Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Total Synthesis of (\pm) -Ganocins B and C

Yao Liu,^a Chu-Jun Zhou,^a Qingjiang Li,*^{a,b} and Honggen Wang^{*,a}

^a School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China

^b Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191,

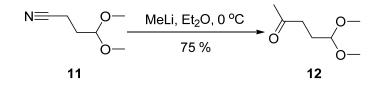
China

Table of Contents

1. General Experimental Details	2
2. Experimental Procedures	3
3. Optimization of Reaction Conditions	12
4. References	14
5. NMR Spectrum of Products	14
6. High-Resolution Mass Spectra (HRMS) of Products	42

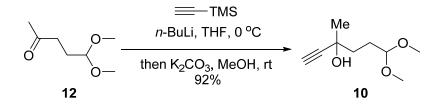
1. General Experimental Details

The solvents used were dried by distillation over the drying agents indicated in parentheses and were transferred under argon: THF (Na-benzophenone), diethyl ether (Na-benzophenone), dichloromethane (CaH₂). Anhydrous DMF was purchased from Acros Organics and stored under argon. Commercially available chemicals were obtained from commercial suppliers and used without further purification unless otherwise stated.


Proton (¹H), and Carbon NMR (¹³C) were recorded at 400 MHz and 100 MHz NMR spectrometer, respectively. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br s: broad singlet for proton spectra. Coupling constants (J) are reported in Hertz (Hz).

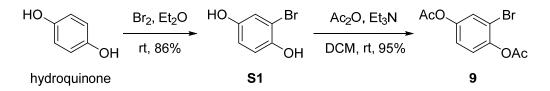
High-resolution mass spectra (HRMS) were recorded on a BRUKER VPEXII spectrometer with EI and ESI mode unless otherwise stated.

Analytical thin layer chromatography was performed on Polygram SIL G/UV_{254} and G/UV_{365} plates. Visualization was accomplished with short wave UV light (254 nm and/or 365 mm) and/or phosphomolybdic acid or p-anisaldehyde stain or KMnO₄ staining solutions followed by heating. Flash column chromatography was performed using silica gel (200-300 mesh) with solvents distilled prior to use.


2. Experimental Procedures

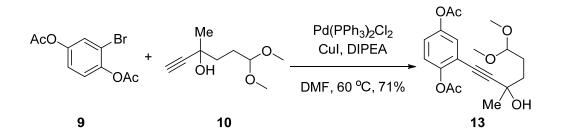
5,5-dimethoxypentan-2-one $(16)^1$

To a stirred solution of MeLi (3.1 M, 29.0 mL, 90 mmol, 3.0 equiv) in Et₂O (100 mL) was added 4,4-dimethoxybutanenitrile (**11**) (3.9 mL, 30 mmol, 1.0 equiv) dropwise under argon at 0 °C. After stirring for 2 h, NH₄Cl saturated solution (50 mL) was added and the mixture was stirred for an additional 10 min. The reaction was moved to room temperature, and the layers were separated. The aqueous layer was extracted with Et₂O (5 x 30 mL) and the organic layers were combined, dried over Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified via flash chromatography (PE:EA 5:1) to afford **12** (3.3 g, 75% yield) as a clear oil. Compound **12** was put into next step immediately owing to its instability. Compound **12**: $R_f = 0.40$ (PE:EA 2:1).

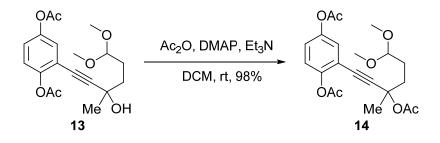

6,6-dimethoxy-3-methylhex-1-yn-3-ol (10)

To a stirred solution of ethynyltrimethylsilane (9.0 mL, 68.0 mmol, 1.51 equiv) in THF (70 mL) was added *n*-BuLi (42.2 mL, 1.6 M in hexane, 67.5 mmol, 1.50 equiv) dropwise at 0 °C under argon, and this solution was stirred for additional 30 min at the same temperature. After that, a solution of **12** (6.6 g, 45 mmol, 1.0 equive) in THF (10 mL) was added dropwise to the formed acetylide solution at 0 °C. The reaction was stirred for additional 2 h and then quenched with saturated NH₄Cl at 0 °C. The resulting mixture was extracted with EA and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated to give a residue, which was subjected to the next process without further purification.

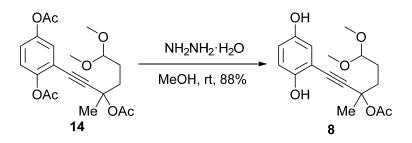
The formed intermediate was dissolved in methanol (10 mL) and stirred with K₂CO₃ (6.9 g, 50 mmol, 1.1 equiv) for 6 h. The residue K₂CO₃ was removed by filtering. The organic layers were concentrated under reduced pressure. The mixture was washed with saturated NH₄Cl and extracted with EA. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated to give a residue, which was purified by column chromatography on silica gel (PE:EA 6:1) to afford compound **10** (7.1 g, 92%) as a pale yellow oil. Compound **10**: R_{*f*} = 0.30 (PE:EA 2:1); ¹H NMR (400 MHz, CDCl₃) δ 4.44–4.40 (m, 1H), 3.34 (s, 6H), 2.91 (s, 1H), 2.44 (s, 1H), 2.01–1.92 (m, 1H), 1.88–1.80 (m, 1H), 1.78–1.73 (m, 2H), 1.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 104.5, 87.5, 71.4, 67.5, 52.9, 38.1 , 30.1, 28.0; HRMS–ESI (m/z) [M + Na]⁺ calcd for C₉H₁₆O₃Na: 195.0992, found 195.0992.


2-bromo-1,4-phenylene diacetate (9)²

To a solution of hydroquinone (50.0 g, 454.0 mmol) in ethyl ether (200 mL) was added bromine (23.4 mL, 454.0 mmol) at 0 °C. The mixture was stirred at room temperature for 6 h. The reaction mixture was then quenched by using 10% aqueous sodium thiosulfate solution and extracted with ethyl ether. The organic layers were collected and washed with water, then brine, dried with anhydrous Na₂SO₄, and concentrated under vacuum. Compound **S1** was obtained as a white solid (74 g, 86% yield) after purification by flash column chromatography on silica gel (PE:EA 6:1). Compound **S1**: $R_f = 0.4$ (PE:EA 4:1).

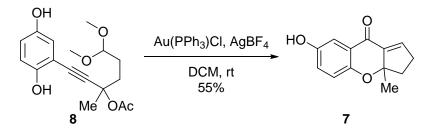

To a solution of **S1** (56.7 g, 300.0 mmol) in CH₂C₂ (400 mL) was added acetic anhydride (34 ml, 360.0 mmol) at 0 °C followed by triethylamine (62.4 mL, 450.0 mmol), then the mixture was stirred at room temperature. The reaction mixture was treated with aqueous ammonium chloride and extracted with CH₂Cl₂. The organic layer was washed with brine and dried (Na₂SO₄). The solvent was evaporated under reduced pressure, and the residue was purified by column chromatography (PE/EA 8:1) to afford **9** as a white solid (77.8 g, 95%). Compound **9**: mp: 71-73 °C; $R_f = 0.5$ (PE:EA 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 2.6 Hz, 1H), 7.13 (d, J = 8.7 Hz, 1H), 7.08 (dd, J = 8.8, 2.6 Hz, 1H), 2.35 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 168.4, 148.4, 145.9, 126.4, 123.9, 121.6, 116.2, 20.9, 20.7.

2-(3-hydroxy-6,6-dimethoxy-3-methylhex-1-yn-1-yl)-1,4-phenylene diacetate (13)


To a solution of **9** (1.23 g, 4.5 mmol, 1.5 equiv) and palladium catalyst (105 mg, 0.15 mmol, 5 mol %) and copper iodide (29 mg, 0.15 mmol, 5 mol %), in N,N-dimethylformamide (3.0 mL) were added **10** (516 mg, 3.0 mmol, 1.0 equiv) and DIPEA (2.1 mL, 12.0 mmol, 4.0 equiv) at room temperature. The resulting solution was then heated at 60 °C with stirring for 20 h under argon atmosphere. The reaction mixture was partitioned between ethyl acetate and aqueous ammonium chloride. The combined organic layers were washed three times with brine and concentrated in vacuo and the residue was purified by flash column chromatography (PE: EA 6:1) to give compound **13** (776 mg, 71%) as a pale yellow oil. Compound **13**: $R_f = 0.26$ (PE:EA 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.19 (dd, J = 2.0, 1.2 Hz, 1H), 7.08–7.04 (m, 2H), 4.43 (dd, J = 5.7, 4.6 Hz, 1H), 3.34 (s, 6H), 3.05 (s, 1H), 2.33 (s, 3H), 2.28 (s, 3H), 2.06–1.92 (m, 1H), 1.90–1.76 (m, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 168.7, 149.0, 147.8, 125.8, 123.0, 122.7, 117.9, 104.4, 98.5, 68.0, 53.0, 53.00, 38.1, 30.1, 28.1, 21.0, 20.7; HRMS–ESI (m/z) [M + Na]⁺ calcd for C₁₉H₂₄O₇Na: 387.1414, found 387.1412.

2-(3-acetoxy-6,6-dimethoxy-3-methylhex-1-yn-1-yl)-1,4-phenylene diacetate (14)

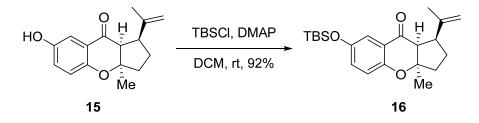
To a solution of compound **13** (5.2 g, 14.3 mmol, 1.0 equiv) in DCM (15 mL) was added triethylamine (6 mL, 28.6 mmol, 2.0 equiv) and acetic anhydride (4 mL, 21.5 mmol, 1.0 equiv) and DMAP (200 mg, 1.6 mmol, 10 mol %) at room temperature. After stirring for 2 h, the reaction mixture was quenched with saturated NH₄Cl, concentrated under vacuum and then extracted with dichloromethane. The organic phases were combined and washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE:EA 8:1) to give compound **14** (5.7 g, 98%) as a yellow oil. Compound **14**: R_f =0.36 (PE:EA 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, *J* = 1.6 Hz, 1H), 7.06 (d, *J* = 1.6 Hz, 2H), 4.41 (t, *J* = 5.4 Hz, 1H), 3.33 (s, 6H), 2.36 (s, 3H), 2.27 (s, 3H), 2.02 (s, 3H), 2.07-1.99 (m, 1H), 1.94–1.80 (m, 4H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0 (2C), 168.8, 149.1, 147.7, 126.1, 123.0, 122.9, 117.7, 104.1, 94.4, 79.5, 74.7, 52.8, 52.8, 36.6, 27.5, 26.5, 21.8, 21.0, 20.7; HRMS–ESI (m/z) [M + Na]⁺ calcd for C₂₁H₂₆O₈Na: 429.1520, found 429.1519.


