Electronic Supplementary Material

Barluenga's Reagent with HBF₄ as An Efficient Catalyst for Alkyne-Carbonyl **Metahesis of Unactivated Alkynes**

Kosuke Murai, Keiichiro Tateishi, and Akio Saito*

* akio-sai@cc.tuat.ac.jp

[†]Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan

Table of contents

General information......S1

Preparation of 1,7-ynone 6c.....S1

Preparation of 1,8-ynal 6d......S2

General procedure for the catalytic alkyne-carbonyl metathesis of 1 and 2 (Table 2)......S2

General procedure for the catalytic alkyne-carbonyl metathesis of yanls 4 or 6 (Scheme 2)......S4

13C NMR experiments using alkyne 1a and aldehyde 2a (Table 3, Fig. S-1 and S-2)......S5

¹H and ¹³C NMR Spectra of New Compounds 6c, 6d, 7c and 7d......S8

General information

Alkynes 1a-c, 1g, aldehydes 2a-g, bis(pyridine)iodonium(I) tetrafluoroborate (IPy2BF4), N-iodosuccinimide (NIS) and HBF₄·Et₂O are commercially available. Alkynes 1d, 1e, 2f, 31,6-ynal 4a, 4b, 41,7-ynal 4c, $56a^5$ and $6b^5$ were prepared by the method reported in the literatures. All solvents were purchased and dried over Molecular Sieves 4A prior to the use. All reactions were carried out under an argon atmosphere. For the TLC analysis, Merck precoated TLC plates (silica gel 60 F₂₅₄) were used. Column chromatography was performed on silica gel 60N (63-200 µm, neutral, Kanto Kagaku Co., Ltd.). Medium-pressure liquid chromatography (MPLC) was carried out on YAMAZEN W-Prep 2XY. ¹H and ¹³C NMR spectra were measured at 500 (or 400, 300) and 125 (or 100, 75) MHz in CDCl₃, and the chemical shifts are given in ppm using CHCl₃ (7.26 ppm) in CDCl₃ for ¹H NMR and CDCl₃ (77.0 ppm) for ¹³C NMR as an internal standard, respectively. Splitting patterns of an apparent multiplet associated with an averaged coupling constant were designed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broadened). IR spectra were obtained on a JASCO FT/IR-6200. Mass spectra were recorded on a JEOL MStation MS700.

Preparation of 1,7-ynone 6c

To a solution of 2-hydroxyacetophenone (2.17 mL, 18.0 mmol) and 1-bromo-3-phenylpropyne⁶ (3.90 g, 20.0 mmol) in DMF (66 mL) was added K₂CO₃ (2.76 g, 20.0 mmol) at room temperature. After being stirred at the same temperature for 15 h, the reaction mixture was quenched with water and extracted with Et₂O. The organic layer was washed with brine and dried over MgSO₄. After concentration of the filtrate to dryness, the residue was purified by silica gel chromatography (hexane: AcOEt = 9:1) to give 6c (1.89 g, 42%) as a pale yellow oil.

2-[(3-Phenyl-2-propyn-1-yl)oxy]-acetophenone (6c)

IR (neat) v cm⁻¹; 3066, 3034, 3001, 2925, 2869, 2239, 1673, 1597, 1482, 1450, 1358, 1293, 1216, 1164, 1126, 1070, 1015, 962, 756, 691. ¹H NMR (500 MHz, CDCl₃): δ ; 2.68 (s, 3H), 5.03 (s, 2H), 7.06 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 8.6 Hz, 1H), 7.29-7.36 (m, 3H), 7.43 (dd, J = 7.5, 1.9 Hz, 2H), 7.47-7.51 (m, 1H), 7.76 (dd, J = 7.5, 1.9 Hz, 1H). ¹³C NMR (75 MHz, 1H), 13 C NMR (75 MHz, 1H), 15 C N

¹ H. Ueda, M. Yamaguchi, H. Kameya, K. Sugimoto, H. Tokuyama, Org. Lett. 2014, 16, 4948.

