# Synthesis of Quinazolines from 2-aminobenzylamines with Benzylamines and *N*-substituted Benzylamines under Transition Metal - Free Conditions

Abhishek R. Tiwari and Bhalchandra M. Bhanage\*

Department of Chemistry, Institute of Chemical Technology (ICT), Mumbai, India Email ID: bm.bhanage@gmail.com; bm.bhanage@ictmumbai.edu.in Fax: +91 2233611020; Tel: +91 2233612601

# **Table of contents**

| 1. | General Information                                                  | 2    |
|----|----------------------------------------------------------------------|------|
| 2. | Representative synthetic procedure for the synthesis of quinazolines | 2    |
| 3. | Analytical data                                                      | 3-4  |
| 4. | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra                   | 5-10 |

# **General Information**

All chemicals and solvents were purchased with high purities and used without further purification. The progress of the reaction was monitored by gas chromatography (GC) with a flame ionization detector (FID) with a capillary column (30 m × 0.25 mm × 0.25 µm) and thin layer chromatography (using silica gel 60 F-254 plates). The products were visualized with a 254 nm UV lamp. GC-MS (Rtx- 17, 30 m × 25 mm ID, film thickness (df = 0.25 µm) (column flow 2 mL min<sup>-1</sup>, 80 °C to 240 °C at 10 °C min<sup>-1</sup> rise) was used for the mass analysis of the products. Products were purified by column chromatography on 100-200 mesh silica gel. The <sup>1</sup>H NMR spectras were recorded on 400 MHz and 500 MHz spectrometer using tetramethylsilane (TMS) as an internal standard. The <sup>13</sup>C NMR spectras were recorded on 100 MHz and 125 MHz and Chemical shifts were reported in parts per million ( $\delta$ ) relative to tetramethylsilane (TMS) as an internal standard. Coupling constant (J) values were reported in hertz (Hz). Splitting patterns of proton are described as s (singlet), d (doublet), dd (doublet of doublet), t (triplet) and m (multiplet) in 1H and 13C NMR spectroscopic analysis. The products were confirmed by GCMS, <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy analysis.

### Representative procedure for the synthesis of quinazolines

To an oven dried round bottom flask, 2-aminobenzylamine (**1a**, 0.5 mmol), benzylamine (**2a**, 2.0 mmol), and  $I_2$  (10 mol%) were added under  $O_2$  balloon. Then the reaction mixture was stirred at 80 °C for 5 h. Progress of the reaction was monitored by TLC and GC. After the completion of the reaction, the reaction mixture was diluted with ethyl acetate (8 - 10 mL), followed by addition of 1-2 pinch of charcoal to remove any colored impurities, filtered and concentrated on the rotary evaporator. The obtained crude product was purified using column chromatography over silica gel using pet ether/ethyl acetate as eluent.

#### <sup>1</sup>H NMR and <sup>13</sup>C NMR analytical data of compounds (3)

## 2-(p-tolyl)quinazoline (3b)<sup>1,2</sup>

Petroleum ether/EtOAc = 95:5; Pale yellow solid; m.p. 104–106 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.40 (s, 1H), 8.50 (d, *J* = 8. Hz, 2H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.87 (t, *J* = 8.0 Hz, 2H), 7.59 (t, *J* = 8 Hz, 1H), 7.33 (t, *J* = 8 Hz, 2H), 2.4 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.1, 160.42, 150.8, 140.8, 135.3, 134.03, 129.4, 128.52, 128.49, 127.10, 127.02, 123.49, 21.50; GCMS (EI, 70 eV): m/z (%): 220 (100), 219 (40, M<sup>+</sup>), 193 (19), 192 (18), 109 (13), 89 (7), 76 (8).

#### 2-(4-methoxyphenyl)quinazoline (3c)<sup>1,2</sup>

Petroleum ether/EtOAc = 92:8; White solid; m.p. 93-95 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.40 (s, 1H), 8.56 (d, *J* = 8.0 Hz, 2H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.86 (t, *J* = 8.0 Hz, 2H), 7.55 (t, *J* = 8 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 2H), 3.88 (d, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.79, 160.8, 160.4, 150.8, 134.0, 130.7, 130.2, 128.4, 127.1, 126.8, 123.3, 114.0, 55.4; GCMS (EI, 70 eV): m/z (%): 236 (19), 235 (100, M<sup>+</sup>), 220 (36), 192 (35), 191 (34), 106 (13), 95 (16), 77 (7).