1-(2,5-dihydroxyphenyl)-6,6-dimethoxy-3-methylhex-1-yn-3-yl acetate (8)

To a stirred solution of compound **14** (5.7 g, 14.0 mmol, 1.0 equiv) in MeOH (10 mL) was added hydrazine hydrate (2.0 mL, 85 w% in H₂O, 35.0 mmol, 2.5 equiv) at 0 °C under Ar and then the reaction mixture was moved to room temperature. After stirring at room temperature for 1 h, the reaction was quenched with saturated NH₄Cl and extracted with ethyl acetate. The organic extract was dried over Na₂SO₄, followed

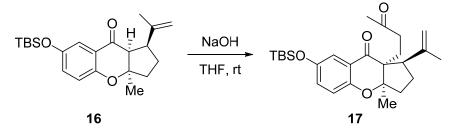
by filtration and solvent removal to give a dark yellow oil. The residue was purified by flash column chromatography (PE: EA 6:1) to give compound **8** (4.0 g, 88%) as a light yellow oil. Compound **8**: $R_f = 0.32$ (PE:EA 2:1); ¹H NMR (400 MHz, CDCl₃) δ 6.79 (d, J = 8.8 Hz, 1H), 6.75 (dd, J = 8.8, 2.8 Hz, 1H), 6.69 (d, J = 2.8 Hz, 1H), 5.68 (br s, 1H), 4.45 (t, J = 5.5 Hz, 1H), 3.36 (d, J = 1.4 Hz, 6H), 2.06 (s, 3H), 2.08–1.96 (m, 1H), 1.94 (m, 3H), 1.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 152.7, 148.5, 118.4, 116.5, 115.8, 108.6, 104.0, 95.4, 81.4, 75.2, 52.9, 52.9, 36.2, 27.5, 26.6, 22.0; HRMS–ESI (m/z) [M + Na]⁺ calcd for C₁₇H₂₂O₆Na: 345.1309, found 345.1319.

7-hydroxy-3a-methyl-3,3a-dihydrocyclopenta[b]chromen-9(2H)-one (7)


Au(PPh₃)Cl (14 mg, 0.029 mmol, 10 mol %) was added to a solution of AgBF₆ (6 mg, 0.029 mmol, 10 mol %) in CH₂Cl₂ (0.6 mL, 0.025 M). The mixture was stirred for 20 min and compound **8** (94 mg, 0.29 mmol, 1.0 equiv) in 3.0 mL CH₂Cl₂ was added at room temperature. After stirring for 15min, *p*-TsOH·H₂O (55 mg, 0.29 mmol, 1.0 equiv) was added and the resulting mixture was stirred for 4 h at room temperature. Then the reaction mixture was washed with water and extracted with CH₂Cl₂. The combined organic phase was dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by flash chromatography (PE:EA 8:1) to afford **7** as a yellow solid; yield: 34 mg (55%). Compound **7**: mp 133–135 °C; R_f = 0.40 (PE:EA 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 3.1 Hz, 1H), 7.09 (dd, *J* = 8.9, 3.1 Hz, 1H), 6.88 (dd, *J* = 3.4, 2.0 Hz, 1H), 6.85 (d, *J* = 8.8 Hz, 1H), 2.73–2.58 (m, 1H), 2.5 –2.40 (m, 2H), 2.38–2.24 (m, 1H), 1.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.5, 154.4, 150.5, 142.6, 140.6, 125.3, 121.6, 120.0, 111.6, 89.5, 40.1, 29.9, 23.2; HRMS–ESI (m/z) [M + H]⁺ calcd for C₁₃H₁₃O₃: 217.0859, found 217.0853.

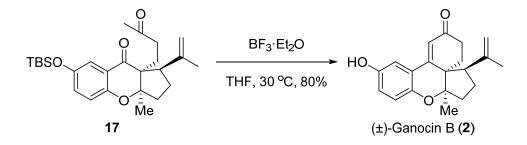
Compound 15

Isopropenylmagnesium bromide solution (14.4 mL, 0.5 M in hexane, 7.20 mmol, 3.0 equiv) was added to a mixture of CuBr SMe₂ (99 mg, 0.48 mmol, 0.2 equiv) in anhydrous THF (20 mL) at -60 °C. HMPA (0.84 mL, 28.8 mmol, 12.0 equiv) was next introduced then stirred for 30 min. A solution of 7 (520 mg, 2.40 mmol, 1.0 equiv) in anhydrous THF (10 mL) was added dropwise to the mixture at -60 °C and stirred at the same temperature for another 30 min, water (15 mL) was added. The organic layer was washed with saturated NH₄Cl (30 mL), dried over Na₂SO₄. Concentration and purification by flash column chromatography (PE/EA 8:1) gave 15 (537 mg, 87%) as light yellow solid. Compound 15: mp 111–113 °C; $R_f = 0.5$ (PE:EA 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 3.2 Hz, 1H), 7.02 (dd, J = 8.8, 3.1 Hz, 1H), 6.79 (d, J = 8.8 Hz, 1H), 5.36 (s, 1H), 4.70 (t, J = 1.6 Hz, 1H), 4.69 (s, 1H), 3.26 (dt, J = 11.9, 8.8 Hz, 1H), 2.87 (d, J = 11.9 Hz, 1H), 2.30-2.21 (m, 1H), 2.20-2.09 (m, 1H), 2.01-1.94 (m, 1H), 1.83-1.75 (m, 1H), 1.54 (s, 1H), 1.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) *δ* 194.8, 154.6, 150.2, 144.4, 125.2, 120.6, 119.6, 113.6, 110.7, 89.2, 58.4, 50.6, 40.5, 30.3, 23.4, 22.8; HRMS-ESI (m/z) $[M + H]^+$ calcd for C₁₆H₁₉O₃: 259.1329, found 259.1291.

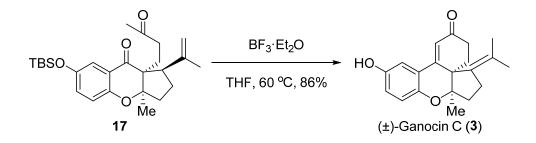

Compound 16

To a stirred solution of phenol **15** (900 mg, 3.5 mmol, 1.0 equiv) in dry CH_2Cl_2 (8 mL) was added DMAP (854 mg, 7.0 mmol, 2.0 equiv) and TBSCl (790 mg, 5.3 mmol, 1.5 equiv). The mixture was stirred at room temperature for 12 hours. After completion, the reaction mixture was quenched with saturated NH₄Cl, concentrated

under vacuum and then extracted with CH₂Cl₂. The organic phases were combined and washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated to yield the crude product. The residue was purified by column chromatography on silica gel (PE:EA 100:1), to give the desired product **16** (1.2 g, 92%) as a light yellow oil. Compound **16**: $R_f = 0.26$ (PE:EA 64:1); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J =3.0 Hz, 1H), 6.95 (dd, J = 8.8, 3.1 Hz, 1H), 6.75 (d, J = 8.8 Hz, 1H), 4.69 (t, J = 1.5Hz, 1H), 4.67 (s, 1H), 3.24 (dt, J = 12.0, 8.7 Hz, 1H), 2.86 (d, J = 11.9 Hz, 1H), 2.28-2.22 (m, 1H), 2.18-2.08 (m, 1H), 2.00-1.93 (m, 1H), 1.83-1.74 (m, 1H), 1.53 (s, 3H), 1.44 (s, 3H), 0.96 (s, 9H), 0.17 (d, J = 2.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 154.8, 149.2, 144.5, 128.9, 120.8, 119.1, 115.5, 113.3, 89.1, 58.3, 50.3, 40.5, 30.1, 25.6, 23.4, 22.9, 18.1, -4.6, -4.6; HRMS–ESI (m/z) [M + H]⁺ calcd for C₂₂H₃₃O₃Si: 373.2193, found 373.2208.


Compound 17

To a stirred solution of compound **16** (112 mg, 0.30 mmol) in dry THF (3 mL) was added dry solid NaOH (6.0 mg, 0.15 mmol, 0.5 equiv) at 0 °C and the mixture was stirred for 10 min and then warm to room temperature. Freshly prepared MVK (30 µL, 0.36 mmol, 1.2 equiv) was added very slowly (over 30 min) at the same temperature for 2 h. The reaction was quenched with saturated NH₄Cl, and the mixture was extracted with ethyl acetate. The combined organic layers were dried with Na₂SO₄ and concentrated in vacuo. The resulting crude product was purified by silica gel column chromatography, eluting with PE:EA 100:1 to 60:1 to 30:1. Compound **17** (light yellow oil) were obtained 51 mg (38%, 59% brsm) and compound **16** were recoveried 40 mg (36%). Compound **17** : R_f = 0.26 (PE:EA 16:1); ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 3.0 Hz, 1H), 6.95 (dd, *J* = 8.8, 3.1 Hz, 1H), 6.72 (d, *J* = 8.8 Hz, 1H), 4.76 (s, 1H), 4.74 (s, 1H), 3.00 (ddd, *J* = 18.1, 9.9, 5.4 Hz, 1H), 2.74 (t, *J* = 8.5 Hz, 1H), 2.61 (ddd, *J* = 18.3, 9.9, 5.7 Hz, 1H), 2.14 (s, 3H), 2.07–1.85 (m, 6H), 1.58 (s, 3H), 1.43 (s, 3H), 0.96 (s, 9H), 0.17 (d, *J* = 2.2 Hz, 6H); ¹³C


NMR (100 MHz, CDCl₃) δ 208.5, 196.2, 154.0, 149.5, 144.6, 128.7, 122.1, 119.2, 115.7, 113.9, 92.3, 60.4, 55.5, 39.7, 37.9, 30.1, 29.7, 28.0, 25.6, 22.8, 21.2, 18.2, -4.5, -4.5; HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₆H₃₉O₄Si: 443.2612, found 443.2605.

