atom
01	S1	02	110.66(7)	01	S1	03
01	111.56(8 S1	C22	96.07(8)	02	S1	03
02	121.58(8 S1 105.81(9) C22	107.83(9)	03	S1	C22
S1	103.01(9 01 107.41(1	C1	119.99(9)	01	C1	C2
01	C1 111 28(1		107.68(13)	C2	C1	C6
F1	C2		107.27(13)	F1	C2	С3
C1	C2	-) C3 8)	112.49(15)	C2	С3	C4
C3	C4	C5	122.72(15)	F2	C5	C4
F2	C5	C6	108.40(13)	C4	C5	C6
C1	C6	C5	107.69(14)	C1	C6	C7
C5	C6	4) C7	110.66(15)	C6	C7	C8
C6	C7	C12	122.54(15)	C8	C7	C12
C7	C8	6) (C9	121.25(15)	C8	С9	C10
С9	C10	C11	117.22(18)	С9	C10	C13
C11	C10 121 80(1	C13	118.66(15)	C10	C11	C12
C7	C12 111 11(1	C11	120.87(16)	C10	C13	C14
C10	C13	C18	114.44(14)	C14	C13	C18
C13	C14	C15	111.14(15)	C14	C15	C16
C15	C16	4) C17	109.00(15)	C15	C16	C19
C17	C16	4) C19	112.73(15)	C16	C17	C18
C13	C18	C17	111.77(14)	C16	C19	C20
C19	114.87(1 C20 110.52(1	5) C21 5)	112.83(16)	S1	C22	F3

S1	C22	F4	108.00(13)	S1	C22	F5
	110.74	(13)				
F3	C22	F4	109.21(15)	F3	C22	F5
	108.93	(16)				
F4	C22	F5	109.42(17)			

atom	atom	atom	angle	atom	atom	atom
01	C1	H1	110.1	C2	C1	H1
C6	110.1 C1	H1	110.1	F1	C2	H2
C1	109.3 C2	H2	109.4	С3	C2	H2
C2	109.3 C3	Н3	118.8	C4	C3	H3
C3	118.8 C4	H4	118.6	C5	C4	H4
F2	118.6 C5	H5	108.9	C4	C5	H5
C6	108.9 C5	H5	108.9	C1	C6	H6
C5	107.8 C6	H6	107.8	C7	C6	H6
C7	107.8 C8	H8	119.4	С9	C8	H8
C8	119.4 C9	Н9	119.5	C10	С9	H9
C10	119.5 C11	H11	119.1	C12	C11	H11
C7	119.1 C12	H12	119.6	C11	C12	H12
C10	119.6 C13	H13	107.0	C14	C13	H13
C18	107.0 C13	H13	107.0	C13	C14	H14A
C13	109.4 C14	H14B	109.4	C15	C14	H14A
C15	109.4 C14	H14B	109.4	H14A	C14	H14B
C14	108.0 C15	H15A	109.2	C14	C15	H15B
C16	109.2 (15	Н15А	109.2	C16	C15	H15B
н154	109.2 C15	H15R	107.2	C15	C16	Н155
C17	107.8 116	Ш16	107.9	C10	C16	Ш16
C16	107.8	П10	107.0	C16	C10	П10 1117D
C10	109.2	П1/А	107.2	C10	C17	
C18	109.2	HI/A	109.2	U18	UI/	HI/R

Table 7. Bond angles involving hydrogens (⁰)

H17A	C17 109.3	H17B	107.9	C13	C18	H18A
C13	C18	H18B	109.3	C17	C18	H18A
C17	C18	H18B	109.3	H18A	C18	H18B
C16	C19	H19A	108.6	C16	C19	H19B
C20	C19	H19A	108.5	C20	C19	H19B
H19A	C19	H19B	107.5	C19	C20	H20A
C19	C20	H20B	109.0	C21	C20	H20A
C21	109.0 C20	H20B	109.0	H20A	C20	H20B
C20	107.8 C21	H21A	109.5	C20	C21	H21B
C20	109.5 C21	H21C	109.5	H21A	C21	H21B
H21A	109.5 C21 109.5	H21C	109.5	H21B	C21	H21C