² E. Najahia, A. Valentina, P.-L. Fabrea, K. Reybiera, F. Nepveua, *Eur. J. Med. Chem.* 2014, 78, 269.

³ B. Zhou, H. Chen, C. Wang, J. Am. Chem. Soc. 2013, 135, 1264.

 ⁴ R. Tanaka, K. Noguchi, K. Tanaka, J. Am. Chem. Soc. 2010, 132, 1238.
⁵ J. U. Rhee, M. J. Krische, Org. Lett. 2005, 7, 2493.
⁶ A. Saito, S. Oda, H. Fukaya, Y. Hanzawa, J. Org. Chem. 2009, 74, 1517.

CDCl₃): δ; 31.9, 57.0, 83.1, 87.7, 113.3, 121.4, 122.0, 128.4, 128.9, 128.9, 130.5, 131.8, 133.5, 157.1, 200.0. FAB-LM *m/z*: 251 $[M+H]^+$. HRMS (FAB) m/z: Calcd for $C_{17}H_{15}O_2 [M+H]^+$ 251.1067; Found 251.1079.

Preparation of 1,8-ynal 6d

To a mixture of Pd(PPh₃)₂Cl₂ (26.7 mg, 0.038 mmol), CuI (14.1 mg, 0.074 mmol), 2-(3-butyn-1-vloxy)benzaldehyde⁷ (662 mg, 3.80 mmol) and iodobenzene (0.47 mL, 4.20 mmol) in MeCN was added Et₃N (0.79 mL, 5.70 mmol) at 0 °C. After being stirred at room temperature for 5 h, the reaction mixture was quenched with sat. NH₄Cl and extracted with Et₂O. The organic layer was dried over MgSO₄ and concentrated in vacuo to dryness. The residue was purified by silica gel column chromatography (hexane:AcOEt = 3:1) to give 7d (803 mg, 84%) as a pale yellow oil.

1-[2-[(4-Phenylbut-3-yn-1-yl)oxy]phenyl]ethan-1-one (6d)

IR (neat) v cm⁻¹; 3077, 2943, 2865, 2760, 1682, 1599, 1456, 1384, 1286, 1240, 1162, 1104, 1027, 829, 756, 720, 651. ¹H NMR (300 MHz, CDCl₃): δ ; 2.97 (t, J = 6.9 Hz, 2H), 4.30 (t, J = 6.9 Hz, 2H), 6.98-7.10 (m, 2H), 7.27-7.34 (m, 3H), 7.36-7.44 (m, 2H), 7.51-7.60 (m, 1H), 7.86 (dd, J = 7.7, 1.8 Hz, 1H), 10.58 (s, 1H). 13 C NMR (75 MHz, CDCl₃): δ ; 20.3, 66.7, 82.4, 85.2, 112.8, 121.2, 123.2, 125.2, 128.1, 128.3, 128.4, 131.7, 135.9, 161.0, 189.9. FAB-LM *m/z*: 251 [M+H]⁺. HRMS (FAB) m/z: Calcd for C₁₇H₁₅O₂ [M+H]⁺ 251.1067; Found: 251.1092.

General procedure for the catalytic alkyne-carbonyl metathesis of 1 and 2 (Table 2)

In a light-shielded test tube, to a solution of IPy₂BF₄ (59.5 mg, 0.16 mmol) pretreated with HBF₄·Et₂O (43.5 µL, 0.32 mmol) in CH₂Cl₂ (4 mL) at 0 °C for 10 min was added aldehyde 2 (1.6 mmol) and alkyne 1 (0.80 mmol). After being stirring at room temperature (90 °C in case of 2d) until consumption of 1 (by TLC analysis), the reaction mixture was quenched with sat. NaHCO₃ (2 mL) and sat. Na₂S₂O₃ (2 mL), and extracted with AcOEt. The organic layer was dried over MgSO₄ and concentrated to dryness. The residue was purified by MPLC (hexane:AcOEt = 98:2) to give 3.