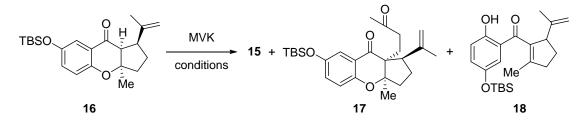
(±)-Ganocin B (2)

To a stirred solution of compound 17 (32 mg, 0.072 mmol, 1.0 equiv) in THF (1 mL) was added BF₃·Et₂O (0.14 mL, 1.0 M, 2.0 equiv) dropwise at 30 °C. The reaction stirred at this temperature for 48 h. After completion, the mixture was concentrated under vacuum, distributed into water and ethyl acetate, extracted with ethyl acetate. The organic layers were combined and washed with brine, dried over anhydrous Na_2SO_4 , filtered and concentrated to yield crude product. The product 2 was purified by column chromatography on silica gel (PE:EA 8:1), 17 mg (80% yield) of yellow solid product ganocin B was obtained. mp 166–169 °C; $R_f = 0.2$ (PE:EA 4:1); ¹H NMR (400 MHz, C₅D₅N) δ 7.65 (d, J = 2.9 Hz, 1H), 7.22 (dd, J = 8.8, 2.8 Hz, 1H), 6.95 (d, J = 8.7 Hz, 1H), 6.93 (s, 1H), 4.82 (s, 1H), 4.74-4.73 (m, 1H), 3.16 (t, J = 8.1 Hz, 1H), 2.83 (ddd, J = 18.6, 14.0, 4.9 Hz, 1H), 2.58 (ddd, J = 18.0, 5.0, 2.2 Hz, 1H), 2.34-2.21 (m, 1H), 2.18-2.09 (m, 1H), 2.02-1.87 (m, 3H), 1.69-1.60 (m, 1H), 1.50 (d, J = 1.2 Hz, 3H), 1.28 (s, 3H); ¹³C NMR (100 MHz, C₅D₅N) δ 198.0, 152.7, 151.8, 148.4, 145.9, 135.7, 135.5, 135.2, 122.0, 121.0, 120.5, 119.4, 114.3, 110.0, 88.6, 53.2, 51.7, 37.8, 34.0, 33.7, 28.3, 22.6, 19.0; HRMS-ESI (m/z) $[M + H]^+$ calcd for C₂₀H₂₃O₃: 311.1642, found 311.1637.

(±)-Ganocin C (3)

To a stirred solution of compound **17** (20 mg, 0.045 mmol, 1.0 equiv) in THF (1 mL) was added BF₃·Et₂O (0.09 mL, 1.0 M, 2.0 equiv) dropwise at room tmperture. The reaction was warmed to 60 °C and run for 24 h. After completion, the mixture was concentrated under vacuum, distributed into water and ethyl acetate, extracted with ethyl acetate. The organic layers were combined and washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated to yield crude product. The product **3** was purified by column chromatography on silica gel (PE:EA 8:1), 12 mg (86% yield) of yellow solid product ganocin C was obtained. mp 182–184 °C; $R_f = 0.24$ (PE:EA 4:1); ¹H NMR (400 MHz, C₅D₅N) δ 7.68 (d, J = 2.9 Hz, 1H), 7.19 (dd, J = 8.8, 2.9 Hz, 1H), 7.01 (s, 1H), 6.93 (d, J = 8.8 Hz, 1H), 2.73–2.58 (m, 2H), 2.57–2.44 (m, 2H), 2.40–2.30 (m, 1H), 2.15–2.05 (m, 2H), 1.95–1.83 (m, 3H), 1.71 (ddd, J = 12.9, 4.7, 2.9 Hz, 2H), 1.57 (s, 3H), 1.39 (s, 3H), 1.25 (s, 3H); ¹³C NMR (100 MHz, C₅D₅N) δ 198.8, 154.6, 152.7, 148.1, 135.7, 135.5, 135.2, 134.5, 126.7, 122.5, 122.1, 119.0, 111.5, 90.7, 52.3, 34.7, 34.6, 31.0, 29.9, 28.6, 23.2, 18.8, 17.5; HRMS–ESI (m/z) [M + H]⁺ calcd for C₂₀H₂₃O₃: 311.1642, found 311.1645.

3. Optimization of Reaction Conditions


ĬĬ	Br + OAc	Me OH OH	,o	d(PPh ₃) ₂ Cl ₂ Cul, DIPEA		
	entry	[Ag]	T/°C	7	7a	
	1^b	AgOTf	40	0	38%	
	2	AgOTf	rt	42%	29%	
	3 ^{<i>c</i>}	AgOTf	rt	34%	0	
	4 ^{<i>c</i>}	AgBF ₄	rt	40%	0	
	5	AgBF ₄	rt	55%	0	

(1) Optimization of gold-catalyzed cascade reaction of compound 8.^a

^{*a*} Reaction conditions: Compound **8** (0.1 mmol, 1.0 equiv), Au(PPh₃)Cl (10 mol %), [Ag] (10 mol %), TsOH·H₂O (1.0 equiv), DCM (0.2 mL + 1.0 mL); ^{*b*} Under Wong's conditions.^{1 *c*} Without addition of PTSA.

Compound **7a**: a light yellow solid; mp 162-164 °C; $R_f = 0.41$ (PE:EA 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 3.3 Hz, 1H), 7.05 (dd, J = 8.9, 3.1 Hz, 1H), 6.86 (d, J = 8.9 Hz, 1H), 6.31 (s, 1H), 5.39 (dq, J = 6.6, 3.7, 3.2 Hz, 1H), 2.69–2.47 (m, 3H), 2.28 (s, 3H), 2.18–2.04 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 182.8, 158.3, 155.3, 150.6, 130.4, 124.2, 123.8, 119.3, 111.8, 85.6, 37.1, 29.8, 16.7; HRMS–ESI (m/z) [M - H]⁻ calcd for C₁₃H₁₁O₃: 215.0714; found 215.0710.

(2) Optimization of Michael addition of compound 16 with MWK:

General procedure:

To a stirred solution of compound **16** (0.1 mmol) in solvent (1.0 mL) was added additive (0.05 mmol) and run for 10 min. Then freshly distilled MVK (0.15 mmol, 1.5

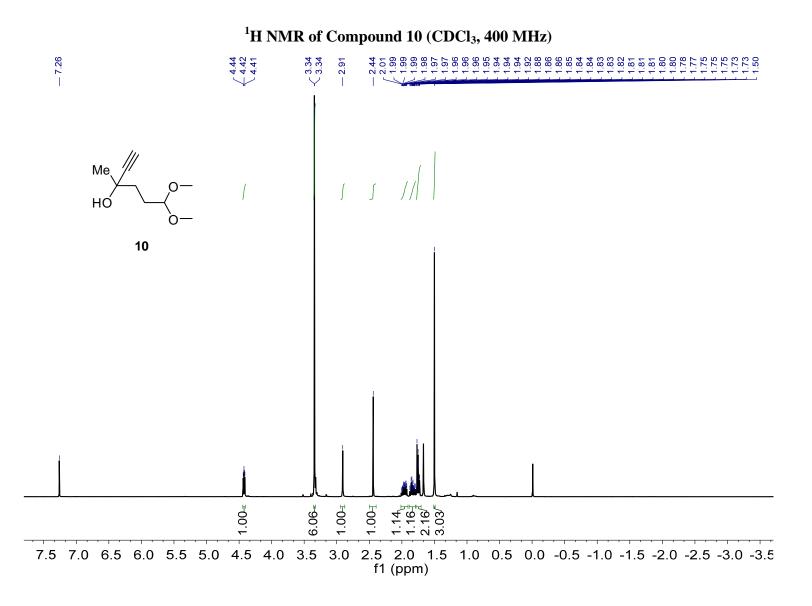
equiv) was added. After completion of the reaction, the resulting mixture was diluted with ethyl acetate and water and filtered through a pad of celite. Then the filtrate was extraced with ethyl acetate for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel with a mixture of petroleum ether and ethyl acetate as eluent.

entry	additive	solvent	T/°C	15	16	17	18
1	Sc(OTf) ₃	DCM	rt	75%	0	0	0
2	NaOMe	MeOH	rt	81%	0	0	0
3	t-BuOK	t-BuOH	rt	0	77%	trace	0
4	piperidine	PhMe	100	0	68%	0	0
5	LiHMDS	THF	-60	0	84%	trace	0
6	NaOH	THF	rt	0	23%	17%	22%
7	Na ₂ CO ₃	THF	rt	0	94%	0	0
8	DBU	THF	rt	0	0	16%	53%

Conclusion: NaOH was found to be effective promoter.