Table 8. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	
02	S1	01	C1	-36.91(13)	03	S1	01	C1	
01	S1	C22	F3	-59.52(13)	01	S1	C22	F4	-
178.92([12]								
01	S1	C22	F5	61.30(12)	C22	S1	01	C1	-
148.570	(11)								
02	S1	C22	F3	-173 53(11)	02	S 1	C22	F4	
02	6707(1		15	1/0.00(11)	02	51	022	1 1	
02	07.07(1	(11) (11)	RE	F2 72(12)	02	C1	c_{22}	E2	
02	21		F5	-52./2(13)	03	51	LΖΖ	F3	
	54.96(1	[3]							
03	S1	C22	F4	-64.45(14)	03	S1	C22	F5	
	175.77	(11)							
S1	01	C1	C2	-94.66(12)	S1	01	C1	С6	
01	145 39	(10)	-	/ 100(1-)	01	• -	01		
01	113.37	(10) (2)	F 1	720E(14)	01	C1	C 2	C 2	
01		LZ	ГІ	/3.95(14)	01	C1	LΖ	L3	-
166.23	[10]				- ·				
01	C1	C6	C5	179.01(11)	01	C1	C6	C7	-
57.18(1	.6)								
C2	C1	С6	C5	61.54(16)	C2	C1	С6	C7	-
174 661	(11)								
17 1.00(C6	C1	C2	F1	-168.42(11)	6	C1	C2	C3	_
	\mathcal{O}	62	ΓI	-100.42(11)	CO	C1	62	63	-
48.60(1	.6)				~ .			. .	
F1	C2	C3	C4	136.10(14)	C1	C2	C3	C4	
	17.3(2)								
C2	СЗ	C4	C5	-0.2(2)	СЗ	C4	C5	F2	-
105.700	(17)								
C3	(1) (1)	C5	6	146(2)	F2	65	6	C1	
05	75 04(1		00	11.0(2)	1 4	05	00	01	
F 0	/ 5.94()	L/J	07		C 4	6F	00	C1	
FΖ	65	6	L/	-50.39(16)	L 4	Հ5	L6	CI	-
43.90(1	.7)								
C4	C5	C6	C7	-170.23(11)	C1	C6	C7	C8	
	149.06	(13)							
C1	C6	C7	C12	-34.8(2)	C5	C6	C7	C8	-
88 73(1	6)	u ,	012	0 110(-)			0,		
00.75(1	.0j	C7	C12	0720(1())	CC	C7	CO	CO	
65		し/ (1つ)	C12	07.30(10)	CO	L/	LO	69	
	1/5.89	(13)							
C6	C7	C12	C11	-175.34(13)	C8	C7	C12	C11	
	0.8(2)								
C12	C7	C8	С9	-0.4(2)	C7	C8	С9	C10	-
02(2)	-				-				
C8	CO	C10	C11	0 3(2)	CS	CO	C10	C12	
0	170 40	(12)	011	0.3(2)	0	69	010	010	
	1/8.42	[13]							

С9	C10	C11	C12	0.2(2)	С9	C10	C13	C14	-
93.48(17)								
С9	C10	C13	C18	31.5(2)	C11	C10	C13	C14	
	84.63((17)							
C11	C10	C13	C18	-150.37(13)	C13	C10	C11	C12	-
178.09	(13)								
C10	C11	C12	C7	-0.7(2)	C10	C13	C14	C15	-
176.76	(11)								
C10	C13	C18	C17	179.10(12)	C14	C13	C18	C17	-
55.19(17)								
C18	C13	C14	C15	55.65(17)	C13	C14	C15	C16	-
57.70(16)								
C14	C15	C16	C17	56.46(17)	C14	C15	C16	C19	-
178.47	(12)								
C15	C16	C17	C18	-55.62(17)	C15	C16	C19	C20	
	163.15	5(12)							
C17	C16	C19	C20	-73.88(17)	C19	C16	C17	C18	-
179.95	(12)								
C16	C17	C18	C13	56.43(17)	C16	C19	C20	C21	-
176.98	(13)								

