Regioselective Oxidation and Metalation of *meso*-Unsubstituted Azuliporphyrins

Venkata A. K. Adiraju, Gregory M. Ferrence and Timothy D. Lash Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160 E-mail: tdlash@ilstu.edu

Table of Contents

Page

- S2-S5 Crystallographic Experimental Details
- S6-S7 Summary of framework bond distances (Å) and angles (°) for **16a**, **17a** and **18b** (Table S1)
- S8-S15 Selected views for the X-ray crystal structures of 16a, 17a and 18b (Figures S1-S11)
- S16-S26 Selected UV-vis spectra (Figures S12-S33)
- S27-S64 Selected proton NMR, ¹H-¹H COSY, HSQC, nOe difference ¹H NMR, DEPT-135 and carbon-13 NMR spectra (Figures S34-S86)
- S64-S84 ESI MS (Figures S87-S106)

X-ray quality crystals of 16a·2 CHCl₃ ($C_{40}H_{45}N_3O\cdot 2$ CHCl₃) were suspended in mineral oil at ambient temperature and a suitable crystal was selected. A mineral oil coated red needle thereby obtained of approximate dimensions 0.14 mm x 0.04 mm x 0.025 mm was mounted on a 50 µm MicroMesh MiTeGen Micromount and transferred to a Bruker AXS SMART APEX CCD X-ray diffractometer. The X-ray diffraction data were collected at 100(2) K using Mo-K_a ($\lambda = 0.71073$ Å) radiation. A total of 3672 frames were collected. The total exposure time was 20.40 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm.^{S1} The integration of the data yielded a total of 62093 reflections to a maximum θ angle of 27.55° (0.77 Å resolution), of which 8929 were independent (average redundancy 6.954, completeness = 99.8%, R_{int} = 9.38%, R_{sig} = 6.36%) and 5377 (60.22%) were observed with $F_o^2 >$ $2\sigma(F_o^2)$. The final triclinic cell constants of a = 8.3983(4) Å, b = 14.6292(6) Å, c = 16.7263(8) Å, $\alpha = 92.703(3)^{\circ}, \beta = 101.462(3)^{\circ}, \gamma = 104.534(3)^{\circ}, \text{ volume} = 1939.34(16) \text{ Å}^3$, are based upon the refinement of the XYZ-centroids of 5264 reflections above 20 $\sigma(I)$ with 4.996° < 2 θ < 48.49°. Limiting indices were as follows: $-10 \le h \le 10$, $-18 \le k \le 19$, $-21 \le l \le 21$. Data were corrected for absorption effects using the multi-scan method (SADABS).^{S1} The ratio of minimum to maximum apparent transmission was 0.935 with minimum and maximum SADABS generated transmission coefficients of 0.6971 and 0.7456. Solution and data analysis were performed using the WinGX software package.^{S2} The structure was solved and refined in the space group P-1 (no. 2) with Z =2.^{S3} The solution was achieved by charge-flipping methods using the program SUPERFLIP^{S4} and the refinement was completed using the program SHELXL-2014/7.^{S5} PLATON SQUEEZE^{S6} was used to correct for the presence of one disordered chloroform molecule per main residue. 118 electrons in the unit cell is consistent with one CHCl₃ (58 electrons each; 116 electrons in a unit cell) per main residue. Aside from those removed by SQUEEZE, all non-H atoms were refined anisotropically. The two H atoms attached to nitrogen were identified in the difference Fourier and freely refined. Most other H atoms were identifiable in the difference Fourier; however, they were included in the refinement in the riding-model approximation (C--H = 0.95, 0.98, 0.99, and 1.00Å for Ar--H, CH₃, CH₂, and CH; $U_{iso}(H) = 1.2U_{eq}(C)$ except for methyl groups, where $U_{iso}(H) =$ 1.5 $U_{ed}(C)$). Full-matrix least-squares refinement on F^2 led to convergence, $(\Delta/\sigma)_{max} = 0.000$, $(\Delta/\sigma)_{\text{mean}} = 0.000$, with $R_1 = 0.0586$ and $wR_2 = 0.1483$ for 5377 data with $F_o^2 > 2\sigma(F_o^2)$ using 12 restraints and 441 parameters. A final difference Fourier synthesis showed features in the range of $\Delta \rho_{max} = 0.892 \text{ e}^{-}/\text{Å}^{3}$ to $\Delta \rho_{min} = -0.878 \text{ e}^{-}/\text{Å}^{3}$. All residual electron density was within accepted norms and was deemed of no chemical significance. Molecular diagrams were generated using WinGX.^{S2} CCDC-1496223 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://summary.ccdc.cam.ac.uk/structure-summary?ccdc=1496223.