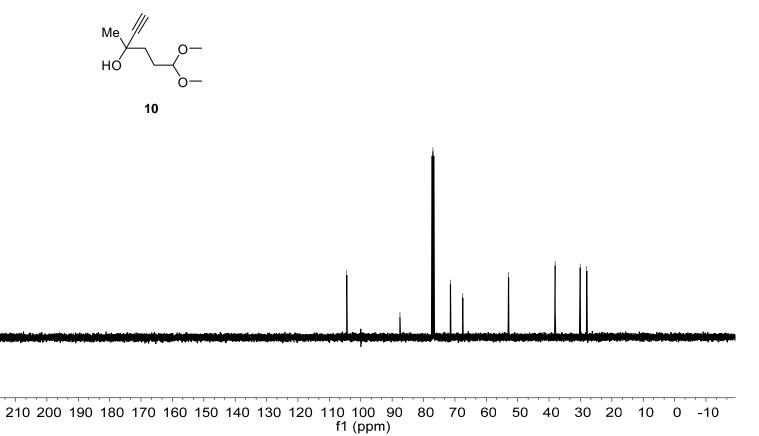
entry	additive	solvent	T/°C	16	17	18
1	NaOH	THF	-10	91%	0	0
2	NaOH	THF	0	92%	0	0
3	NaOH	THF	0 to rt	36%	38%	0

Optimization of varying temperature:

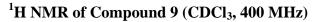

Compound **18** : $R_f = 0.28$ (PE:EA 64:1), a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 11.81 (s, 1H), 7.08 (d, J = 3.0 Hz, 1H), 7.00 (dd, J = 8.9, 3.0 Hz, 1H), 6.86 (d, J = 8.9 Hz, 1H), 4.74–4.71 (m, 1H), 4.67-4.66 (m, 1H), 3.92 (ddq, J = 8.9, 6.7, 2.2 Hz, 1H), 2.66–2.54 (m, 1H), 2.5–2.42 (m, 1H), 2.24 (dtd, J = 13.4, 8.9, 4.7 Hz, 1H), 1.85–1.76 (m, 1H), 1.75–1.72 (m, 3H), 1.66 (s, 3H), 0.97 (s, 9H), 0.16 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 201.9, 157.2, 147.3, 147.2, 146.7, 137.3, 129.2, 121.7, 119.9, 118.9, 111.3, 56.9, 38.9, 29.1, 25.7, 19.8, 18.2, 16.6, -4.4, -4.4; HRMS–ESI (m/z) [M + Na]⁺ calcd for C₂₂H₃₂O₃SiNa: 395.2013, found 395.2001.

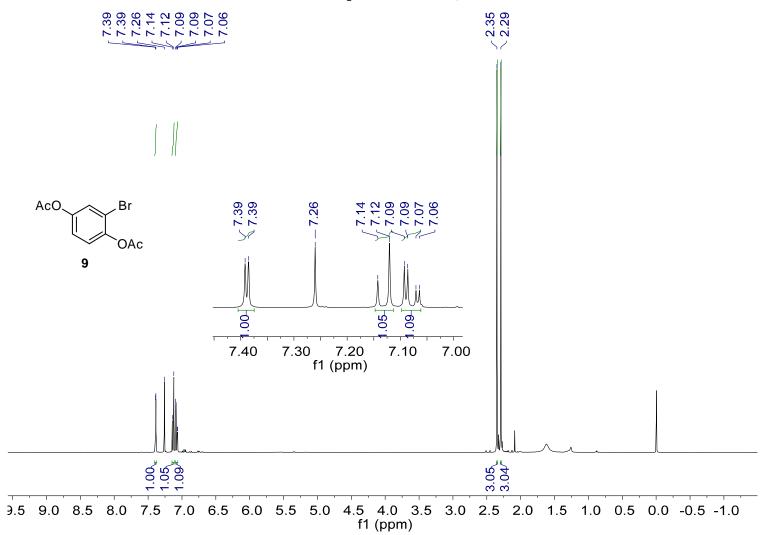
4. References

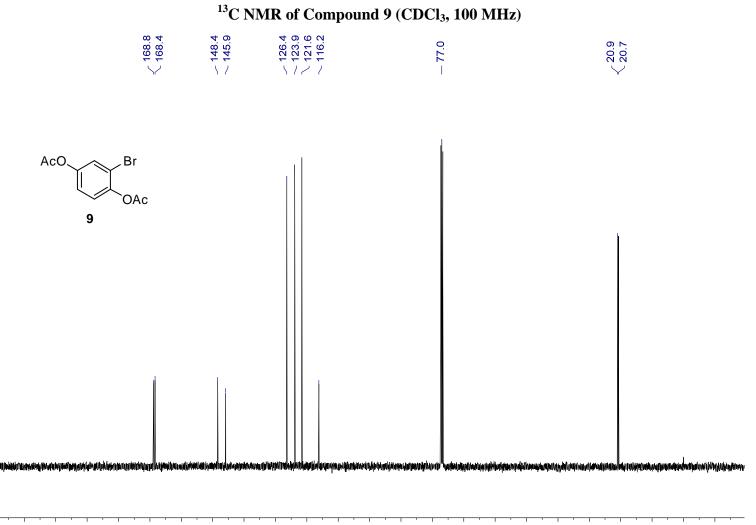
1. Z. Li, Q. Li, G.-K. Liu, W. Chen, X.-S. Peng, and H. N. C. Wong, *Synlett*, 2015, **26**, 1461–1464.

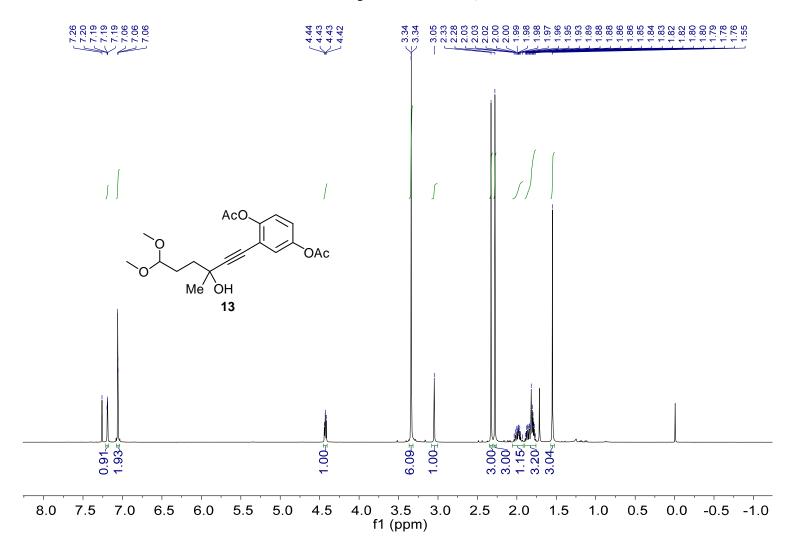

2. G. Viault, D. Grée, S. Das, J. S. Yadav, and R. Grée, *Eur. J. Org. Chem.*, 2011, 1233–1241.

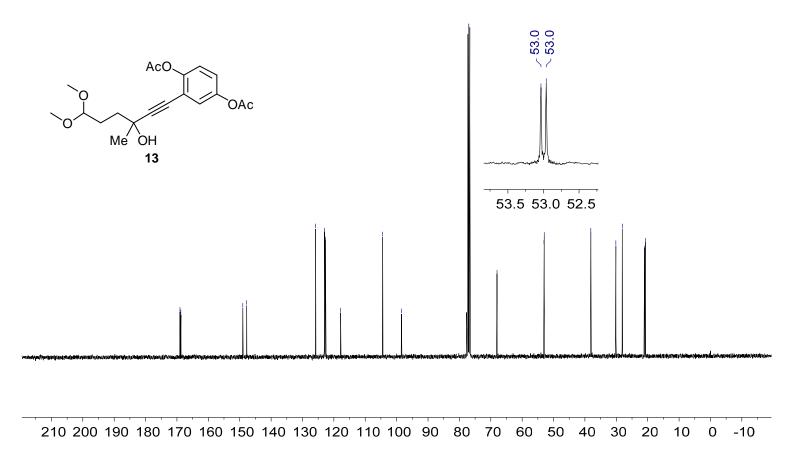
5. NMR Spectrum of Products



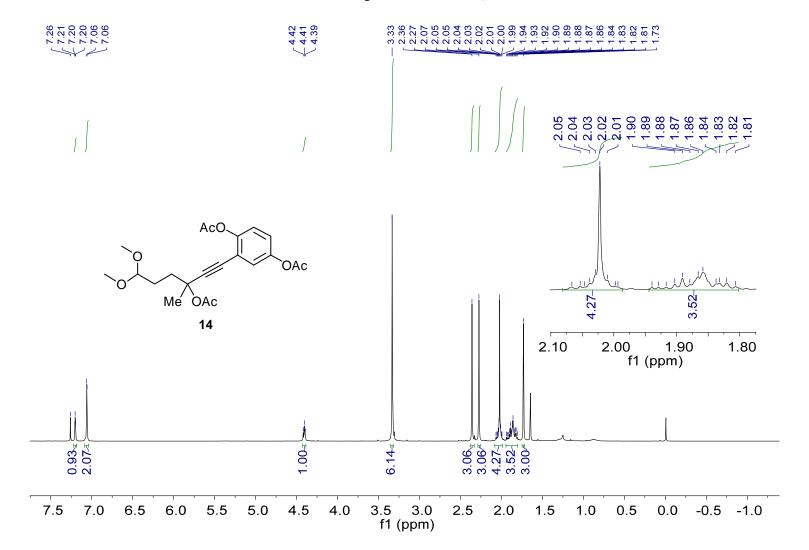

¹³C NMR of Compound 10 (CDCl₃, 100 MHz)


104.5	87.5	77.0 71.4 67.5	52.9	38.1 30.1 28.0
		1 5 1		$1 \leq 1$

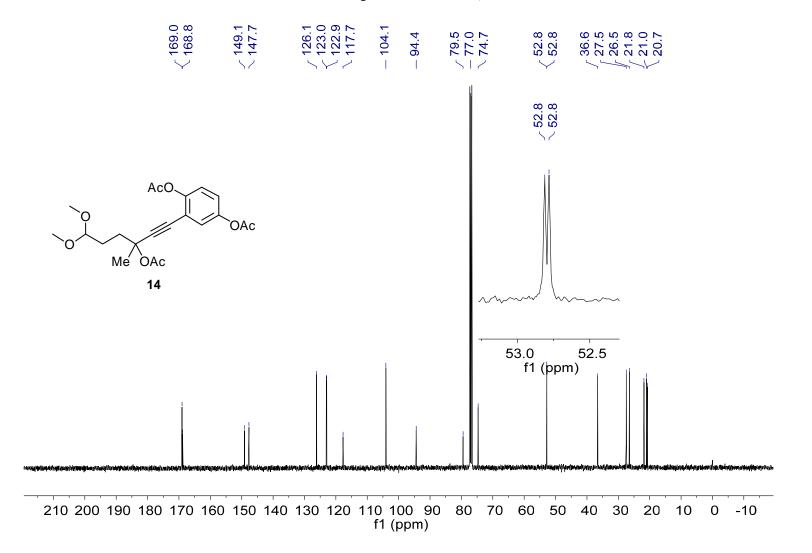


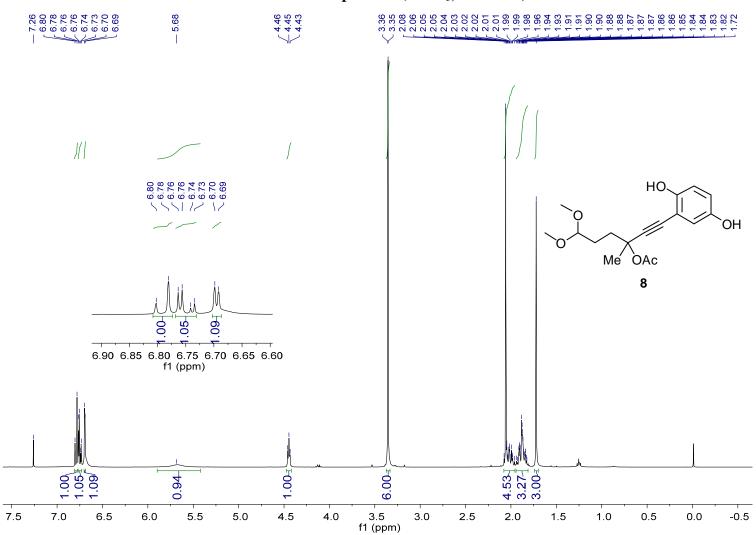

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of Compound 13 (CDCl₃, 400 MHz)



