Regioselective Oxidation and Metalation of meso-Unsubstituted Azuliporphyrins

Venkata A. K. Adiraju, Gregory M. Ferrence and Timothy D. Lash
Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160
E-mail: tdlash@ilstu.edu

Table of Contents

Page
S2-S5 Crystallographic Experimental Details
S6-S7 Summary of framework bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1 6 a}, \mathbf{1 7 a}$ and $\mathbf{1 8 b}$ (Table S1)

S8-S15 Selected views for the X-ray crystal structures of 16a, 17a and 18b (Figures S1-S11)
S16-S26 Selected UV-vis spectra (Figures S12-S33)
S27-S64 Selected proton NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HSQC, nOe difference ${ }^{1} \mathrm{H}$ NMR, DEPT-135 and carbon-13 NMR spectra (Figures S34-S86)

S64-S84 ESI MS (Figures S87-S106)

Crystallographic Experimental Details of 16a•2 $\mathbf{C H C l}_{3}$

X-ray quality crystals of $\mathbf{1 6 a} \cdot \mathbf{2} \mathbf{C H C l}_{\mathbf{3}}\left(\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{CHCl}_{3}\right)$ were suspended in mineral oil at ambient temperature and a suitable crystal was selected. A mineral oil coated red needle thereby obtained of approximate dimensions $0.14 \mathrm{~mm} \times 0.04 \mathrm{~mm} \times 0.025 \mathrm{~mm}$ was mounted on a $50 \mu \mathrm{~m}$ MicroMesh MiTeGen Micromount and transferred to a Bruker AXS SMART APEX CCD X-ray diffractometer. The X-ray diffraction data were collected at 100(2) K using Mo- K_{α} ($\lambda=0.71073$ \AA) radiation. A total of 3672 frames were collected. The total exposure time was 20.40 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. ${ }^{\text {S1 }}$ The integration of the data yielded a total of 62093 reflections to a maximum θ angle of $27.55^{\circ}(0.77 \AA$ resolution), of which 8929 were independent (average redundancy 6.954, completeness $\left.=99.8 \%, R_{\text {int }}=9.38 \%, R_{\text {sig }}=6.36 \%\right)$ and $5377(60.22 \%)$ were observed with $F_{o}{ }^{2}>$ $2 \sigma\left(F_{o}^{2}\right)$. The final triclinic cell constants of $a=8.3983(4) \AA, b=14.6292(6) \AA, c=16.7263(8) \AA$, $\alpha=92.703(3)^{\circ}, \beta=101.462(3)^{\circ}, \gamma=104.534(3)^{\circ}$, volume $=1939.34(16) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 5264 reflections above $20 \sigma(I)$ with $4.996^{\circ}<2 \theta<48.49^{\circ}$. Limiting indices were as follows: $-10 \leq h \leq 10,-18 \leq k \leq 19,-21 \leq l \leq 21$. Data were corrected for absorption effects using the multi-scan method (SADABS). ${ }^{\text {S1 }}$ The ratio of minimum to maximum apparent transmission was 0.935 with minimum and maximum SADABS generated transmission coefficients of 0.6971 and 0.7456 . Solution and data analysis were performed using the WinGX software package. ${ }^{\mathrm{S} 2}$ The structure was solved and refined in the space group $P-1$ (no. 2) with $Z=$ 2. ${ }^{\text {S3 }}$ The solution was achieved by charge-flipping methods using the program SUPERFLIP ${ }^{S 4}$ and the refinement was completed using the program SHELXL-2014/7. ${ }^{\text {S5 }}$ PLATON SQUEEZE ${ }^{\text {S6 }}$ was used to correct for the presence of one disordered chloroform molecule per main residue. 118 electrons in the unit cell is consistent with one CHCl_{3} (58 electrons each; 116 electrons in a unit cell) per main residue. Aside from those removed by SQUEEZE, all non-H atoms were refined anisotropically. The two H atoms attached to nitrogen were identified in the difference Fourier and freely refined. Most other H atoms were identifiable in the difference Fourier; however, they were included in the refinement in the riding-model approximation $(\mathrm{C}-\mathrm{H}=0.95,0.98,0.99$, and 1.00 \AA for $\mathrm{Ar}--\mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2}$, and $\mathrm{CH} ; U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ except for methyl groups, where $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$). Full-matrix least-squares refinement on F^{2} led to convergence, $(\Delta / \sigma)_{\max }=0.000$, $(\Delta / \sigma)_{\text {mean }}=0.000$, with $R_{l}=0.0586$ and $w R_{2}=0.1483$ for 5377 data with $F_{o}{ }^{2}>2 \sigma\left(F_{o}{ }^{2}\right)$ using 12 restraints and 441 parameters. A final difference Fourier synthesis showed features in the range of
$\Delta \rho_{\text {max }}=0.892 \mathrm{e}^{-} / \AA^{3}$ to $\Delta \rho_{\text {min }}=-0.878 \mathrm{e}^{-} / \AA^{3}$. All residual electron density was within accepted norms and was deemed of no chemical significance. Molecular diagrams were generated using WinGX. ${ }^{\text {S2 }}$ CCDC-1496223 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://summary.ccdc.cam.ac.uk/structure-summary?ccdc=1496223.