atom	atom distanco	distance	atom	atom
S1	F1	3.2345(12)	S1	C2
F1	3.4125(18) 01	2.8975(17)	F1	02
F1	3.5849(18) 03	3.1285(16)	F1	C4
F2	3.504(2) C1	3.002(2)	F2	С3
F2	3.299(2) C7	2.7892(19)	F2	C12
F3	3.027(2) 01	2.8478(16)	F3	03
F4	2.9492(19) 02	3.0511(17)	F4	03
F5	2.987(2) 01	2.8685(18)	F5	02
F5	2.9767(19) C11	3.522(2)	F5	C12
01	3.246(2) C7	2.938(2)	01	C12
02	3.252(2)	2 933(2)	02	C12
02	3.524(2)	2.480(2)	C1	C12
05	2.823(2)	3.400(2)		C4
CI	C12 2.936(3)	3.016(3)	L2	65
C3	C6 3.323(3)	2.876(3)	C5	C8
C5	C12 2.837(3)	3.349(3)	C7	C10
C8	C11 2.769(2)	2.757(2)	С9	C12
С9	C14 3.022(3)	3.424(3)	С9	C18
C11	C14 2 995(3)	3.276(3)	C13	C16
C14	C17 2 933(2)	2.941(3)	C15	C18
C17	C20	3.235(3)		

Table 9. Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom
S 1	uistance	2 605	C1	Ц1 2
51	3 4 2 7	2.095	51	1112
F1	H1	2.468	F1	H3
	2.585			
F2	H1	2.699	F2	H4
	2.755			
F2	H6	3.245	F2	H12
	2.915			
F5	H12	3.300	01	H2
	2.493		a (
01	H6	2.627	01	H12
0.2	3.043	0.470	02	1110
02	H1 2 700	2.4/3	02	HIZ
C1	2./98 U2	2 255	C1	UE
C1	ПЗ 2 220	2.200	C1	пэ
C1	5.550 Н12	2 718	C2	НA
01	3 327	2.710	62	11-
C2	H6	2.643	C3	H1
-	2.819			
С3	H5	3.177	С3	H6
	3.040			
C4	H1	3.038	C4	H2
	3.018			
C4	H6	2.832	C5	H1
	2.676			
C5	H2	3.441	C5	H3
	3.328	2.240		114.0
Հ5	H8	3.369	65	H12
6	3.410 U2	2 002	6	Ц И
CO	3 407	2.003	CO	114
C6	H8	2 658	C6	H12
00	2.720	2.050	00	1112
C7	H1	2.809	C7	H5
	2.767			
C7	H9	3.280	C7	H11
	3.267			
C8	H5	3.149	C8	H6
	2.582			
C8	H12	3.253	С9	H11
	3.250			
C9	H13	3.298	C9	H14B
	3.249			

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens

С9	H18A	2.797	С9	H18B
C10	5.105 H8 3.282	3.279	C10	H12
C10	H14A 2 730	2.683	C10	H14B
C10	H18A 2.757	2.770	C10	H18B
C11	H9 2.562	3.252	C11	H13
C11	H14A 2.823	3.017	C12	H1
C12	H6 3.252	3.308	C12	H8
C13	H9 2.635	2.747	C13	H11
C13	H15A 2.744	3.379	C13	H15B
C13	H16 2.766	3.297	C13	H17A
C13	H17B 3.522	3.385	C14	H9
C14	H11 2 722	3.271	C14	H16
C14	H17A 2 746	3.295	C14	H18A
C14	H18B	3.369	C15	H13
C15	H17A 3.357	2.726	C15	H17B

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom distance	distance	atom	atom
C15	H18A 2.586	3.294	C15	H19A
C15	H19B 3 282	2.830	C16	H13
C16	H14A 2.761	3.388	C16	H14B
C16	H18A 3.387	2.770	C16	H18B
C16	H20A 2.789	2.747	C16	H20B
C17	H13 3.290	2.710	C17	H14B
C17	H15A 2.720	3.357	C17	H15B
C17	H19A 2.651	3.372	C17	H19B
C17	H20A 2 947	3.561	C17	H20B
C18	H9 3 370	2.732	C18	H14A
C18	H14B 3.272	2.744	C18	H15B
C18	H16 2.704	2.729	C19	H15A
C19	H15B 2.739	2.727	C19	H17A
C19	H17B 2.731	2.739	C19	H21A
C19	H21B 3.377	2.746	C19	H21C
C20	H16 3.580	2.662	C20	H17A
C20	H17B 2.697	2.925	C21	H19A
C21	H19B 2 872	2.741	H1	H2
H1	H6 2 248	2.882	H1	H12
H2	H3 2 576	2.532	H2	H6
Н3	H4 2.369	2.238	H4	H5