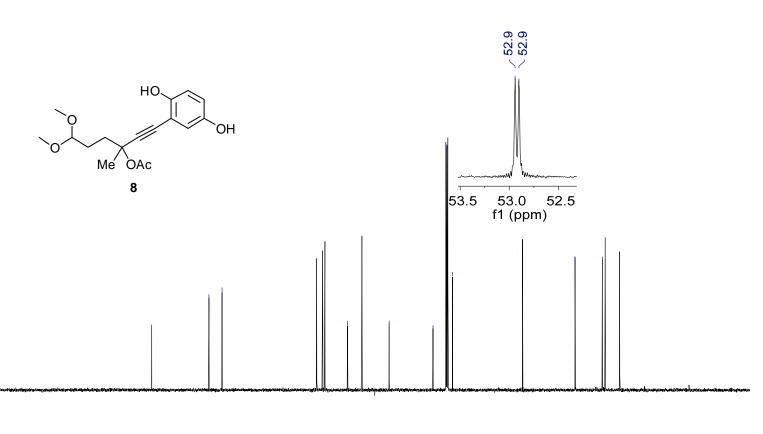
¹³C NMR of Compound 13 (CDCl₃, 100 MHz)

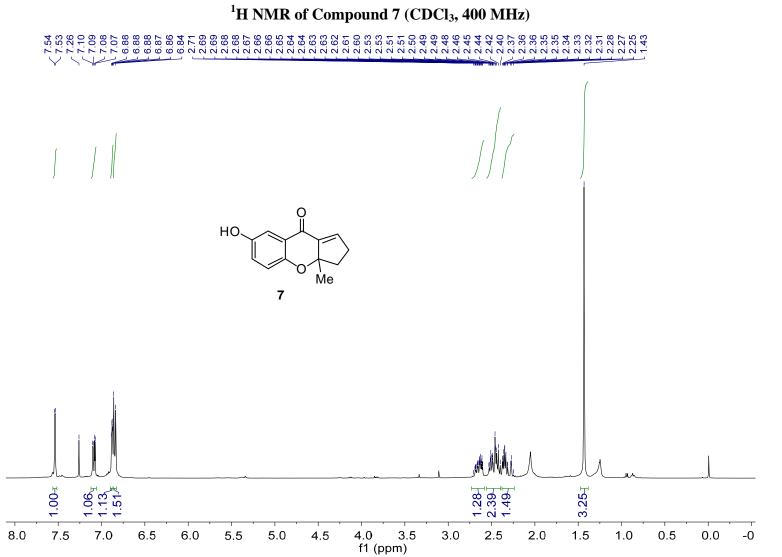




¹H NMR of Compound 14 (CDCl₃, 400 MHz)

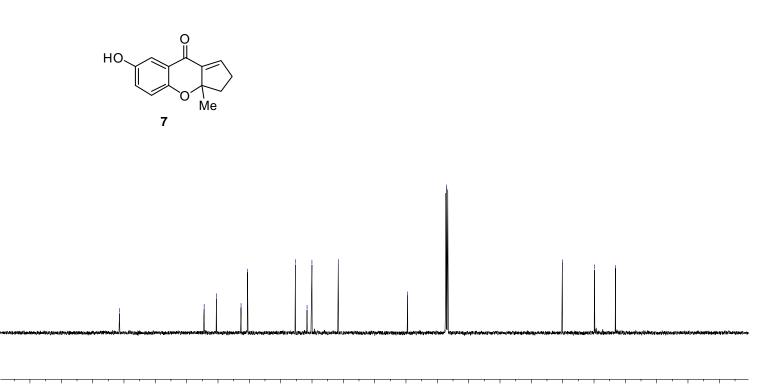
¹³C NMR of Compound 14 (CDCl₃, 100 MHz)



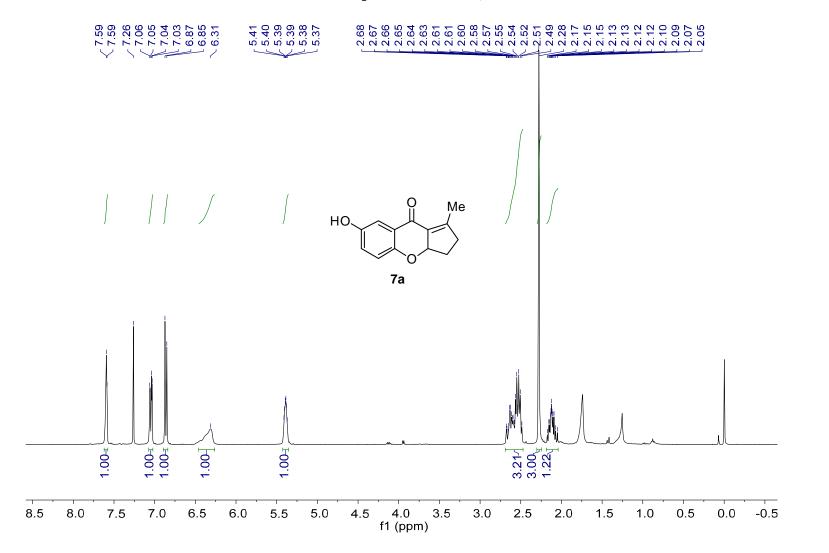

¹H NMR of Compound 8 (CDCl₃, 400 MHz)

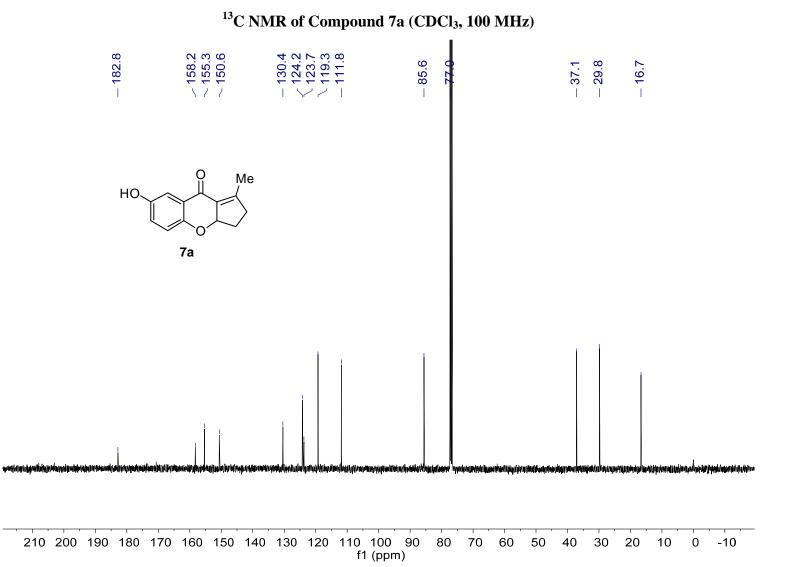
¹³C NMR of Compound 8 (CDCl₃, 100 MHz)

170.9	152.7 148.5	118.4 116.5 115.8 108.6 104.0 95.4	81.4 77.0 75.2	52.9 52.9	36.2 27.5 26.6 22.0
	1 1		552	\checkmark	$ $ $ $

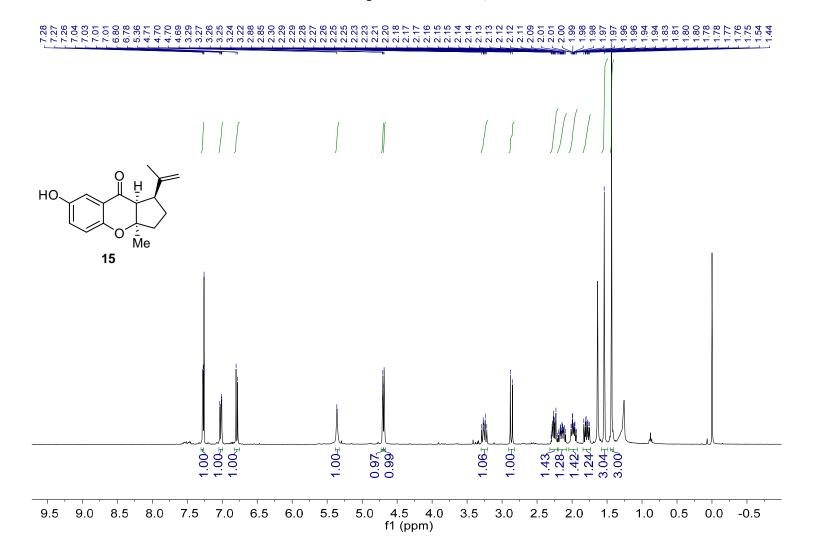

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

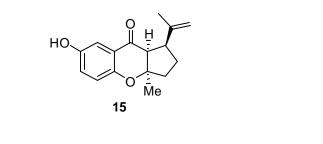
¹³C NMR of Compound 7 (CDCl₃, 100 MHz)

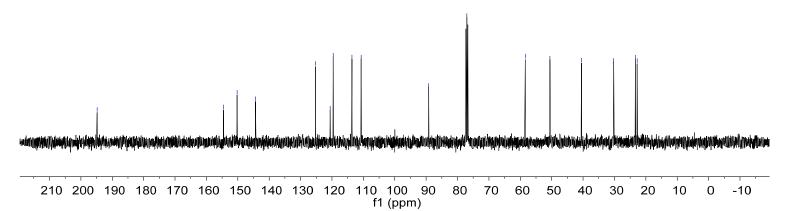

.. . ..