Crystallographic Experimental Details of $\mathbf{1 7 a} \cdot \mathbf{C H C l}_{3}$

X-ray quality crystals of $\mathbf{1 7 a} \cdot \mathbf{C H C l}_{3}\left(\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{OCu} \cdot \mathrm{CHCl}_{3}\right)$ were suspended in mineral oil at ambient temperature and a suitable crystal was selected. A mineral oil coated purple needle thereby obtained of approximate dimensions $0.030 \mathrm{~mm} \times 0.050 \mathrm{~mm} \times 0.190 \mathrm{~mm}$ was mounted on a $50 \mu \mathrm{~m}$ MicroMesh MiTeGen Micromount and transferred to a Bruker AXS SMART APEX CCD X-ray diffractometer. The X-ray diffraction data were collected at 100 (2) K using $\mathrm{Mo}-\mathrm{K}_{\alpha}$ ($\lambda=0.71073$ \AA) radiation. A total of 3672 frames were collected. The total exposure time was 20.4 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. ${ }^{\text {S1 }}$ The integration of the data using a triclinic unit cell yielded a total of 62212 reflections to a maximum θ angle of $28.70^{\circ}(0.74 \AA$ resolution), of which 9286 were independent (average redundancy 6.700, completeness $\left.=99.1 \%, R_{\text {int }}=4.72 \%, R_{\text {sig }}=3.18 \%\right)$ and 7645 (82.33%) were observed with $F_{o}{ }^{2}>2 \sigma\left(F_{o}{ }^{2}\right)$. The final cell constants of $a=12.6923(7) \AA, b=13.2018(7) \AA$, $c=13.6120(8) \AA, \alpha=64.986(3)^{\circ}, \beta=62.582(3)^{\circ}, \gamma=86.745(3)^{\circ}$, volume $=1807.56(18) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9892 reflections above $20 \sigma(I)$ with $4.589^{\circ}<$ $2 \theta<56.08^{\circ}$. Limiting indices were as follows: $-17 \leq h \leq 17,-17 \leq k \leq 17,-18 \leq l \leq 18$. Data were corrected for absorption effects using the multi-scan method (SADABS). ${ }^{\mathrm{S} 1}$ The ratio of minimum to maximum apparent transmission was 0.931 with minimum and maximum SADABS generated transmission coefficients of 0.6939 and 0.7457 . Solution and data analysis were performed using the WinGX software package. ${ }^{\mathrm{S} 2}$ The structure was solved and refined in the space group $P-1$ (no. 2) with $Z=2 .{ }^{\text {s3 }}$ The solution was achieved by charge-flipping methods using the program SUPERFLIP ${ }^{54}$ and the refinement was completed using the program SHELXL-2014/7. ${ }^{\text {S5 }}$ All nonH atoms were refined anisotropically. All H atoms were included in the refinement in the ridingmodel approximation $\left(\mathrm{C}--\mathrm{H}=0.95,0.98,0.99\right.$, and $1.00 \AA$ for $\mathrm{Ar}-\mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2}$ and $\mathrm{CH} ; U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\text {eq }}(\mathrm{C})$ except for methyl groups, where $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$). Full-matrix least-squares refinement on F^{2} led to convergence, $(\Delta / \sigma)_{\max }=0.001,(\Delta / \sigma)_{\text {mean }}=0.000$, with $R_{l}=0.0338$ and
$w R_{2}=0.0824$ for 7645 data with $F_{o}{ }^{2}>2 \sigma\left(F_{o}{ }^{2}\right)$ using 0 restraints and 444 parameters. A final difference Fourier synthesis showed features in the range of $\Delta \rho_{\max }=0.646 \mathrm{e}^{-} / \AA^{3}$ to $\Delta \rho_{\min }=-0.500$ e^{-} / \AA^{3}. All residual electron density was within accepted norms and was deemed of no chemical significance. Molecular diagrams were generated using WinGX. ${ }^{\text {S2 }}$ CCDC-1496224 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://summary.ccdc.cam.ac.uk/structuresummary?ccdc=1496224.