(E)-2-Methyl-1,3-diphenyl-2-propen-1-one (3aa): 124 mg (70%). Colorless oil. ¹H NMR (500 MHz, CDCl₃): δ ; 2.28 (d, J = 1.7 Hz, 3 H), 7.19 (br.s, 1H), 7.32-7.37 (m, 1H), 7.39-7.43 (m, 4H), 7.46 (t, J = 7.4 Hz, 2H), 7.52-7.57 (m, 1H), 7.75 (dd, J = 8.3, 1.4 Hz). ¹³C NMR (75 MHz, CDCl₃): δ; 14.4, 128.2, 128.4, 128.6, 129.5, 129.7, 131.6, 135.8, 136.8, 138.5, 142.2, 199.4. NMR data correspond to the reported values.⁸

(E)-2-Methyl-3-(4-nitrophenyl)-1-phenyl-2-propen-1-one (3ab): 136 mg (64%). Pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ ; 2.27 (d, J = 1.7 Hz, 3H), 7.15 (br.s, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.56 (d, J = 8.6 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.76-7.80 (m, 2H), 8.27 (d, J = 8.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ; 14.8, 123.6, 128.4, 129.5, 130.1, 132.3, 137.5, 138.0, 140.1, 142.2, 147.2, 198.5. NMR data correspond to the reported values.⁵

(E)-3-(4-Bromophenyl)-2-methyl-1-phenyl-2-propen-1-one (3ac): 160 mg (66%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ ; 2.21 (d, J = 1.5 Hz, 3H), 7.05 (br.s, 1H), 7.23-7.26 (m, 2H), 7.40-7.55 (m, 5H), 7.69-7.73 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ; 14.5, 122.7, 128.2, 129.4, 131.1, 131.7, 131.8, 134.6, 137.5, 138.2, 140.5, 199.1. NMR data correspond to the reported values.⁹

(E)-2-Methyl-1-phenyl-3-(thienyl)-2-propen-1-one (3ad): 33 mg (18%). Pale yellow solid. ¹H NMR (500 MHz, $CDCl_3$) δ ; 2.34 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (d, J = 1.1 Hz, 3H), 7.13 (dd, J = 5.2, 4.0 Hz, 1H), 7.23 (dd, J = 5.2, 7.20 (dd, J4.0 Hz, 1H), 7.40 (br.s, 1H), 7.46 (t, J = 7.4 Hz, 2H), 7.52-7.57 (m, 2H), 7.69 (dd, J = 8.3, 1.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ; 14.6, 127.5, 128.2, 129.3, 129.9, 131.4, 132.0, 133.4, 135.6, 138.7, 139.2, 198.8. NMR data correspond to the reported values.¹⁰

⁷ R. Shintani, G. C. Fu, Angew. Chem., Int. Ed. 2003, 42, 4082.

 ⁸ A. Saito, M. Umakoshi, N. Yagyu, Y. Hanzawa, Org. Lett. 2008, 10, 1783.
⁹ T. Xu, Q. Yang, D. Li, J. Dong, Z. Yu, Y. Li, Chem. Eur. J. 2010, 16, 9264.

¹⁰ J. Hu, S. Chen, Y. Sun, J. Yang, Y. Rao, Org. Lett. 2012, 14, 5030.

(E)-2,5-Dimethyl-1-phenyl-2-hexen-2-one (3ae): 118 mg (73%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ ; 0.93 (d, J = 6.6 Hz, 6H), 1.74 (heptet, J = 6.6 Hz, 1H), 1.97 (br.d, J = 1.3Hz, 3H), 2.14-2.21 (m, 2H), 6.32 (tq, J = 7.3, 1.3 Hz, 1H), 7.38-7.45 (m, 2H), 7.46-7.54 (m, 1H), 7.60-7.65 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ; 12.6, 22.5, 28.4, 38.2, 128.0, 129.2, 131.3, 137.0, 138.8, 145.8, 199.1. NMR data correspond to the reported values.⁵