Н5	H6 3 008	2.312	Н5	H8
H6	H8 3 597	2.384	H6	H12
H8	H9 3 598	2.324	Н9	H13
Н9	H14B 2 234	3.185	Н9	H18A
Н9	H18B 2 314	2.859	H11	H12
H11	H13 2.856	2.366	H11	H14A
H13	H14A 2 870	2.362	H13	H14B
H13	H15A 2 534	3.596	H13	H15B
H13	H17A 2 868	2.564	H13	H18A
H13	H18B	2.357	H14A	H15A
H14A	H15B	2.360	H14B	H15A
H14B	H15B	2.872	H14B	H16
H14B	H18A	2.607	H15A	H16
H15A	H19A	2.390	H15A	H19B
H15B	H16	2.874	H15B	H17A
H15B	2.373 H19A 2.673	2.805	H15B	H19B

Table 10. Intramolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H16	H17A 2.363	2.873	H16	H17B
H16	H18A 2.446	2.586	H16	H19A
H16	H19B 2 463	2.852	H16	H20A
H16	H20B 2 871	2.923	H17A	H18A
H17A	H18B 3.557	2.354	H17A	H19A
H17A	H19B 3 267	2.470	H17A	H20B
H17B	H18A 2 381	2.354	H17B	H18B
H17B	H19B	2.886	H17B	H20A
H17B	H20B	2.382	H19A	H20A
H19A	2.395 H20B	2.864	H19A	H21A
H19A	2.517 H21B	2.986	H19A	H21C
H19B	3.588 H20A	2.864	H19B	H20B
H19B	2.360 H21A	3.030	H19B	H21B
H20A	H21A	2.375	H20A	H21B
H20A	H21C	2.349	H20B	H21A
H20B	2.859 H21B 2.361	2.363	H20B	H21C

atom	atom distance	distance	atom	atom
F1	$F1^1$	3.0878(14)	F1	F1 ²
F1	$F2^{1}$	3.4712(16)	F1	$C1^1$
F1	3.5529(19) C2 ¹	3.4753(19)	F1	C2 ²
F1	2.950(2) C3 ¹	3.2600(19)	F1	C3 ²
F1	3.209(2) C4 ¹	3.5165(19)	F2	F1 ¹
F2	3.4712(16) C2 ³	3.2902(18)	F2	C3 ³
F2	3.3020(19) C5 ⁴	3.438(2)	F2	C8 ⁴
F3	3.3807(19) F5 ⁵	3.4672(19)	F3	025
F3	3.538(2) C11 ⁵	3.391(2)	F4	C17 ⁶
F4	3.392(2) C18 ⁶	3.557(2)	F5	F3 ³
F5	3.4672(19) C21 ⁷	3.594(3)	01	C11 ⁵
01	3.501(2) C12 ⁵	3.417(2)	02	F3 ³
02	3.538(2) 03 ³	3.2081(19)	02	C31
02	3.434(2) C18 ⁶	3.390(2)	03	02 ⁵
03	3.2081(19) C17 ⁸	3.557(2)	C1	F1 ¹
C2	3.5529(19) F1 ¹	3 4753(19)	(2	F1 ²
C2	2.950(2) E25	2 2002(10)	C2	F11
62	3.2600(19)	3.2902(10)	C3	г1-
C3	F1 ² 3.3020(19)	3.209(2)	6.4	
C3	02 ¹ 3.5165(19)	3.434(2)	C4	F11
C4	C9 ⁴ 3.438(2)	3.589(2)	C5	F2 ⁴
C8	F2 ⁴ 3.564(2)	3.3807(19)	C8	C11 ⁵
C9	C4 ⁴ 3.391(2)	3.589(2)	C11	F3 ³

Table 11. Intermolecular contacts less than 3.60 Å

C11	01^3	3.501(2)	C11	C8 ³
C12	01^3	3.417(2)	C17	F4 ⁹
C17	03^{10}	3.557(2)	C18	F4 ⁹
C18	02 ⁹ 3.594(3)	3.390(2)	C21	F5 ⁷

Symmetry Operators:

(1) -X+1,-Y+1,-Z+1	(2) -X+2,-Y+1,-Z+1
(3) X-1,Y,Z	(4) -X+1,-Y,-Z+1
(5) X+1,Y,Z	(6) X,Y+1,Z
(7) -X+1,-Y,-Z	(8) X+1,Y+1,Z
(9) X,Y-1,Z	(10) X-1,Y-1,Z

atom	atom	distance	atom	atom
	distance			
S1	H18A ¹ 3.583	3.277	S1	H18B1
F1	H1 ²	2.820	F1	H2 ³
	2.504			
F1	H3 ²	3.473	F1	H3 ³
	2.820			
F2	H2 ⁴	2.557	F2	H34
	3.582			
F2	H5 ⁵	2.530	F2	H6 ⁴
	2.911			
F2	H8 ⁵	3.122	F3	H11 ⁶
	2.703			
F3	H12 ⁶	3.378	F3	H17B ⁷
	3.078			
F3	H20B ⁷	3.012	F4	$H16^{1}$
	3.013			
F4	H17A ⁷	3.403	F4	$H17B^{1}$
	2.778			
F4	H17B ⁷	3.343	F4	H18A ¹
F 4	2.905		F.4	1120 41
F4	H19B'	3.516	F4	HZUA
E4	3.340 U2001	2 401	E1	บว ∩D7
1.4	3 089	5.401	1.4	IIZOD
F4	H21C ⁸	3 3 5 4	F5	H116
11	3.095	5.001	15	
F5	H21A ⁸	3.012	F5	H21C ⁸
-	3.336		-	_
01	H11 ⁶	2.935	01	H12 ⁶
	2.774			
02	H3 ²	2.693	02	$H17B^{1}$
	3.113			
02	H18A ¹	3.185	02	$H18B^{1}$
	2.885			
03	H3 ³	3.002	03	$H9^{1}$
0.0	2.928	0.4.04	0.0	
03	H1/A'	3.181	03	H1/B'
02	3.199 1110.1	2 002	02	111001
03	П10А ⁻ 2 512	2.092	03	LIOD.
03	5.515 H19B7	2 2 2 8	C1	H12 6
05	3 471	J.44U		1114
C2	$H2^{3}$	3 425	C2	H33
	3.559	0.140	54	115
	51007			

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens

C2	H12 ⁶	3.461	C3	H1 ²
C3	3.575 H18B ⁵	3.532	C4	H8 ⁹
C4	3.085 H18B ⁵ 3.010	3.277	C5	H5 ⁵
C6	H11 ⁶ 3 396	3.527	C7	H5 ⁵
C7	H11 ⁶ 3.285	3.323	C8	H4 ⁵
C8	H5 ⁵ 3.234	3.437	C8	H11 ⁶
C8	H13 ⁶ 2.763	2.976	С9	H4 ⁵
С9	H13 ⁶ 3.430	2.894	С9	H17A ⁶
C10	$H4^{5}$	3.032	C10	$H8^4$
C11	H6 ⁴ 3.236	3.115	C11	$H8^4$
C12	H2 ⁴ 3 024	3.404	C12	H6 ⁴
C13	$H4^{5}$ 3 464	3.568	C13	H8 ⁴
C13	H9 ⁴ 3 135	3.520	C14	H19A ⁸
C14	H21A ⁸ 3 129	3.464	C15	H15A ⁸
C15	H19A ¹⁰ 3.170	3.324	C15	H19A ⁸

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distanco	distance	atom	atom
C15	H19B ¹⁰ 3.073	3.383	C16	H15A ⁸
C17	H9 ⁴ 3.254	3.447	C18	H4 ⁵
C18	H9 ⁴ 3.585	3.416	C19	H14B ⁸
C19	H15A ¹⁰ 3.086	3.490	C19	H15A ⁸
C19	H15B ¹⁰ 3.545	3.226	C19	H19A ¹⁰
C20	H21C ¹¹ 3.373	3.423	C21	H15B ¹⁰
C21	H21B ¹² 3.439	3.575	C21	H21C ¹²
C22	H11 ⁶ 2.820	3.314	H1	F1 ²
H1	C3 ² 2.734	3.575	H1	H2 ⁴
H1	H3 ² 2.504	3.190	H2	F1 ³
H2	F2 ⁶ 3.425	2.557	H2	C2 ³
H2	C12 ⁶ 2.734	3.404	H2	H1 ⁶
H2	H2 ³ 3.204	3.497	H2	H3 ³
H2	H12 ⁶ 3.473	2.663	Н3	F1 ²
Н3	F1 ³ 3.582	2.820	Н3	F2 ⁶
Н3	02 ² 3.002	2.693	Н3	O3 ³
Н3	C2 ³ 3.190	3.559	Н3	H1 ²
Н3	H2 ³ 3.022	3.204	Н3	H18B ⁵
H4	C8 ⁵ 2.763	3.285	H4	C9 ⁵
H4	C10 ⁵ 3.568	3.032	H4	C13 ⁵
H4	C18 ⁵ 2.746	3.254	H4	H8 ⁹