Crystallographic Experimental Details of 18b

X-ray quality crystals of $\mathbf{1 8 b}\left(\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{OPd}\right)$ were suspended in mineral oil at ambient temperature and a suitable crystal was selected. A mineral oil coated dark green plate thereby obtained of approximate dimensions $0.015 \mathrm{~mm} \times 0.075 \mathrm{~mm} \times 0.200 \mathrm{~mm}$ was mounted on a $50 \mu \mathrm{~m}$ MicroMesh MiTeGen Micromount and transferred to a Bruker AXS SMART APEX CCD X-ray diffractometer. The X-ray diffraction data were collected at 100(2) K using Mo- K_{α} ($\lambda=0.71073$ \AA) radiation. A total of 3672 frames were collected. The total exposure time was 30.60 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. ${ }^{\text {S1 }}$ The integration of the data yielded a total of 64514 reflections to a maximum θ angle of $32.34^{\circ}(0.66 \AA$ resolution), of which 10801 were independent (average redundancy 5.973, completeness $\left.=94.6 \%, R_{\text {int }}=4.47 \%, R_{\text {sig }}=3.67 \%\right)$ and $8910(82.49 \%)$ were observed with $F_{o}{ }^{2}>$ $2 \sigma\left(F_{o}^{2}\right)$. The final triclinic cell constants of $a=11.5534(7) \AA, b=12.8890(8) \AA, c=13.1228$ (8) $\AA, \alpha=94.893(4)^{\circ}, \beta=114.886(3)^{\circ}, \gamma=110.418(3)^{\circ}$, volume $=1598.20(18) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9883 reflections above $20 \sigma(I)$ with $4.757^{\circ}<2 \theta<58.20^{\circ}$. Limiting indices were as follows: $-17 \leq h \leq 16,-18 \leq k \leq 18,-19 \leq l \leq 19$. Data were corrected for absorption effects using the multi-scan method (SADABS). ${ }^{\mathrm{S} 1}$ The ratio of minimum to maximum apparent transmission was 0.941 with minimum and maximum SADABS generated transmission coefficients of 0.7000 and 0.7436 . Solution and data analysis were performed using the WinGX software package. ${ }^{\mathrm{S} 2}$ The structure was solved and refined in the space group $P-1$ (no. 2) with $Z=$ 2. ${ }^{\text {S3 }}$ The solution was achieved by charge-flipping methods using the program SUPERFLIP ${ }^{\text {S4 }}$ and the refinement was completed using the program SHELXL-2014/7. ${ }^{\text {s5 }}$ All non-H atoms were refined anisotropically. Twenty-three of the non-hydrogen atoms atoms displayed a two PART positional disorder, which modeled best with a free variable which converged to 0.55721 . All H
atoms were included in the refinement in the riding-model approximation $(\mathrm{C}-\mathrm{H}=0.95,0.98$, and $0.99 \AA$ for $\mathrm{Ar}--\mathrm{H}, \mathrm{CH}_{3}$, and $\mathrm{CH}_{2} ; U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ except for methyl groups, where $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}(\mathrm{C})$). Full-matrix least-squares refinement on F^{2} led to convergence, $(\Delta / \sigma)_{\max }=0.001$, $(\Delta / \sigma)_{\text {mean }}=0.000$, with $R_{1}=0.0380$ and $w R_{2}=0.0957$ for 8910 data with $F_{o}{ }^{2}>2 \sigma\left(F_{o}{ }^{2}\right)$ using 39 restraints and 618 parameters. A final difference Fourier synthesis showed features in the range of $\Delta \rho_{\max }=1.863 \mathrm{e}^{-} / \AA^{3}$ to $\Delta \rho_{\text {min }}=-1.526 \mathrm{e}^{-} / \AA^{3}$. All residual electron density was within accepted norms and was deemed of no chemical significance, with the largest peaks being near the metal center. Molecular diagrams were generated using WinGX. ${ }^{\text {S2 }}$ CCDC-1496225 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://summary.ccdc.cam.ac.uk/structuresummary? ccdc=1496225.