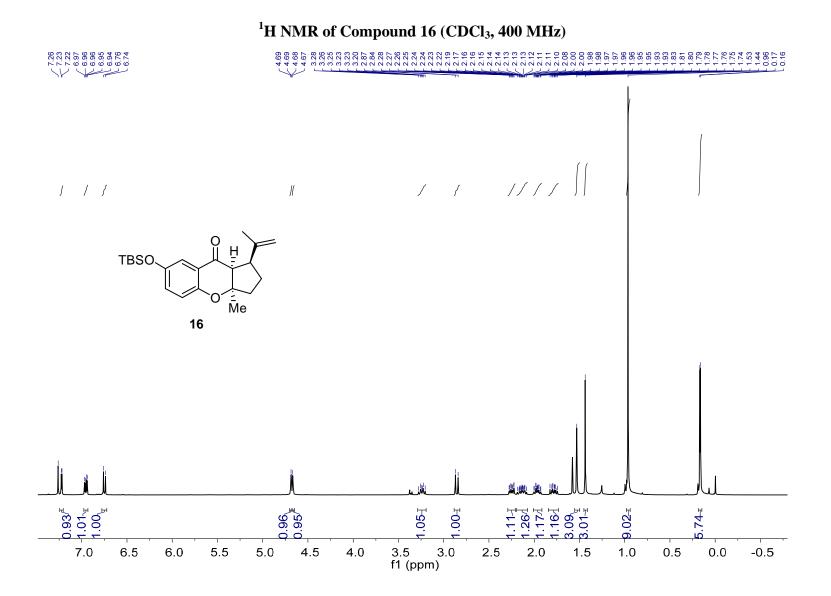

181.5	154.4 150.5 142.6 140.6	125.3 121.6 120.0 111.6	89.5	0.77	40.1	29.9 23.2	
1	17.51			l l	1	11	

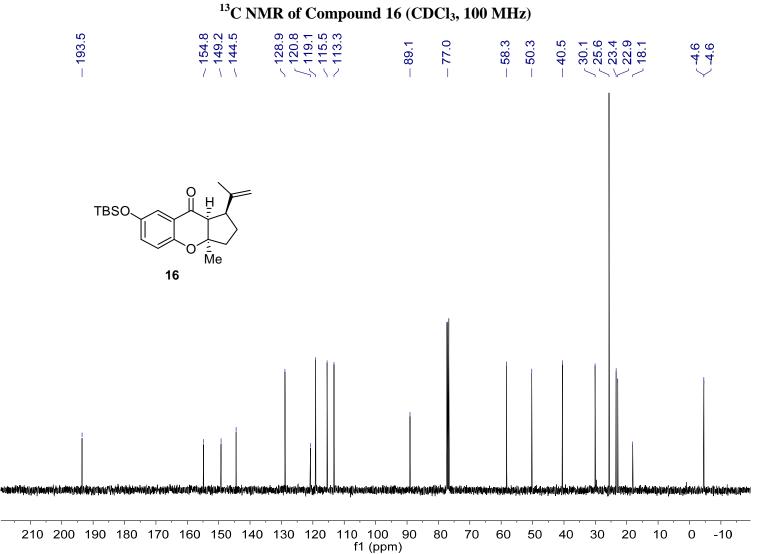
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

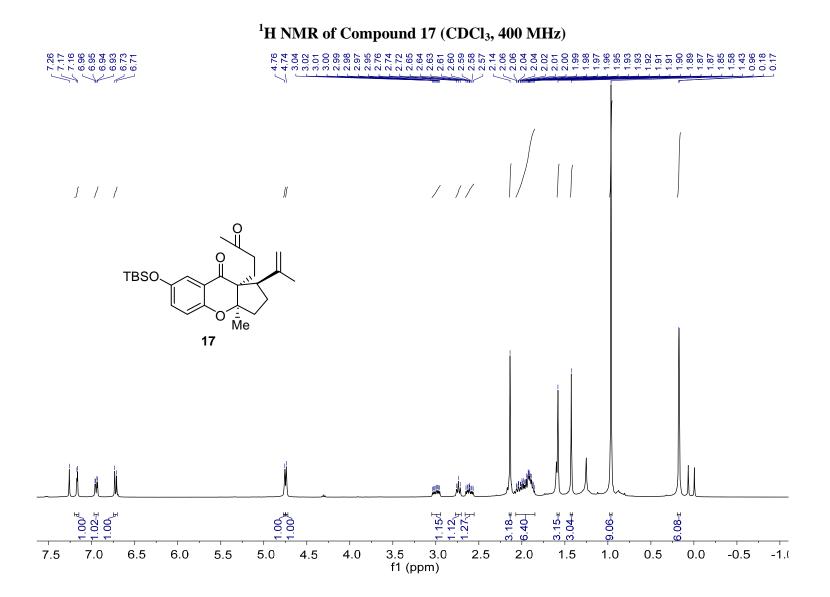

¹H NMR of Compound 7a (CDCl₃, 100 MHz)

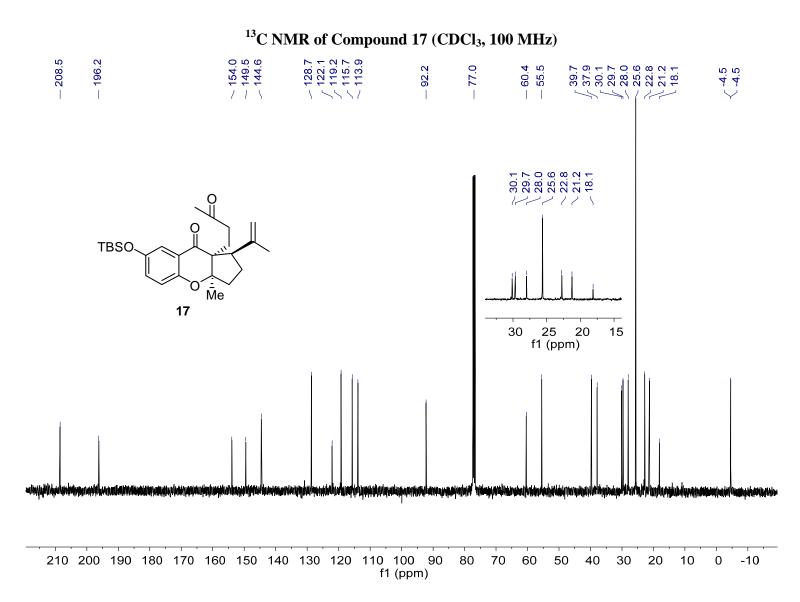


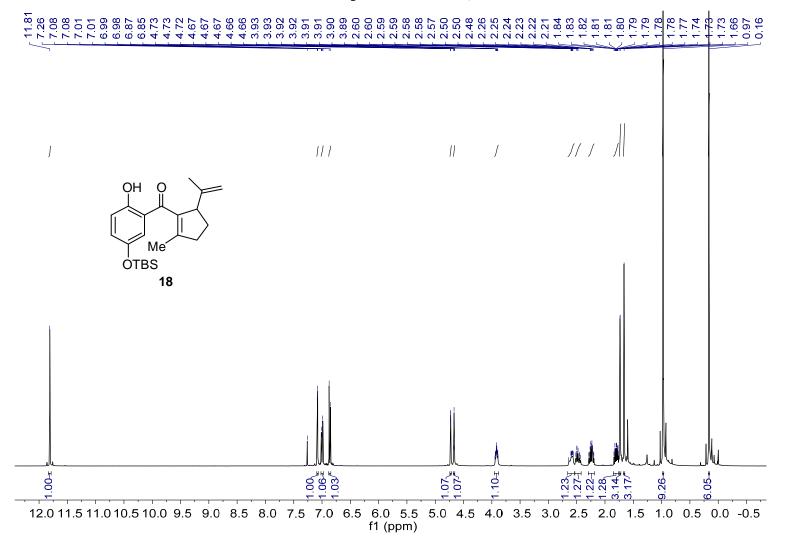

¹H NMR of Compound 15 (CDCl₃, 400 MHz)

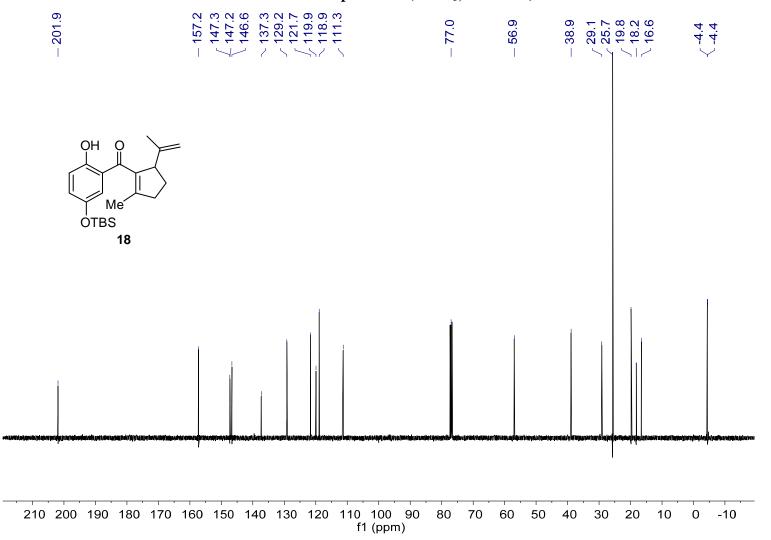


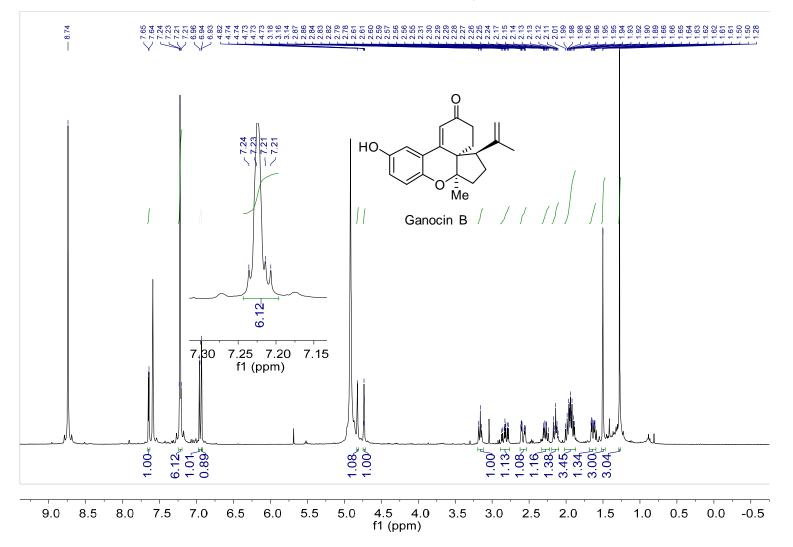

¹³C NMR of Compound 15 (CDCl₃, 100 MHz)