#### 2-(4-chlorophenyl)quinazolines (3e)<sup>1,2</sup>

Petroleum ether/EtOAc = 92:8; White solid; m.p. 130-132 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.43 (s, 1H), 8.55 (d, *J* = 8.0 Hz, 2H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.92-7.88 (m, 2H), 7.61 (t, *J* = 8 Hz, 1H), 7.48 (d, *J* = 8.3 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.51, 160.01, 150.6, 136.8, 136.5, 134.2, 129.8, 128.8, 128.6, 127.45, 127.13, 123.6; GCMS (EI, 70 eV): m/z (%): 242 (33), 240 (100, M<sup>+</sup>), 213 (31), 178 (31), 76 (22), 50 (14).

#### 2-(3-chlorophenyl)quinazoline (3f)<sup>1,2</sup>

Petroleum ether/EtOAc = 92:8; Yellow solid; m.p. 150-152 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.46 (s, 1H), 8.62 (s, 1H), 8.52 – 8.46 (m, 1H), 8.08 (d, *J* = 8.0 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.65-7.60 (m, 1H), 7.47 (t, *J* = 8, Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.6, 159.7, 150.6, 139.8, 134.3, 133.8, 130.5, 129.8, 128.65, 128.64, 127.63, 127.1, 126.88, 126.77, 126.60, 126.0, 123.7; GCMS (EI, 70 eV): m/z (%): 242 (36), 240.05 (100, M<sup>+</sup>), 213 (29), 178 (31), 102 (23), 76 (28), 50 (22), 44 (20).

#### 2-(3-nitrophenyl)quinazoline (3j)<sup>2</sup>

Petroleum ether/EtOAc = 80:20; Yellow solid; m.p. 100-102 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.49 (s, 2H), 8.96 (d, *J* = 8 Hz, 1H), 8.34 (d, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 8.0 Hz, 1H), 7.96 (t, *J* = 8.0 Hz, 2H), 7.69 (t, *J* = 8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.7, 158.6, 150.6, 148.8, 139.8, 134.56, 134.19, 129.5, 128.73, 128.07, 127.2, 125.0, 123.9, 123.6; GCMS (EI, 70 eV): m/z (%): 251(61, M<sup>+</sup>), 205.15 (100), 193.15 (20), 151 (24), 77.05 (29).

#### 2-(pyridin-3-yl)quinazoline (3k)<sup>1</sup>

Petroleum ether/EtOAc = 85:15; Pale yellow solid; m.p. 130-132 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.74 (s, 1H), 9.37 (s, 1H), 8.78 (d, *J* = 8 Hz, 1H), 8.67 (s, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.84 (t, *J* = 8.0 Hz, 2H), 7.56 (t, *J* = 8.0 Hz, 1H), 7.40 -7.36 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.6, 159.0, 151.0, 150.5, 150.1, 135.7, 134.3, 133.5, 128.5, 127.7, 127.1, 123.7, 123.4. GCMS (EI, 70 eV): m/z (%): 221 (100), 220 (47, M<sup>+</sup>), 194 (18), 179 (7),78 (3).

## **References:**

- B. Han, X. L. Yang, C. Wang, Y. W. Bai, T. C. Pan, X. Chen, W. J. Yu, Org. Chem., 2012, 77, 1136.
- 2. C. C. Malakar, A. Baskakova, J. Conrad, U. Beifuss, *Chem. Eur. J.*, 2012, 29, 8882.









<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2-(4-methoxyphenyl)quinazolines (3c)



<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra 2-(4-chlorophenyl)quinazolines (3e)





<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra 2-(3-chlorophenyl)quinazolines (3f)



<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2-(3-nitrophenyl)quinazolines (3j)



<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2-(pyridin-3-yl)quinazolines (3k)