References

S1 Bruker, APEX2, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
S2 L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.
S3 P. McArdle, J. Appl. Cryst., 1996, 29, 306.
S4 L. Palatinus and G. Chapuis, J. Appl. Cryst. 2007, 40, 786-790.
S5 G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
S6 A. L. Spek, Acta Cryst., 2015, C71, 9-18.

16a

17a

18b

Table S1: Summary of framework bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1 6 a}, \mathbf{1 7 a}$ and $\mathbf{1 8 b}$.

	$\mathbf{1 6 a}(\mathrm{M}=$ none	$\mathbf{1 7 a}(\mathrm{M}=\mathrm{Cu})$	$\mathbf{1 8 b}(\mathrm{M}=\mathrm{Pd})$	$\mathbf{1 8 b}(\mathrm{M}=$ Pd)*
C21-O	$1.270(3)$	$1.296(2)$	$1.298(2$	
M-O	--	$1.9215(11)$	$1.9982(14)$	
M-C21	--	$2.551(2)$	$2.5114(19)$	
M-N22	--	$1.9981(13)$	$2.0123(18)$	
M-N23	--	$1.9054(14)$	$1.994(9)$	$1.972(13)$
M-N24	--	$1.9975(14)$	$2.0092(19)$	
C2-C2a	$1.400(4)$	$1.386(2)$	$1.390(3)$	
C2a-C2b	$1.383(4)$	$1.398(2)$	$1.395(3)$	
C2b-C2c	$1.410(4)$	$1.394(2)$	$1.401(3)$	
C2c-C3b	$1.393(4)$	$1.409(2)$	$1.403(3)$	
C3b-C3a	$1.394(4)$	$1.385(2)$	$1.387(3)$	
C3a-C3	$1.387(4)$	$1.397(2)$	$1.396(3)$	
C21-C1	$1.448(3)$	$1.423(2)$	$1.418(3)$	
C1-C2	$1.422(4)$	$1.435(2)$	$1.426(3)$	
C2-C3	$1.456(3)$	$1.459(2)$	$1.468(3)$	
C3-C4	$1.433(4)$	$1.425(2)$	$1.418(3)$	
C4-C21	$1.443(4)$	$1.428(2)$	$1.426(3)$	
C4-C5	$1.407(4)$	$1.413(2)$	$1.415(3)$	
C5-C6	$1.387(4)$	$1.380(2)$	$1.380(3)$	
C6-N22	$1.376(3)$	$1.404(2)$	$1.402(3)$	
C6-C7	$1.449(3)$	$1.459(2)$	$1.517(11)$	$1.412(16)$
C7-C8	$1.372(4)$	$1.356(2)$	$1.343(9)$	$1.347(11)$
C8-C9	$1.439(3)$	$1.455(2)$	$1.458(9)$	$1.467(11)$
C9-N22	$1.355(3)$	$1.360(2)$	$1.387(9)$	$1.355(15)$
C9-C10	$1.394(4)$	$1.403(2)$	$1.390(9)$	$1.398(11)$
C10-C11	$1.391(4)$	$1.378(2)$	$1.373(7)$	$1.370(9)$
C11-N23	$1.375(3)$	$1.371(2)$	$1.373(8)$	$1.373(10)$
C11-C12	$1.471(4)$	$1.458(2)$	$1.474(8)$	$1.476(10$
C12-C13	$1.350(4)$	$1.359(2)$	$1.349(7)$	$1.347(9)$
C13-C14	$1.470(4)$	$1.459(2)$	$1.459(7)$	$1.465(10)$
C14-N23	$1.369(3)$	$1.372(2)$	$1.367(9)$	$1.375(12)$