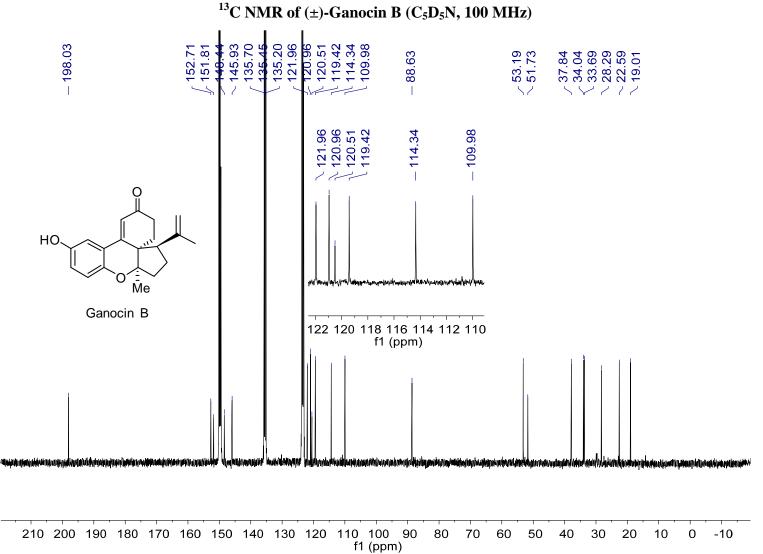

194.8	154.6 150.2 144.4	125.2 120.6 119.6 113.6 110.7	89.2	77.0		50.6	30.3 23.4 22.8
	1 7 1	SSZIZ		1	1		$\leq \leq 2$



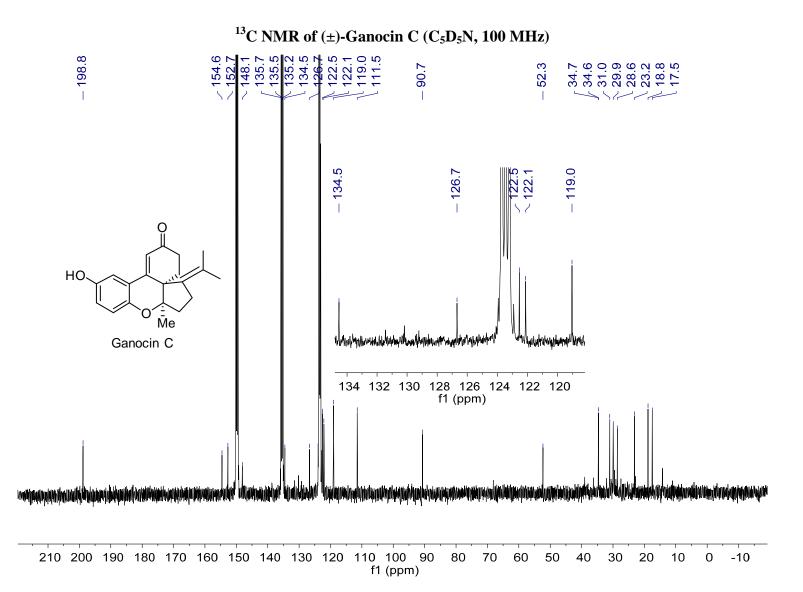


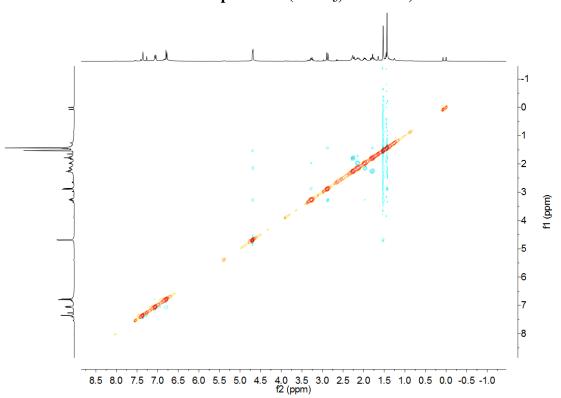


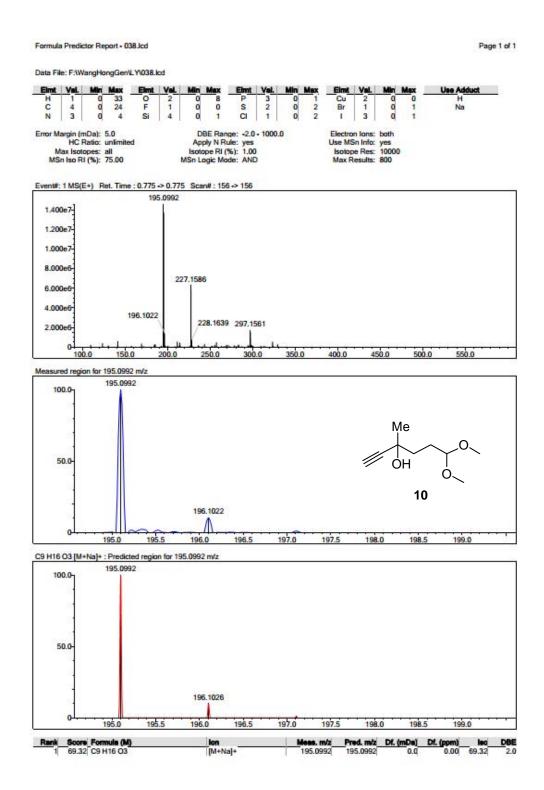




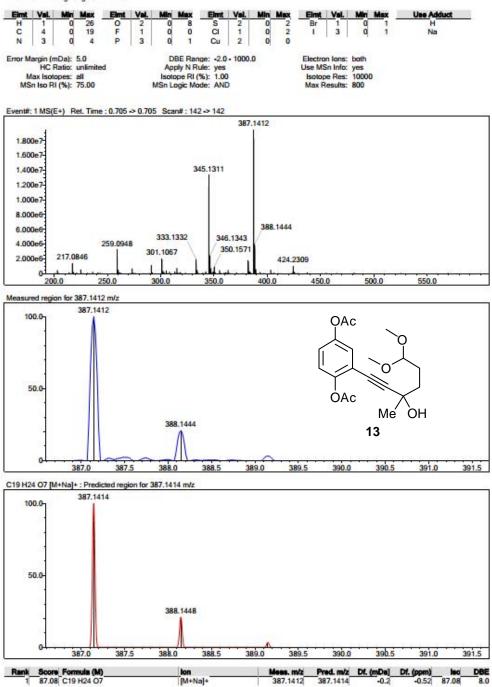



¹³C NMR of Compound 18 (CDCl₃, 400 MHz)

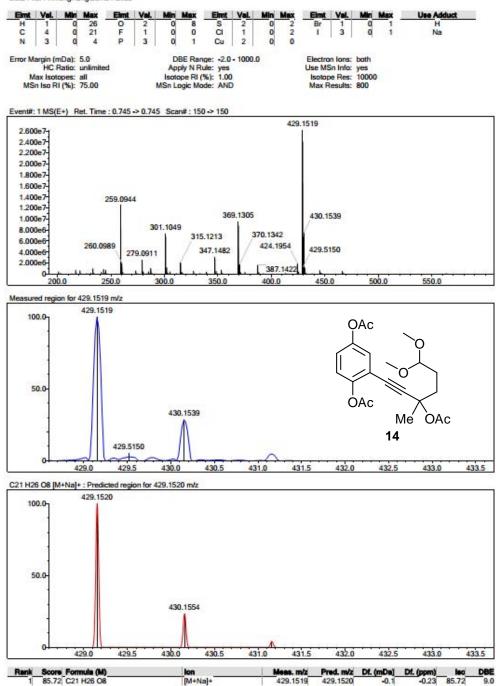




NOE of Compound 15 (CDCl₃, 400 MHz)