Crystallographic Experimental Details of 17a·CHCl₃

X-ray quality crystals of 17a·CHCl₃ (C₄₀H₄₃N₃OCu·CHCl₃) were suspended in mineral oil at ambient temperature and a suitable crystal was selected. A mineral oil coated purple needle thereby obtained of approximate dimensions 0.030 mm x 0.050 mm x 0.190 mm was mounted on a 50 µm MicroMesh MiTeGen Micromount and transferred to a Bruker AXS SMART APEX CCD X-ray diffractometer. The X-ray diffraction data were collected at 100(2) K using Mo-K_a ($\lambda = 0.71073$ Å) radiation. A total of 3672 frames were collected. The total exposure time was 20.4 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm.^{S1} The integration of the data using a triclinic unit cell yielded a total of 62212 reflections to a maximum θ angle of 28.70° (0.74 Å resolution), of which 9286 were independent (average redundancy 6.700, completeness = 99.1%, R_{int} = 4.72%, R_{sig} = 3.18%) and 7645 (82.33%) were observed with $F_o^2 > 2\sigma(F_o^2)$. The final cell constants of a = 12.6923(7) Å, b = 13.2018(7) Å, c = 13.6120(8) Å, $\alpha = 64.986(3)^{\circ}$, $\beta = 62.582(3)^{\circ}$, $\gamma = 86.745(3)^{\circ}$, volume = 1807.56(18) Å³, are based upon the refinement of the XYZ-centroids of 9892 reflections above 20 $\sigma(I)$ with 4.589° < $2\theta < 56.08^{\circ}$. Limiting indices were as follows: $-17 \le h \le 17$, $-17 \le k \le 17$, $-18 \le l \le 18$. Data were corrected for absorption effects using the multi-scan method (SADABS).^{S1} The ratio of minimum to maximum apparent transmission was 0.931 with minimum and maximum SADABS generated transmission coefficients of 0.6939 and 0.7457. Solution and data analysis were performed using the WinGX software package.^{S2} The structure was solved and refined in the space group P-1 (no. 2) with $Z = 2.^{S3}$ The solution was achieved by charge-flipping methods using the program SUPERFLIP^{S4} and the refinement was completed using the program SHELXL-2014/7.^{S5} All non-H atoms were refined anisotropically. All H atoms were included in the refinement in the ridingmodel approximation (C--H = 0.95, 0.98, 0.99, and 1.00 Å for Ar--H, CH₃, CH₂ and CH; U_{iso} (H) = $1.2U_{eq}(C)$ except for methyl groups, where $U_{iso}(H) = 1.5U_{eq}(C)$). Full-matrix least-squares refinement on F^2 led to convergence, $(\Delta/\sigma)_{max} = 0.001$, $(\Delta/\sigma)_{mean} = 0.000$, with $R_1 = 0.0338$ and

 $wR_2 = 0.0824$ for 7645 data with $F_o^2 > 2\sigma(F_o^2)$ using 0 restraints and 444 parameters. A final difference Fourier synthesis showed features in the range of $\Delta \rho_{max} = 0.646 \text{ e}^{-}/\text{Å}^3$ to $\Delta \rho_{min} = -0.500 \text{ e}^{-}/\text{Å}^3$. All residual electron density was within accepted norms and was deemed of no chemical significance. Molecular diagrams were generated using WinGX.^{S2} CCDC-1496224 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>https://summary.ccdc.cam.ac.uk/structure-summary?ccdc=1496224</u>.