(E)-2,4-Dimethyl-1-phenyl-2-penten-1-one (3af): 108 mg (72%). Pale yellow oil. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta$; 1.03 (d, J = 6.6 Hz, 6H), 1.98 (d, J = 1.3 Hz, 3H), 2.69-2.86 (m, 1H), 6.11 (dq, J = 9.5, 1.3 Hz, 1H), 7.37-7.45 (m, 2H), 7.47-7.54 (m, 1H), 7.60-7.65 (m, 2H).¹³C NMR (75) MHz, CDCl₃) 6; 12.3, 21.9, 28.4, 128.0, 129.4, 131.3, 134.0, 138.7, 153.2, 199.3. NMR data correspond to the reported values.

(E)-2,4,4-Trimethyl-1-phenyl-2-penten-1-one (3ag): 94 mg (58%). Pale yellow oil. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta$; 1.19 (s, 9H), 2.08 (d, J = 1.4 Hz, 3H), 6.26 (q, J = 1.4 Hz, 1H), 7.38-7.44 (m, 2H), 7.46-7.53 (m, 1H), 7.61-7.66 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ; 13.4, 30.1, 33.7, 128.0, 129.5, 131.4, 134.9, 138.7, 155.0, 200.4. NMR data correspond to the reported values.¹

(E)-1,3-Diphenyl-2-propen-1-one (3ba): 105 mg (63%). Pale yellow solid. ¹H NMR (400 MHz, CDCl₃): 6; 7.40-7.45 (m, 3H), 7.48-7.55 (m, 2H), 7.53 (d, *J* = 17.4 Hz, 1H), 7.59 (tt, *J* = 7.3, 1.7 Hz, 1H), 7.63-7.69 (m, 2H), 7.82 (d, J = 17.4 Hz, 1H), 8.01-8.06 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ; 122.1, 128.4, 128.5, 128.6, 128.9, 130.5, 132.8, 134.9, 138.2, 144.8, 190.6. NMR data correspond to the reported values.¹²

(E)-3-(4-Bromophenyl)-1-phenyl-2-propen-1-one (3bc): 126 mg (55%). Pale yellow solid. ¹H NMR (500 MHz, CDCl₃) δ ; 7.49-7.63 (m, 8H), 7.75 (d, J = 15.5 Hz), 8.01-8.03 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ; 122.5, 124.8, 128.5, 128.7, 129.8, 132.2, 132.9, 133.8, 138.0, 143.4, 190.2. NMR data correspond to the reported values.¹

(E)-5-Methyl-1-phenyl-2-hexen-2-one (3be): 96 mg (63%). Pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ ; 0.97 (d, J = 7.5 Hz, 6H), 1.83 (nonet, J = 7.5 Hz, 1H), 2.19-2.24 (m, 2H), 6.87 (d, J = 15.4 Hz, 1H), 7.05 (dt, J = 15.4, 7.5 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.56 (tt, J = 7.7, 1.6 Hz, 1H), 7.93 (dd, J = 7.7, 1.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ; 22.4, 27.9, 42.1, 126.9, 128.4, 128.5, 132.5, 138.0, 148.9, 190.8. NMR data correspond to the reported values.¹²

(E)-4-Methyl-1-phenyl-2-penten-1-one (3bf): 89 mg (64%). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ; 1.14 (d, J = 6.8 Hz, 6H), 2.58 (octet d, J = 6.8, 1.4 Hz, 1H), 6.82 (dd, J = 15.6, 1.4 Hz, 1H), 7.03 (dd, J = 15.6, 6.8 Hz, 1H), 7.45-7.49 (m, 2H), 7.56 (tt, J = 7.3, 1.7 Hz, 1H), 7.91-7.94 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ; 21.3, 31.4, 123.0, 128.4, 128.4, 132.5, 138.0, 156.0, 191.2. NMR data correspond to the reported values.¹³