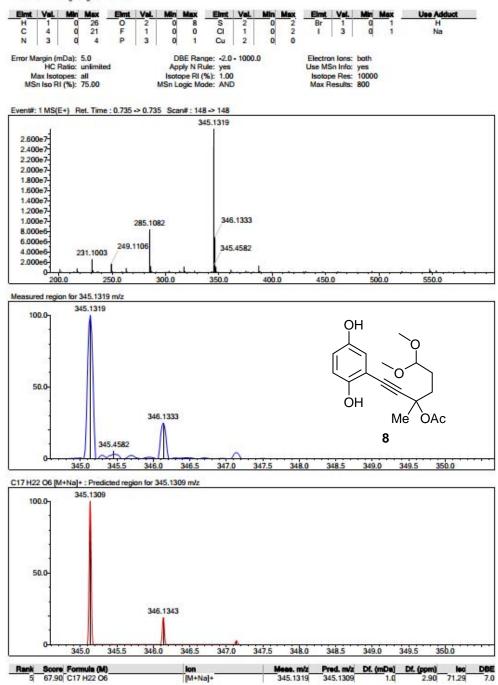

6. High-Resolution Mass Spectra (HRMS) of Products

42


Formula Predictor Report - 2.lcd

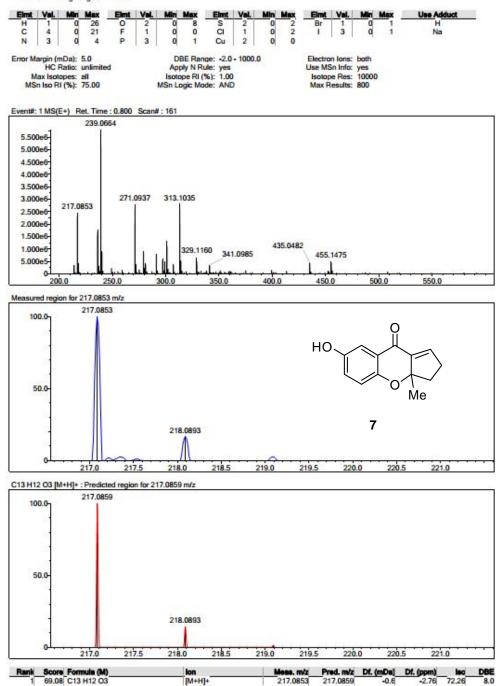
Data File: F:\WangHongGen\LY\2.lcd

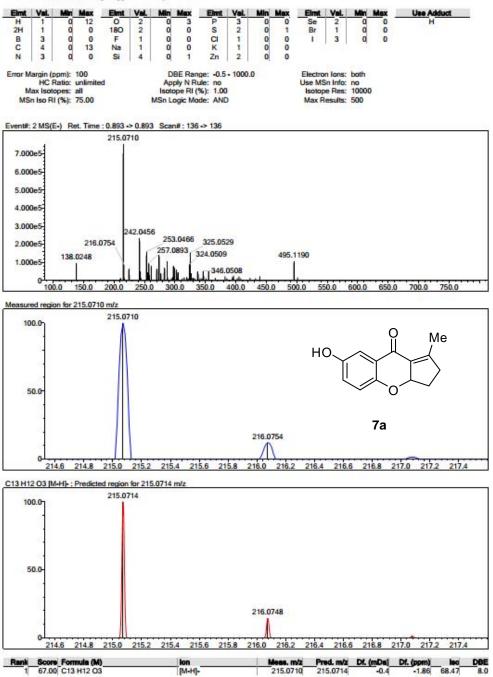
Formula Predictor Report - 3.lcd


Data File: F:WangHongGen/LY\3.lcd

Formula Predictor Report - 4.lcd

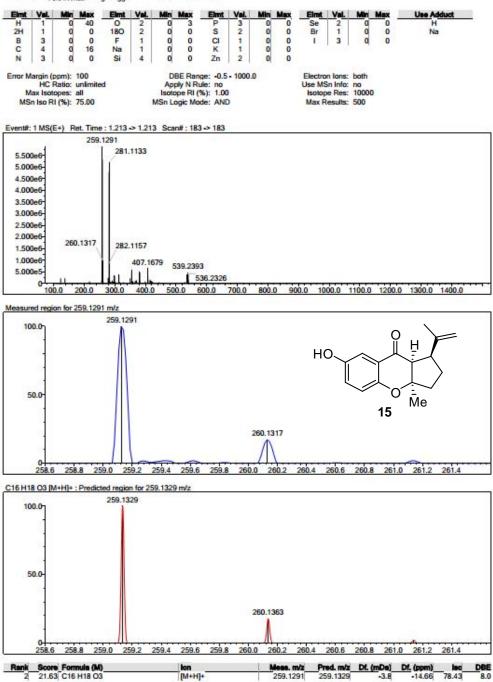
Page 1 of 1


Data File: F:\WangHongGen\LY4.lcd

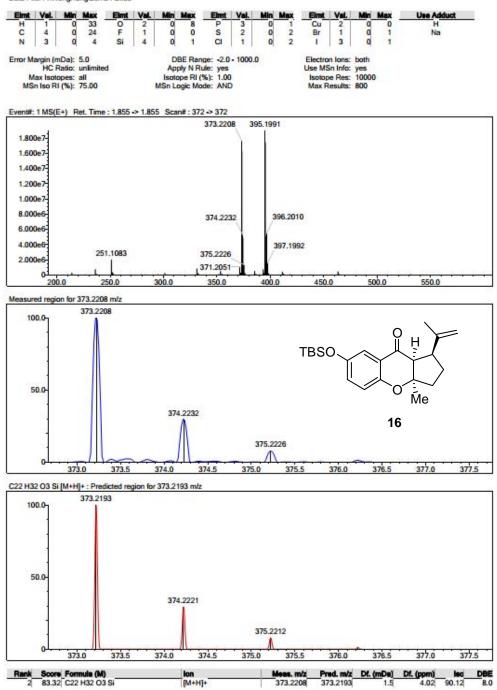

Formula Predictor Report - 5.lcd

Page 1 of 1

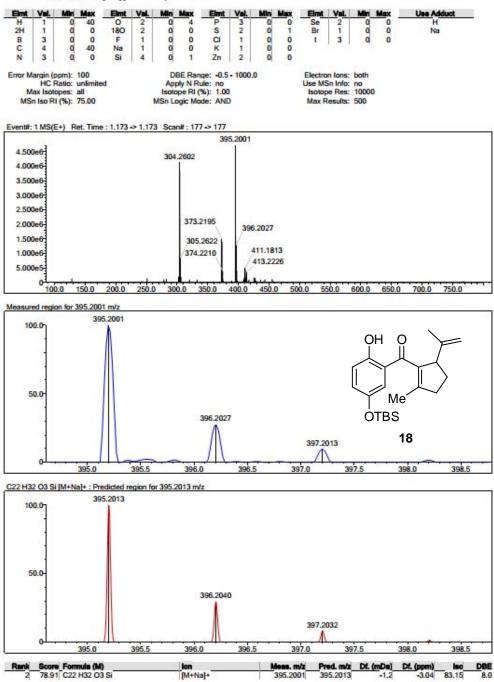
Data File: F:\WangHongGen\LY\5.lcd



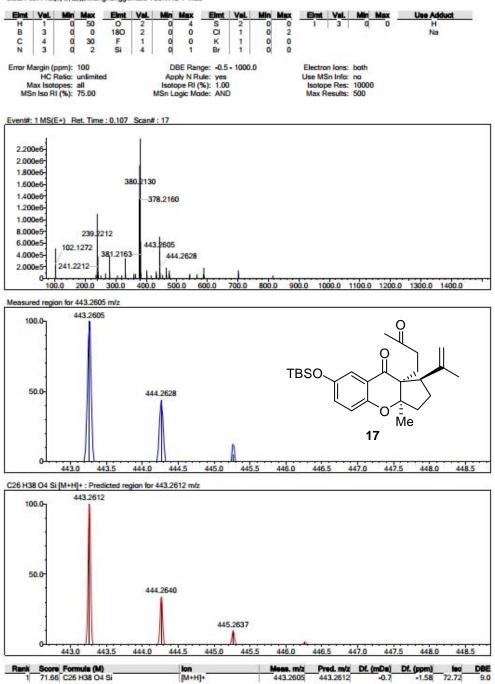
Formula Predictor Report - 1.lcd


Page 1 of 1

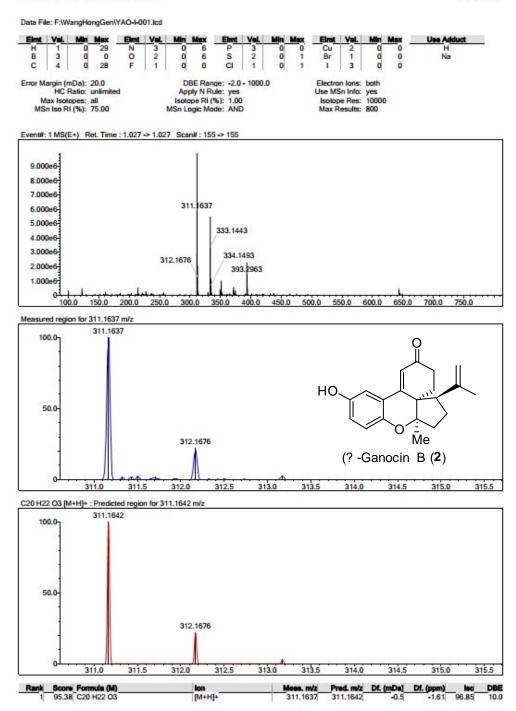
Data File: F:\高分辨数据\wanghonggen\Liu Yao\New Folder\1.lcd


Formula Predictor Report - 8.lcd

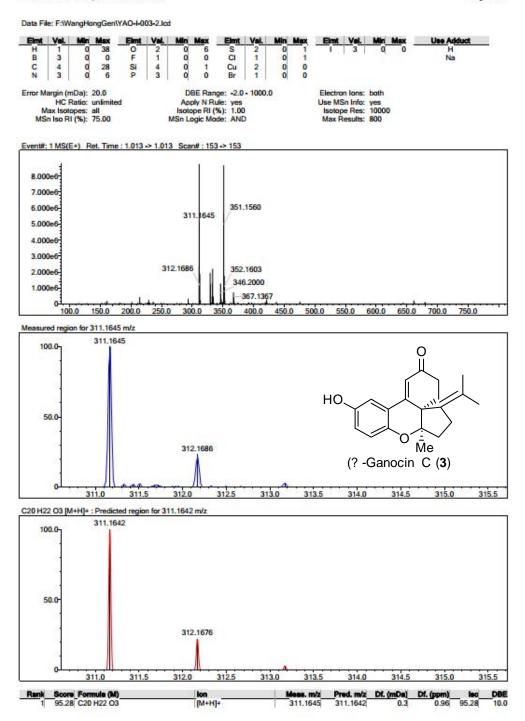
Data File: F:WangHongGenVLYV8.lcd


Page 1 of 1

Data File: F:\高分辨数据\wanghonggen\Liu Yao\y-d-m2.lod



Formula Predictor Report - YAO-I-1.lod


Data File: F:\高分辨数据\wanghonggen\Liu Yao\YAO-I-1.lcd

Formula Predictor Report - YAO-I-001.lcd

Formula Predictor Report - YAO-I-003-2.lod