Crystallographic Experimental Details of 18b

X-ray quality crystals of **18b** (C₄₀H₄₃N₃OPd) were suspended in mineral oil at ambient temperature and a suitable crystal was selected. A mineral oil coated dark green plate thereby obtained of approximate dimensions 0.015 mm x 0.075 mm x 0.200 mm was mounted on a 50 µm MicroMesh MiTeGen Micromount and transferred to a Bruker AXS SMART APEX CCD X-ray diffractometer. The X-ray diffraction data were collected at 100(2) K using Mo-K_a ($\lambda = 0.71073$ Å) radiation. A total of 3672 frames were collected. The total exposure time was 30.60 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm.^{S1} The integration of the data yielded a total of 64514 reflections to a maximum θ angle of 32.34° (0.66 Å resolution), of which 10801 were independent (average redundancy 5.973, completeness = 94.6%, R_{int} = 4.47%, R_{sig} = 3.67%) and 8910 (82.49%) were observed with $F_o^2 >$ $2\sigma(F_o^2)$. The final triclinic cell constants of a = 11.5534(7) Å, b = 12.8890(8) Å, c = 13.1228(8)Å, $\alpha = 94.893(4)^{\circ}$, $\beta = 114.886(3)^{\circ}$, $\gamma = 110.418(3)^{\circ}$, volume = 1598.20(18) Å³, are based upon the refinement of the XYZ-centroids of 9883 reflections above $20 \sigma(I)$ with $4.757^{\circ} < 2\theta < 58.20^{\circ}$. Limiting indices were as follows: $-17 \le h \le 16$, $-18 \le k \le 18$, $-19 \le l \le 19$. Data were corrected for absorption effects using the multi-scan method (SADABS).^{S1} The ratio of minimum to maximum apparent transmission was 0.941 with minimum and maximum SADABS generated transmission coefficients of 0.7000 and 0.7436. Solution and data analysis were performed using the WinGX software package.^{S2} The structure was solved and refined in the space group P-1 (no. 2) with Z =2.^{S3} The solution was achieved by charge-flipping methods using the program SUPERFLIP^{S4} and the refinement was completed using the program SHELXL-2014/7.55 All non-H atoms were refined anisotropically. Twenty-three of the non-hydrogen atoms atoms displayed a two PART positional disorder, which modeled best with a free variable which converged to 0.55721. All H

atoms were included in the refinement in the riding-model approximation (C--H = 0.95, 0.98, and 0.99 Å for Ar--H, CH₃, and CH₂; $U_{iso}(H) = 1.2U_{eq}(C)$ except for methyl groups, where $U_{iso}(H) = 1.5U_{eq}(C)$). Full-matrix least-squares refinement on F^2 led to convergence, $(\Delta/\sigma)_{max} = 0.001$, $(\Delta/\sigma)_{mean} = 0.000$, with $R_1 = 0.0380$ and $wR_2 = 0.0957$ for 8910 data with $F_o^2 > 2\sigma(F_o^2)$ using 39 restraints and 618 parameters. A final difference Fourier synthesis showed features in the range of $\Delta\rho_{max} = 1.863 \text{ e}^2/\text{Å}^3$ to $\Delta\rho_{min} = -1.526 \text{ e}^2/\text{Å}^3$. All residual electron density was within accepted norms and was deemed of no chemical significance, with the largest peaks being near the metal center. Molecular diagrams were generated using WinGX.^{S2} CCDC-1496225 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://summary.ccdc.cam.ac.uk/structure-summary?ccdc=1496225.

References

- S1 Bruker, APEX2, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.
- S2 L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.
- S3 P. McArdle, J. Appl. Cryst., 1996, 29, 306.
- S4 L. Palatinus and G. Chapuis, J. Appl. Cryst. 2007, 40, 786-790.
- S5 G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- S6 A. L. Spek, Acta Cryst., 2015, C71, 9-18.

Table S1: Summary of framework bond distances (Å) and angles (°) for 16a, 17a and 18b.

	16a (M = none)	17a (M = Cu)	18b (M = Pd)	18b (M = Pd)*
C21-O	1.270(3)	1.296(2)	1.298(2	
M-O		1.9215(11)	1.9982(14)	
M-C21		2.551(2)	2.5114(19)	
M-N22		1.9981(13)	2.0123(18)	
M-N23		1.9054(14)	1.994(9)	1.972(13)
M-N24		1.9975(14)	2.0092(19)	
C2-C2a	1.400(4)	1.386(2)	1.390(3)	
C2a-C2b	1.383(4)	1.398(2)	1.395(3)	
C2b-C2c	1.410(4)	1.394(2)	1.401(3)	
C2c-C3b	1.393(4)	1.409(2)	1.403(3)	
C3b-C3a	1.394(4)	1.385(2)	1.387(3)	
C3a-C3	1.387(4)	1.397(2)	1.396(3)	
C21-C1	1.448(3)	1.423(2)	1.418(3)	
C1-C2	1.422(4)	1.435(2)	1.426(3)	
C2-C3	1.456(3)	1.459(2)	1.468(3)	
C3-C4	1.433(4)	1.425(2)	1.418(3)	
C4-C21	1.443(4)	1.428(2)	1.426(3)	
C4-C5	1.407(4)	1.413(2)	1.415(3)	
C5-C6	1.387(4)	1.380(2)	1.380(3)	
C6-N22	1.376(3)	1.404(2)	1.402(3)	
C6-C7	1.449(3)	1.459(2)	1.517(11)	1.412(16)
C7-C8	1.372(4)	1.356(2)	1.343(9)	1.347(11)
C8-C9	1.439(3)	1.455(2)	1.458(9)	1.467(11)
C9-N22	1.355(3)	1.360(2)	1.387(9)	1.355(15)
C9-C10	1.394(4)	1.403(2)	1.390(9)	1.398(11)
C10-C11	1.391(4)	1.378(2)	1.373(7)	1.370(9)
C11-N23	1.375(3)	1.371(2)	1.373(8)	1.373(10)
C11-C12	1.471(4)	1.458(2)	1.474(8)	1.476(10
C12-C13	1.350(4)	1.359(2)	1.349(7)	1.347(9)
C13-C14	1.470(4)	1.459(2)	1.459(7)	1.465(10)
C14-N23	1.369(3)	1.372(2)	1.367(9)	1.375(12)