(E)-4,4-Dimethyl-1-phenyl-2-penten-1-one (3bg): 78 mg (52%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ ; 1.15 (s, 3H), 6.79 (d, J = 15.7 Hz, 1H), 7.07 (d, J = 15.7 Hz, 1H), 7.43-7.58 (m, 3H), 7.91-7.95(m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ; 28.7, 34.2, 121.0, 128.5, 128.5, 132.5, 138.2, 159.6, 191.6. NMR data correspond to the reported values.¹⁴

(E)-1-(4-Methylphenyl)-3-phenyl-2-propen-1-one (3ca): 97 mg (55%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃): δ ; 2.44 (s, 3H), 7.32 (d, J = 8.1 Hz, 2H), 7.40-7.44 (m, 3H), 7.56 (d, J= 15.6 Hz, 1H), 7.63-7.67 (m, 2H), 7.87 (d, J = 15.6 Hz, 1H), 7.96 (d, J = 8.1, 2H). ¹³C NMR (125 MHz, CDCl₃): δ; 21.6, 122.1, 128.4, 128.6, 128.9, 130.0, 130.4, 135.0, 135.6, 143.6, 144.4, 190.0. NMR data correspond to the reported values.¹⁵

¹¹ T. Tsuda, T. Kiyoi, T. Saegusa, J. Org. Chem. 1990, 55, 2554.

¹² J. M. Concellón, H. R. Solla, C. Méjika, *Tetrahedron* **2006**, 62, 3292.

 ¹³ C. Peppe, R. P. das Chagas, J. Organomet. Chem. 2006, 691, 5856.
¹⁴ N. K. Rana, S. Selvakumar, V. K. Singh, J. Org. Chem. 2010, 75, 2089.

(*E*)-1-(4-Methoxyphenyl)-3-phenyl-2-propen-1-one (3da): 84 mg (44%). Pale yellow solid. ¹H NMR (400 MHz, CDCl₃): δ ; 3.90 (s, 3H), 6.99 (d, J = 8.9, 2H), 7.40-7.44 (m, 3H), 7.56 (d, J = 15.5 Hz, 1H), 7.64-7.66 (m, 2H), 7.81 (d, J = 15.5 Hz, 1H), 8.05 (d, J = 8.9, 2H). ¹³C NMR (75 MHz, CDCl₃): δ ; 55.5, 113.8, 121.9, 128.3, 128.9, 130.3, 130.8, 131.1, 135.1, 144.0, 163.4, 188.7. NMR data correspond to the reported values.¹⁶

(*E*)-1-(4-Chlorophenyl)-3-phenyl-2-propen-1-one (3ea): 123 mg (63%). Pale yellow solid. ¹H NMR (400 MHz, CDCl₃): δ ; 7.40-7.46 (m, 3H), 7.46-7.52 (m, 3H), 7.62-7.68 (m, 2H), 7.82 (d, *J* = 15.6 Hz, 1H), 7.97 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ ; 121.5, 128.5, 128.9, 129.0, 129.9, 130.7, 134.7, 136.5, 139.2, 145.3, 189.2. NMR data correspond to the reported values.¹⁷

(*E*)-1-[4-(Trifluoromethyl)phenyl]-3-phenyl-2-propen-1-one (3fa): 172 mg (78%). Pale yellow solid. ¹H NMR (400 MHz, CDCl₃): δ ; 7.42-7.47 (m, 3H), 7.49 (d, *J* = 15.8 Hz, 1H), 7.63-7.69 (m, 2H), 7.78 (d, *J* = 8.5 Hz, 2H), 7.84 (d, *J* = 15.8 Hz, 1H), 8.11 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ ; 122.5, 123.6 (q, *J* = 272.8 Hz), 125.0 (q, *J* = 3.7 Hz), 128.6, 128.7, 129.0, 130.9, 133.9 (q, *J* = 32.6 Hz), 134.5, 141.0, 146.0, 189.6. NMR data correspond to the reported values.¹⁸