H4	H9 ⁵	2.823	H4	H18A ⁵
	3.426			
H4	H18B ⁵	2.488	H5	F2 ⁵
	2.530			
H5	C5 ⁵	3.010	H5	C7 ⁵
	3.396			
H5	C8 ⁵	3.437	H5	H5 ⁵
	2.562			
H5	H5 ⁹	3.456	H5	H6 ⁹
	3.060			
H5	H8 ⁹	3.363	H6	F26
	2.911			212(
H6	C11 ⁶	3.115	H6	C126
	3.024			(
H6	H5 ⁹	3.060	H6	H11º
•••	3.055	2		705
H6	H12°	2.910	H8	F2 ⁵
	3.122	0.00 -		04.06
H8	C4 ⁹	3.085	H8	C10°
110	3.322	2.224	110	0106
H8		3.236	H8	$C13^{\circ}$
110	3.464	2746	110	1159
HØ	H4 ⁷	2.746	Н8	H5 ⁷
110	3.303 11116	21(7	110	11126
ПО	HII° 2016	3.107	Пð	H13°
цо	2.910 U10D6	2 211	ЦО	0213
по	110D ²	5.211	ПЭ	03
uо	2.920 C126	2 5 2 0	ЦО	C176
117	2117	5.520	117	6177
на	5.747 C186	3 4 1 6	ЦО	Н 1.5
117	2823	3.710	117	117
	2.023			

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
Н9	H13 ⁶ 2 694	2.773	Н9	H17A ⁶
Н9	H18B ⁶ 2 703	2.958	H11	F3 ⁴
H11	F5 ⁴ 2.935	3.095	H11	014
H11	C6 ⁴ 3.323	3.527	H11	C7 ⁴
H11	C8 ⁴ 3.314	3.234	H11	C22 ⁴
H11	H6 ⁴ 3.167	3.055	H11	H8 ⁴
H12	F3 ⁴ 2.774	3.378	H12	014
H12	C1 ⁴ 3 461	3.471	H12	C2 ⁴
H12	H2 ⁴	2.663	H12	H6 ⁴
H13	C8 ⁴	2.976	H13	C9 ⁴
H13	H8 ⁴	2.916	H13	H9 ⁴
H13	2.773 H14B ⁴ 2.165	3.586	H14A	H19A ⁸
H14A	H20A ⁸	3.318	H14A	H21A ¹⁰
H14A	H21A ⁸	2.903	H14A	H21B ¹⁰
H14B	C19 ⁸	3.585	H14B	H13 ⁶
H14B	H15B ⁶	2.767	H14B	H17A ⁶
H14B	H19A ⁸	2.634	H14B	H19B ⁶
H14B	3.265 H21A ⁸	3.105	H15A	C15 ⁸
H15A	3.129 C16 ⁸	3.073	H15A	C19 ¹⁰
H15A	3.490 C19 ⁸	3.086	H15A	H15A ⁸
H15A	2.421 H16 ⁸ 3.240	2.657	H15A	H19A ¹⁰