C14-C15	$1.397(4)$	$1.379(2)$	$1.370(7)$	$1.348(9)$
C15-C16	$1.396(4)$	$1.407(2)$	$1.402(8)$	$1.399(10)$
C16-N24	$1.347(3)$	$1.365(2)$	$1.364(8)$	$1.399(10)$
C16-C17	$1.450(3)$	$1.450(2)$	$1.459(8)$	$1.445(11)$
C17-C18	$1.369(4)$	$1.357(2)$	$1.382(6)$	$1.373(9)$
C18-C19	$1.449(3)$	$1.454(2)$	$1.433(6)$	$1.497(9)$
C19-N24	$1.382(3)$	$1.401(2)$	$1.407(3)$	
C19-C20	$1.379(4)$	$1.382(2)$	$1.383(3)$	
C20-C1	$1.411(3)$	$1.404(2)$	$1.414(3)$	
C21-O-M	--	$103.23(10)$	$96.96(12)$	
O-M-N22	--	$88.85(5)$	$88.84(6)$	
N22-M-N23	--	$94.92(6)$	$88.0(2)$	$98.8(2$
N23-M-N24	--	$93.88(6)$	$96.7(2)$	$86.2(3)$
N24-M-O	--	$88.35(5)$	$88.49(7)$	
O-M-N23	--	$153.03(5)$	$163.6(3)$	$159.9(3)$
N22-M-N24	--	$165.79(6)$	$171.85(7)$	

*Second PART of disordered atoms.
Orange - more aromatic (1.38-1.41), green - single bond limit (≥ 1.46), blue - more single bond like (1.42-1.45), purple more double bond like (≤ 1.37).

Figure S1. "Arial-view": Color POV-Ray rendered ORTEP III drawing (50\% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound $\mathbf{1 6 a}$.

Figure S2. "Edge-view": Color POV-Ray rendered ORTEP III drawing (50\% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound 16a.

Figure S3. 45° from "edge-view": Color POV-Ray rendered ORTEP III drawing (50% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound 16a.

Figure S4. Color POV-Ray rendered space-filling drawing of compound 16a.

Figure S5. "Arial-view": Color POV-Ray rendered ORTEP III drawing (50\% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound $17 \mathbf{a}$.

Figure S6. "Edge-view": Color POV-Ray rendered ORTEP III drawing (50\% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound $\mathbf{1 7 a}$.

Figure S7. 45° from "edge-view": Color POV-Ray rendered ORTEP III drawing (50\% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound 17a.

Figure S8. Color POV-Ray rendered space-filling drawings of compound $\mathbf{1 7 a}$.

Figure S9. "Arial-view": Color POV-Ray rendered ORTEP III drawing (50\% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound $\mathbf{1 8 b}$.

Figure S9. 45° from "edge-view": Color POV-Ray rendered ORTEP III drawing (50\% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound 18 b .

Figure S10. "Edge-view": Color POV-Ray rendered ORTEP III drawing (50\% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound $\mathbf{1 8 b}$.

Figure S11. Color POV-Ray rendered space-filling drawings of compound $\mathbf{1 8 b}$.