(*E*)-2-Benzylidene-1-phenylhexan-1-one (3ga): 85 mg (40%). Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ ; 0.92 (t, J = 7.3 Hz, 3H), 1.36-1.48 (m, 2H), 1.52-1.58 (m, 2H), 2.75 (t, J = 7.8 Hz, 2H), 7.05 (s, 1H), 7.30-7.48 (m, 7H), 7.53-7.57 (m, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ ; 13.9, 23.0, 27.5, 30.9, 128.2, 128.4, 128.5, 129.1, 129.6, 131.9, 135.7, 138.7, 140.6, 142.4, 199.4. NMR data correspond to the reported values.¹⁹

General procedure for the catalytic alkyne-carbonyl metathesis of yanls 4 or 6 (Scheme 2)

- (a) IPy₂BF₄/2 BF₄ catalytic systems: in a light-shielded test tube, to a solution of IPy₂BF₄ (6a,c: 14.9 mg, 0.04 mmol; 6b: 22.4 mg, 0.06 mmol; other substrates: 29.8 mg, 0.08 mmol) pretreated with HBF₄·Et₂O (6a,c: 10.9µL, 0.08 mmol; other substrates: 21.6 µL, 0.16 mmol) in CH₂Cl₂ (6a,c: 3 mL; other substrates: 1.5 mL) at 0 °C for 10 min was added a solution of 4 or 6 (6a,c: 0.8 mmol, other substrates: 0.4 mmol) in CH₂Cl₂ (6a,c: 1 mL; other substrates: 0.5 mL). After being stirring at room temperature until consumption of the starting material (by TLC analysis), the reaction mixture was quenched with sat. NaHCO₃ (6a,c: 2 mL; other substrates: 1 mL) and sat. Na₂S₂O₃ (6a,c: 2 mL; other substrates: 1 mL), and extracted with AcOEt. The organic layer was dried over MgSO₄ and concentrated to dryness. The residue was purified by MPLC (hexane:AcOEt = 4:1 to 2:1) to give 5 or 7.
- (b) NIS/BF₄ catalytic systems: in a light-shielded test tube, to a solution of NIS (18.0 mg, 0.08 mmol) pretreated with HBF₄·Et₂O (10.9µL, 0.08 mmol) in CH₂Cl₂ (1.5 mL) at 0 °C for 10 min was added yanl a solution of 4a (131 mg, 0.4 mmol) or 4b (161 mg, 0.4 mmol) in CH₂Cl₂ (0.5 mL). After being stirring at room temperature for 20 h, the reaction mixture was quenched with sat. NaHCO₃ (1 mL) and sat. Na₂S₂O₃ (1 mL), and extracted with AcOEt. The organic layer was dried over MgSO₄ and concentrated to dryness. The residue was purified by MPLC (hexane:AcOEt = 4:1 to 2:1) to give 5a (107 mg, 82%) or 5b (42 mg, 40%).

(2,5-Dihydro-1-tosyl-1*H*-pyrrol-3-yl)(phenyl)methanone (5a): 94 mg (72%). White solid. ¹H NMR (300 MHz, CDCl₃) δ ; 2.44 (s, 3H), 4.39-4.48 (m, 4H), 6.35 (t, *J* = 1.6 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.67 (d, *J* = 7.1 Hz, 2H), 7.78 (d, *J* = 8.1 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ ; 21.5, 54.3, 56.0, 127.5, 128.5, 128.7, 129.9, 132.8, 133.6, 137.2, 137.3, 138.9, 143.9, 190.6. NMR data correspond to the reported values.⁵

1-(2,5-Dihydro-1-tosyl-1*H***-pyrrol-3-yl)ethanone (5b)**: 33 mg (31%). White solid. ¹H NMR (500 MHz, CDCl₃) δ ; 2.27 (s, 3H), 2.43 (s, 3H), 4.26 (td, J = 4.6, 2.1 Hz, 2H), 4.36 (td, J = 4.6, 2.1 H, 2H), 6.49 (quintet, J = 2.1 Hz, 1H), 7.33 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ; 21.5, 26.3, 53.2, 55.7, 127.4, 129.9, 133.5, 135.6, 140.3, 143.8, 193.7. NMR data correspond to the reported values.⁵