C14-C15	1.397(4)	1.379(2)	1.370(7)	1.348(9)
C15-C16	1.396(4)	1.407(2)	1.402(8)	1.399(10)
C16-N24	1.347(3)	1.365(2)	1.364(8)	1.399(10)
C16-C17	1.450(3)	1.450(2)	1.459(8)	1.445(11)
C17-C18	1.369(4)	1.357(2)	1.382(6)	1.373(9)
C18-C19	1.449(3)	1.454(2)	1.433(6)	1.497(9)
C19-N24	1.382(3)	1.401(2)	1.407(3)	
C19-C20	1.379(4)	1.382(2)	1.383(3)	
C20-C1	1.411(3)	1.404(2)	1.414(3)	
С21-О-М		103.23(10)	96.96(12)	
O-M-N22		88.85(5)	88.84(6)	
N22-M-N23		94.92(6)	88.0(2)	98.8(2
N23-M-N24		93.88(6)	96.7(2)	86.2(3)
N24-M-O		88.35(5)	88.49(7)	
O-M-N23		153.03(5)	163.6(3)	159.9(3)
N22-M-N24		165.79(6)	171.85(7)	

*Second PART of disordered atoms.

Orange – more aromatic (1.38-1.41), green – single bond limit (\geq1.46), blue – more single bond like (1.42-1.45), purple more double bond like (\leq1.37).

Figure S1. "Arial-view": Color POV-Ray rendered ORTEP III drawing (50% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound **16a**.

Figure S2. "Edge-view": Color POV-Ray rendered ORTEP III drawing (50% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound **16a**.

Figure S3. 45° from "edge-view": Color POV-Ray rendered ORTEP III drawing (50% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound **16a**.

Figure S4. Color POV-Ray rendered space-filling drawing of compound 16a.

Figure S5. "Arial-view": Color POV-Ray rendered ORTEP III drawing (50% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound **17a**.

Figure S6. "Edge-view": Color POV-Ray rendered ORTEP III drawing (50% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound **17a**.

Figure S7. 45° from "edge-view": Color POV-Ray rendered ORTEP III drawing (50% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound **17a**.

Figure S8. Color POV-Ray rendered space-filling drawings of compound **17a**.

Figure S9. "Arial-view": Color POV-Ray rendered ORTEP III drawing (50% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound **18b**.

Figure S9. 45° from "edge-view": Color POV-Ray rendered ORTEP III drawing (50% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound **18b**.

Figure S10. "Edge-view": Color POV-Ray rendered ORTEP III drawing (50% probability level, hydrogen atoms rendered arbitrarily small for clarity) of compound **18b**.

Figure S11. Color POV-Ray rendered space-filling drawings of compound **18b**.

Figure S12. UV-vis spectrum of 16a in 1% Et₃N-CH₂Cl₂.

Figure S13. UV-vis spectra of **16a** in 1% Et₃N-CH₂Cl₂ (free base, red line), dichloromethane (green line) and with 1 equiv of TFA in CH₂Cl₂ (purple line). Even though the dichloromethane had been deacidified, significant protonation occurred in CH₂Cl₂.

Figure S14. UV-vis spectrum of $16aH^+$ with 5 equiv of TFA in CH_2Cl_2 .

