Isolation and structural analysis of the covalent adduct formed between a bis-amino mitoxantrone analogue and DNA: a pathway to major-minor groove cross-linked adducts.

Shyam K. Konda^a, Celine Kelso^b, Jelena Medan^{c d}, Brad E. Sleebs^{c,e}, Don R. Phillips^d, Suzanne M. Cutts^{d*} and J. Grant Collins^{a*}

Electronic Supplementary Information

Figure S1Top: Expansion of a HSQC spectrum of the WEHI-150 covalent adduct
with $d(C_1G_2{}^{5Me}C_3G_4C_5G_6)_2$ in pH 7.0 phosphate buffer in D2O at 2 °C.
The methylene ${}^{13}C$ has strong cross peaks to each of its non-equivalent
geminal protons. Signals at 3.35 ppm and 3.69 ppm are from EDTA.
Bottom: Full HSQC spectrum of the WEHI-150 covalent adduct.

Figure S2 Full ¹H NMR spectrum of the free oligonucleotide d(CG^{5Me}CGCG)₂
(A) and the WEHI-150 covalent adduct with d(CG^{5Me}CGCG)₂ (B) in pH 7.0 phosphate buffer in D₂O at 10 °C.

Figure S3Expansion of a NOESY spectrum of the WEHI-150 covalent adduct
with $d(C_1G_2{}^{5Me}C_3G_4C_5G_6)_2$ in pH 7.0 phosphate buffer in D₂O at 10 °C.
The expansion shows NOE connectivities from the WEHI-150 aliphatic
protons to the oligonucleotide methyl group protons of the 5-methyl
cytosine (${}^{5Me}C_9$ S-2). In the empty box, cross peaks would be expected
if both the WEHI-150 aliphatic side-chains were located in the major
groove.

Figure S4 Energy minimized HyperChem model of the WEHI-150 covalent adduct with d(CG^{5Me}CGCG)₂. The DNA is shown in cyan; the WEHI-150 is in yellow; the CH₂ derived from formaldehyde is highlighted in red. The model shows both the WEHI-150 aliphatic side-chains located in the DNA minor groove; however, this model is not consistent with the obtained NMR result. In particular, the distances from the WEHI-150 aliphatic side-chain protons to the methyl group protons of the 5methyl cytosine (S-1 and S-2) are significantly greater than the maximum distance (5 Å) for which an NOE can be expected. Table S1¹H NMR shifts of free WEHI-150 and WEHI-150 in the covalent
adduct with d(CG^{5Me}CGCG)₂ in pH 7.0 phosphate buffer in D₂O at 10
°C. Changes in chemical shifts are given in brackets, with a negative
sign indicating an upfield shift (ND=Not Determined).

WEHI-150 protons	H2	Н3	Н6,7	На	Hb	Нс	Hd
Free	7.22	7.22	7.45	3.91	3.48	3.45	3.39
Covalent adduct with	6.82	6.50	6.09	3.47	3.33	3.27-3.17	
d(CG ^{5Me} CGCG) ₂	(-0.40)	(-0.72)	(-1.36)	(-0.44)	(-0.15)	(ND)	

Table S2¹H NMR assignment of the DNA resonances of the covalent adduct
between WEHI-150 and $d(C_1G_2{}^{5Me}C_3G_4C_5G_6)_2$ in pH 7.0 phosphate
buffer in D₂O at 10 °C. Changes in chemical shifts upon covalent
binding with WEHI-150 are given in brackets, with a negative sign
indicating an upfield shift.

Base	H6/H8	H5	H1'	H2'	H2''	Methyl	Imino
C ₁	7.60	5.81	5.67	1.93	2.34		
	(-0.06)	(-0.07)	(-0.06)	(-0.12)	(-0.10)		
G ₂	7.89		5.81	2.53	2.60		11.82
	(-0.12)		(-0.22)	(-0.15)	(-0.27)		(-1.35)
^{5Me} C ₃	7.08		6.01	2.40	2.40	1.39	
	(-0.10)		(+0.38)	(+0.35)	(+0.01)	(-0.27)	
G ₄	8.03		6.04	2.95	3.03		12.39
	(+0.09)		(+0.15)	(+0.24)	(+0.32)		(-0.73)
C ₅	7.34	5.29	5.76	1.97	2.34		
	(-0.03)	(-0.17)	(-0.05)	(+0.02)	(-0.03)		
G ₆	7.95		6.15	2.65	2.36		
	(0.00)		(0.00)	(+0.01)	(-0.02)		
C ₇	7.58	5.80	5.64	1.88	2.33		
	(-0.08)	(-0.08)	(-0.09)	(-0.17)	(-0.11)		
G ₈	7.91		5.94	2.58	2.76		12.92
	(-0.10)		(-0.09)	(-0.10)	(-0.11)		(-0.25)
^{5Me} C ₉	7.32		5.90	2.26	2.32	1.59	
	(+0.14)		(+0.27)	(+0.21)	(-0.07)	(-0.07)	
G ₁₀	8.00		5.78	2.60	2.70		12.53
	(+0.06)		(-0.11)	(-0.11)	(-0.01)		(-0.59)
C ₁₁	7.39	5.41	5.70	1.93	2.34		
	(+0.02)	(-0.05)	(-0.11)	(-0.02)	(-0.03)		
G ₁₂	7.96		6.14	2.65	2.35		
	(+0.01)		(-0.01)	(+0.01)	(-0.03)		