(1,2,3,6-Tetrahydro-1-tosylpyridin-4-yl)(phenyl)methanone (5c): 61 mg (45%). White solid. ¹H NMR (300 MHz, CDCl₃) δ ; 2.44 (s, 3H), 2.60-2.69 (m, 2H), 3.29 (t, J = 5.8 Hz, 2H), 3.83 (dd, J = 5.8, 2.7 Hz, 2H), 6.39 (br.s, *I*H), 7.36 (d, J = 8.2 Hz, 2H), 7.42 (t, J = 7.4 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.58-7.61 (m, 2H), 7.72 (d, J = 8.2 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ ; 21.5, 24.3, 42.6, 44.8, 127.7, 128.3, 129.1, 129.8, 132.1, 133.0, 136.2, 136.5, 137.4, 143.9, 195.8. NMR data

¹⁶ M. Markovič, P. Lopatka, P. Koóš, T. Gracza, Org. Lett. 2015, 17, 5618.

¹⁷ J. R. Schmink, J. L. Holcomb, N. E. Leadbeater, *Org. Lett.* **2009**, *11*, 365.

¹⁸ X.-F. Wu, H. Neumann, A. Spannenberg, T. Schulz, H. Jiao, M. Beller, J. Am. Chem. Soc. **2010**, 132, 14596.

¹⁹ J. Y. Park, P. R. Ullapu, H. Choo, J. K. Lee, S.-J. Min, A. N. Pae, Y. Kim, D.-J. Baek, Y. S. Cho, Eur. J. Org. Chem. 2008, 5461.

correspond to the reported values.⁵

(2*H*-Chromen-3-yl)(phenyl)methanone (7a): 151 mg (80%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ ; 5.18 (d, *J* = 1.1 Hz, 2H), 6.88-6.98 (m, 2H), 7.07-7.15 (m, 1H), 7.13 (br.s, 1H), 7.29 (td, *J* = 7.5, 2.0 Hz, 1H), 7.47-7.52 (m, 2H), 7.59 (tt, *J* = 7.3, 1.7 Hz, 1H), 7.71-7.75 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ ; 65.2, 116.4, 121.0, 121.8, 128.4, 129.0, 129.3, 129.8, 132.0, 132.5, 137.1, 137.5, 155.5, 194.1. NMR data correspond to the reported values.⁵

1-(2*H***-Chromen-3-yl)ethanone (7b)**: 35 mg (50%). Pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ ; 2.40 (s, 3H), 5.00 (d, J = 1.1 Hz, 2H), 6.86 (d, J = 8.2 Hz, 1H), 6.94 (td, J = 7.4, 1.1 Hz, 1H), 7.16 (dd, J = 7.7, 1.6 Hz, 1H), 7.26 (td, J = 7.7, 1.6 Hz, 1H), 7.30 (br.s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ ; 25.0, 64.2, 116.3, 120.7, 121.8, 129.1, 130.7, 132.4, 133.9, 155.5, 195.9. NMR data correspond to the reported values.⁵

(4-Methyl-2*H*-chromen-3-yl)(phenyl)methanone (7c): 120 mg (60%). Pale yellow oil. IR (neat) v cm⁻¹; 3061, 3035, 3000, 2952, 2919, 2842, 1655, 1578, 1485, 1448, 1381, 1333, 1287, 1247, 1176, 1159, 1125, 1066, 1040, 1023, 1001, 930, 903. ¹H NMR (500 MHz, CDCl₃) δ ; 2.02 (t, *J* = 1.4 Hz, 3H), 4.86 (q, *J* = 1.4 Hz, 2H), 6.95 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.02 (td, *J* = 7.7, 1.0 Hz, 1H), 7.27 (td, *J* = 7.7, 1.5 Hz, 2H), 7.37 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.58-7.62 (m, 1H), 7.93 (dd, *J* = 8.3, 1.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ ; 15.8, 66.2, 116.3, 121.8, 124.2, 125.2, 127.7, 128.8, 129.2, 130.6, 133.3, 134.8, 137.6, 154.7, 196.5. FAB-LM *m/z*: 251 [M+H]⁺. HRMS (FAB) *m/z*: Calcd for C₁₇H₁₅O₂ [M+H]⁺ 251.1067; Found: 251.1089.