Figure S12. UV-vis spectrum of $\mathbf{1 6 a}$ in $1 \% \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S13. UV-vis spectra of 16a in $1 \% \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (free base, red line), dichloromethane (green line) and with 1 equiv of TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (purple line). Even though the dichloromethane had been deacidified, significant protonation occurred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S 14 . UV-vis spectrum of $\mathbf{1 6 a H}{ }^{+}$with 5 equiv of TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S 15 . UV-vis spectrum of $\mathbf{1 6 a H}{ }^{+}$in 1% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S16. UV-vis spectrum of protonated oxyazuliporphyrin 16a in 5% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S17. UV-vis spectrum of protonated oxyazuliporphyrin $\mathbf{1 6 a}$ in 10% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S18. UV-vis spectrum of protonated oxyazuliporphyrin $\mathbf{1 6 a}$ in $50 \% \mathrm{TFA}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S19. UV-vis spectrum of oxyazuliporphyrin $\mathbf{1 6 b}$ in $1 \% \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S20. UV-vis spectrum of protonated oxyazuliporphyrin $\mathbf{1 6 b}$ in $1 \% \mathrm{TFA}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S21. UV-vis spectrum of protonated oxyazuliporphyrin $\mathbf{1 6 b}$ in 5% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S22. UV-vis spectrum of copper(II) oxyazuliporphyrin $\mathbf{1 7 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S23. UV-vis spectrum of copper(II) oxyazuliporphyrin $\mathbf{1 7 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S24. UV-vis spectrum of nickel(II) oxyazuliporphyrin 18 a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S25. UV-vis spectrum of palladium(II) oxyazuliporphyrin $\mathbf{1 8 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S26. UV-vis spectrum of silver(III) benzocarbaporphyrin 21a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S27. UV-vis spectrum of silver(III) benzocarbaporphyrin 21b in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S28. UV-vis spectrum of silver(III) benzocarbaporphyrin 22c in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S29. UV-vis spectrum of silver(III) benzocarbaporphyrin 22b in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S30. UV-vis spectrum of palladium(III) thiacarbaporphyrin 29a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S31. UV-vis spectrum of palladium(III) thiacarbaporphyrin 29b in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S32. UV-vis spectrum of palladium(III) thiacarbaporphyrin 29c in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S33. UV-vis spectrum of palladium(III) thiacarbaporphyrin 29d in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S34. 500 MHz of tert-butyl oxyazuliporphyrin $\mathbf{1 6 a}$ in CDCl_{3} at $50^{\circ} \mathrm{C}$.

Figure S35. Selected nOe proton NMR spectra of tert-butyl oxyazuliporphyrin 16a in CDCl_{3} at $50{ }^{\circ} \mathrm{C}$.

Figure S36. HSQC and 125 MHz carbon-13 NMR spectra of $\mathbf{1 6 a}$ in CDCl_{3} at $50{ }^{\circ} \mathrm{C}$.

Figure S37. 500 MHz proton NMR spectrum of tert-butyl oxyazuliporphyrin monocation $\mathbf{1 6 a H}{ }^{+}$ in TFA- CDCl_{3}.

Figure S 38 . HSQC NMR spectrum of $\mathbf{1 6 a H}{ }^{+}$in TFA- CDCl_{3}.

Figure S39. DEPT-135 NMR spectrum of $\mathbf{1 6} \mathrm{H}^{+}$in TFA-CDCl ${ }_{3}$.

Figure S40. 125 MHz carbon-13 NMR spectrum of $\mathbf{1 6 a H}{ }^{+}$in TFA-CDCl ${ }_{3}$.

Figure S41. 500 MHz proton NMR spectrum of nickel(II) complex 18 a in CDCl_{3}. * solvent impurities

Figure S 42 . Selected nOe difference proton NMR spectra of nickel(II) complex 18a in CDCl_{3}.

Figure $\mathrm{S} 43 .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of nickel(II) complex 18a in CDCl_{3}.

Figure S44. HSQC NMR spectrum of nickel(II) complex 18a in CDCl_{3}.

Figure S45. DEPT-135 NMR spectrum of nickel(II) complex 18a in CDCl_{3}.

Figure S46. 125 MHz carbon-13 NMR spectrum of nickel(II) complex $\mathbf{1 8 a}$ in CDCl_{3}.

Figure S47. 500 MHz proton NMR spectrum of palladium(II) complex $\mathbf{1 8 b}$ in CDCl_{3}.

* solvent impurities

Figure S48. Sected nOe difference proton NMR spectra of palladium(II) complex $\mathbf{1 8 b}$ in CDCl_{3}.

Figure $\mathrm{S} 49 .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of palladium(II) complex $\mathbf{1 8 b}$ in CDCl_{3}.

Figure S50. HSQC NMR spectrum of palladium(II) complex $\mathbf{1 8 b}$ in CDCl_{3}.

Figure S51. DEPT-135 NMR spectrum of palladium(II) complex $\mathbf{1 8 b}$ in CDCl_{3}.

Figure S52. 125 MHz carbon-13 NMR spectrum of palladium(II) complex $\mathbf{1 8 b}$ in CDCl_{3}.