Figure S15. UV-vis spectrum of 16aH⁺ in 1% TFA-CH₂Cl₂.

Figure S16. UV-vis spectrum of protonated oxyazuliporphyrin 16a in 5% TFA-CH₂Cl₂.

Figure S17. UV-vis spectrum of protonated oxyazuliporphyrin 16a in 10% TFA-CH₂Cl₂.

Figure S18. UV-vis spectrum of protonated oxyazuliporphyrin 16a in 50% TFA-CH₂Cl₂.

Figure S19. UV-vis spectrum of oxyazuliporphyrin 16b in 1% Et₃N-CH₂Cl₂.

Figure S20. UV-vis spectrum of protonated oxyazuliporphyrin 16b in 1% TFA-CH₂Cl₂.

Figure S21. UV-vis spectrum of protonated oxyazuliporphyrin 16b in 5% TFA-CH₂Cl₂.

Figure S22. UV-vis spectrum of copper(II) oxyazuliporphyrin 17a in CH₂Cl₂.

Figure S23. UV-vis spectrum of copper(II) oxyazuliporphyrin 17b in CH₂Cl₂.

Figure S24. UV-vis spectrum of nickel(II) oxyazuliporphyrin 18a in CH₂Cl₂.

Figure S25. UV-vis spectrum of palladium(II) oxyazuliporphyrin 18b in CH₂Cl₂.

Figure S26. UV-vis spectrum of silver(III) benzocarbaporphyrin **21a** in CH₂Cl₂.

Figure S27. UV-vis spectrum of silver(III) benzocarbaporphyrin **21b** in CH₂Cl₂.

Figure S28. UV-vis spectrum of silver(III) benzocarbaporphyrin 22c in CH₂Cl₂.

Figure S29. UV-vis spectrum of silver(III) benzocarbaporphyrin 22b in CH₂Cl₂.

Figure S30. UV-vis spectrum of palladium(III) thiacarbaporphyrin 29a in CH₂Cl₂.

Figure S31. UV-vis spectrum of palladium(III) thiacarbaporphyrin **29b** in CH₂Cl₂.

Figure S32. UV-vis spectrum of palladium(III) thiacarbaporphyrin 29c in CH_2Cl_2 .

Figure S33. UV-vis spectrum of palladium(III) thiacarbaporphyrin **29d** in CH₂Cl₂.

Figure S34. 500 MHz of *tert*-butyl oxyazuliporphyrin **16a** in CDCl₃ at 50 °C.

Figure S35. Selected nOe proton NMR spectra of *tert*-butyl oxyazuliporphyrin **16a** in CDCl₃ at 50 °C.

Figure S36. HSQC and 125 MHz carbon-13 NMR spectra of 16a in CDCl₃ at 50 °C.

Figure S37. 500 MHz proton NMR spectrum of *tert*-butyl oxyazuliporphyrin monocation **16a**H⁺ in TFA-CDCl₃.

Figure S39. DEPT-135 NMR spectrum of 16H⁺ in TFA-CDCl₃.

Figure S40. 125 MHz carbon-13 NMR spectrum of 16aH⁺ in TFA-CDCl₃.

Figure S41. 500 MHz proton NMR spectrum of nickel(II) complex **18a** in CDCl₃. * solvent impurities

Figure S42. Selected nOe difference proton NMR spectra of nickel(II) complex 18a in CDCl₃.

Figure S43. ¹H-¹H COSY NMR spectrum of nickel(II) complex **18a** in CDCl₃.

Figure S44. HSQC NMR spectrum of nickel(II) complex 18a in CDCl₃.

Figure S45. DEPT-135 NMR spectrum of nickel(II) complex 18a in CDCl₃.

Figure S46. 125 MHz carbon-13 NMR spectrum of nickel(II) complex 18a in CDCl₃.

Figure S47. 500 MHz proton NMR spectrum of palladium(II) complex **18b** in CDCl₃. * solvent impurities

Figure S48. Sected nOe difference proton NMR spectra of palladium(II) complex **18b** in CDCl₃.

Figure S49. ¹H-¹H COSY NMR spectrum of palladium(II) complex **18b** in CDCl₃.

Figure S50. HSQC NMR spectrum of palladium(II) complex 18b in CDCl₃.

Figure S51. DEPT-135 NMR spectrum of palladium(II) complex 18b in CDCl₃.

Figure S52. 125 MHz carbon-13 NMR spectrum of palladium(II) complex 18b in CDCl₃.