H15A	H19A ⁸	2.471	H15A	H19B ¹⁰
	2.835			
H15A	H20A ⁸	3.194	H15A	$H21B^{10}$
	3.264			
H15B	C19 ¹⁰	3.226	H15B	$C21^{10}$
	3.373			
H15B	H14B ⁴	2.767	H15B	H19A ¹⁰
	2.587			
H15B	H19B ¹⁰	3.023	H15B	H21A ¹⁰
	2.822	0.455		D 412
H15B	$H21B^{10}$	3.177	H16	F413
1117	3.013		1116	111746
H10	H15A° 2 E04	2.657	H16	H1/A°
U16	3.394 U10.48	2 5 5 7	Ш16	U10D 6
пто	7742	5.557	пто	П19Д°
H16	2.7 42 H21R ⁶	3 598	H17A	F 4 ¹⁴
mio	3.403	3.370	111/11	11
H17A	03^{14}	3.181	H17A	$C9^4$
	3.430	0.202		
H17A	H9 ⁴	2.694	H17A	$H14B^4$
	3.016			
H17A	H16 ⁴	3.594	H17A	$H18A^4$
	2.793			
H17B	F3 ¹⁴	3.078	H17B	F4 ¹⁴
	3.343			
H17B	F4 ¹³	2.778	H17B	0213
	3.113			10
H17B	0314	3.199	H18A	S1 ¹³
	3.277			0.010
H18A	F4 ¹³	2.905	H18A	02^{13}
	3.185			

Table 12. Intermolecular	contacts less	than 3.60	Å involving	hydrogens
(continued)				

atom	atom distance	distance	atom	atom
H18A	03^{13}	2.892	H18A	H4 ⁵
H18A	3.426 H17A ⁶ 3.583	2.793	H18B	S1 ¹³
H18B	02 ¹³ 3 228	2.885	H18B	0314
H18B	03^{13} 3.532	3.513	H18B	C3 ⁵
H18B	C4 ⁵ 3.022	3.277	H18B	H3 ⁵
H18B	H4 ⁵ 3.211	2.488	H18B	H8 ⁴
H18B	H9 ⁴ 3.135	2.958	H19A	C14 ⁸
H19A	C15 ¹⁰ 3 170	3.324	H19A	C15 ⁸
H19A	C19 ¹⁰ 3 165	3.545	H19A	H14A ⁸
H19A	H14B ⁸	2.634	H19A	H15A ¹⁰
H19A	H15A ⁸	2.471	H19A	H15B ¹⁰
H19A	H16 ⁸	3.557	H19A	H19A ¹⁰
H19A	H19B ¹⁰	3.072	H19B	F4 ¹⁴
H19B	$C15^{10}$	3.383	H19B	$H14B^4$
H19B	H15A ¹⁰	2.835	H19B	H15B ¹⁰
H19B	H16 ⁴	2.742	H19B	H19A ¹⁰
H20A	F4 ¹³	3.346	H20A	H14A ⁸
H20A	H15A ⁸	3.194	H20A	H21B ⁶
H20A	2.762 H21C ¹¹	2.786	H20B	F3 ¹⁴
H20B	3.012 F4 ¹⁴	3.089	H20B	F4 ¹³
H20B	3.401 H21C ¹¹ 3.012	3.314	H21A	F5 ⁸

H21A	C14 ⁸ 3 549	3.464	H21A	H14A ¹⁰
H21A	H14A ⁸	2.903	H21A	H14B ⁸
H21A	H15B ¹⁰	2.822	H21B	C21 ¹²
H21B	3.575 H14A ¹⁰	3.379	H21B	H15A ¹⁰
H21B	3.264 H15B ¹⁰	3.177	H21B	H16 ⁴
H21B	3.598 H20A ⁴	2.762	H21B	H21B ¹²
H21B	3.427 H21C ¹²	2.868	H21C	F4 ⁸
H21C	3.354 F5 ⁸	3.336	H21C	C20 ¹¹
H21C	3.423 $C21^{12}$	3 4 3 9	H21C	H20A ¹¹
11210	2.786	2 21 4	11210	112011
HZIC	2.868	3.314	HZIC	HZ1B ¹²
H21C	H21C ¹² 3.289	3.135	H21C	H21C ¹¹

Symmetry Operators:

(1) X,Y+1,Z	(2) -X+1,-Y+1,-Z+1
(3) -X+2,-Y+1,-Z+1	(4) X-1,Y,Z
(5) -X+1,-Y,-Z+1	(6) X+1,Y,Z
(7) X+1,Y+1,Z	(8) -X+1,-Y,-Z
(9) -X+2,-Y,-Z+1	(10) -X,-Y,-Z
(11) -X+1,-Y-1,-Z	(12) -X,-Y-1,-Z
(13) X,Y-1,Z	(14) X-1,Y-1,Z