(2,3-Dihydrobenzo[b]oxepin-4-yl)(phenyl)methanone (7d): 54 mg (54%). Pale yellow solid. IR (KBr) v cm⁻¹; 3054, 3017, 2976, 2930, 2904, 2881, 1621, 1598, 1567, 1488, 1442, 1307, 1272, 1259, 1213, 1129, 1080, 765, 743, 712. ¹H NMR (300 MHz, CDCl₃) δ ; 3.14 (td, *J* = 4.4, 1.1 Hz, 2H), 4.36 (t, *J* = 4.4 Hz, 2H), 6.94-7.05 (m, 2H), 7.11 (br.s, 1H), 7.15 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.23-7.31 (m, 1H), 7.43-7.50 (m, 2H), 7.56 (tt, *J* = 7.3, 1.8 Hz, 1H), 7.70-7.74 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ ; 33.0, 68.9, 120.4, 122.2, 123.3, 128.3, 129.4, 131.1, 131.7, 135.3, 138.5, 139.3, 142.1, 160.4, 198.1. FAB-LM *m*/*z*: 251 [M+H]⁺. HRMS (FAB) *m*/*z*: Calcd for C₁₇H₁₅O₂ [M+H]⁺ 251.1067; Found: 251.1072.

¹³C NMR experiments using alkyne 1a and aldehyde 2a (Table 3, Fig. S-1 and S-2)

To gain a qualitative understanding of the activation of alkynes and/or aldehydes by the present catalytic systems, we carried out NMR studies using 1:1 mixture of alkyne **1a** and benzaldehyde (**2a**) with various additives in CD₂Cl₂ at -78 °C (Fig. S-1 and S-2). The ¹³C NMR spectrum (125 MHz) in the presence of PyHBF₄ (1 equiv) showed slight upfield shifts of the spcarbons (C^{α}: 78.06 ppm and C^{β}: 85.19 ppm) of **1a** and the carbonyl-carbon (C^{γ}: 192.07 ppm) of **2a** (Fig. S-2a) compared with that in the absence of any additives (Fig. S-1). On the other hand, the addition of BF₃·Et₂O, HBF₄, NIS/HBF₄, or IPy₂BF₄/2 HBF₄ (0.5 equiv each) instead of PyHBF₄ led to the significant downfield shift of C^{γ} (Fig. S-2b,c,d,e), and the case of IPy₂BF₄/2 HBF₄ was particularly notable (C^{γ}: 193.99 ppm). These results suggest that an iodonium species such as IBF₄ and/or IF generated from IPy₂BF₄ and HBF₄ serve as a σ -acid for the activation of the aldehyde. Barluenga *et al.* proposed the involvement of the similar iodonium species in the oxidative arylation of aldehydes.¹⁶ Furthermore, the present iodonium species was found out to have the stronger σ -acidity than HBF₄ and an iodine species **B** derived from NIS and HBF₄. Since the iodine species such as **B** was observed in a ¹³C NMR spectrum of a mixture of NIS and an acid by Olah et al., **B** was considered to be involved in the present reaction.

Fig. S-1. ¹³C NMR spectra of a 1:1 mixture of 1a and 1b without any additives

Fig. S-2. ¹³C NMR spectra of a 1:1 mixture of **1a** and **2a** with additives

¹H-NMR of **6c**

¹³C-NMR of **6c**

¹H-NMR of **6d**

¹³C-NMR of **6d**

¹H-NMR of **7**c

¹H-NMR of **7d**

